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Flight with Lift Modulation inside a Planetary Atmosphere

N. X. Vinh* and N. A. Bletsost
The University of Michigan, Ann Arbor, Mich.

and
A. Busemann$ and R. D. Culp§

The University of Colorado, Boulder, Colo.

A set of dimensionless variables is introduced to derive the equations for flight with lift and bank modulation
inside a planetary atmosphere in a Newtonian gravitational field. Flight subject to constraints on state variables
is discussed and a general approach is presented. Two examples are analyzed in detail: flight at constant speed,
and flight at constant sinking speed.

I. Introduction

MUCH analytical work concerning the entry of a winged
spacecraft has been restricted to constant angle-of-

attack and bank angle. On the other hand, numerical analyses
usually are confined to the performance of a particular
vehicle. In this paper, in order to analyze the performance of
an arbitrary space vehicle, we have introduced a set of
dimensionless variables and a generalized lift-drag polar to
derive the dimensionless equations for flight with lift and
bank modulation inside a spherical planetary atmosphere
assumed at rest. The Newtonian inverse square field of gravity
is used for the spherical planet. By a simple transformation,
the corresponding equations for flight over a flat planet
model are obtained. Flight subject to constraints on state
variables is discussed and a general theory is presented. Two
specific examples for constrained flight are given in detail.
The first is flight at constant absolute speed along a great
circle route over a spherical planet; the second is flight at
constant sinking speed over a flat planet. In each case, the
required lift control law is displayed explicitly.

II. Dimensionless Equations of Motion
The equations of motion of a nonthrusting, lifting vehicle

entering a stationary spherical planetary atmosphere are
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The state variables are defined in Fig. 1. The flight path
angle 7 is defined as positive when the velocity is directed
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below the horizontal plane. The bank angle a is taken to be
positive for a bank to the left. The density of the atmosphere p
is assumed to be locally exponential with inverse scale height
0. Throughout, the Newtonian inverse-square gravitational
field is used.

For a given vehicle configuration, there is a lift-drag
relationship; either the lift coefficient CL or the drag coef-
ficient CD can be used as the lift control. We shall use a
rescaled lift coefficient X such that

_ /^<* \ fy\
L— C L A (2)

where C*L and CJ are the lift and drag coefficients
corresponding to the maximum lift-to-drag ratio E*. In the
hypervelocity regime these parameters are independent of
Mach number. They will be taken as constants in this analysis.

The drag coefficient is

(3)

where /(A) is the function specifying the chosen drag polar.
When X = 1 the flight is at maximum lift-to-drag ratio; thus,
/(/) = !. For a parabolic drag polar,/(X) has the simple form

(4)

Fig. 1 State variables, control variables, and other parameters
defined with respect to inertial coordinates, OXYZ.
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In general, X is bounded:

IXI (5)

The following dimensioniess variables are introduced to
replace the altitude and the speed:

(6)

where M is the gravitational constant for the inverse square
field, Wis the apparent wing loading, and varies in the same
direction as the altitude. These are the modified Chapman
variables, which have proved to be valuable in analytic at-
mosphere entry investigations.1'5 They render the equations
free of the physical characteristics of the vehicles, and at the
same time remove Chapman's6-7 restrictions on the type of
trajectory permitted.

By use of a monotonically increasing independent variable s
defined as

dt (7)

we obtain dimensioniess equations for flight with lift and
bank modulation inside a spherical and locally exponential
planetary atmosphere with inverse scale height /3:

ds

dr

d0
~ds

E* W COSY

cos\j/

- (v-2)tany

Xcosg f j _ L d^ _
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In the derivation of these equations, g has been treated as
inversely proportional to r2. The resulting equations are exact
in the sense that, for flight in vacuum, where the aerodynamic
force terms (and the whole of the first equation) are deleted,
the equations yield Keplerian motion.4

For flight in a plane through the center of attraction, 5- is the
same as the range angle 6; thus, for that special case, the
equations of motion are the three equations

d W
—— = ~/3r Wtanydu

dv = 2vf(\)
d<9 ~ E* IV cosy — (v — 2)tany

dO W cosy (9)

It is convenient to treat the product fir as a constant.6 For
Earth, fir can be taken to be 900. In all these equations, the
aerodynamic parameters involved are the maximum lift-to-
drag ratio E*, and the maximum value of the lift coefficient
through Eq. (5).

In order to reduce the general equations to the special case
of a flat planet model, we use the new altitude and speed
variables:

y = fir W u = fir v

and the dimensioniess linear range

(10)

(11)

Substitution into Eq. (9) gives, since /3r>u, the equations of
motion for nonturning flight over a flat planet:

dy
-r-dz

dz y cos7

du
dz

1_
u

2uf(\)
E*y cosy + 2tany

(12)

For the case of a flat planet, the characteristic parameter (3r of
the atmosphere vanishes. Hence, the flight behavior is in-
dependent of any particular atmosphere.

III. Flight Subject to Constraints on State Variables
Equations (8) are the equations of motion describing a

dynamic system subject to arbitrary control. The variables
W,v,y,6,4>, and \l/ are the state variables; the variables X and a
are the control variables. The variable s is the independent
variable and, in the case where s is strictly monotone in-
creasing, can be called the time variable.

As set forth, the problem is classical, and results of the
theory of state variable constraints apply.8'9 The control
variables are determined from the constraints. Here the
theory is outlined in a form especially suitable for application
to this problem.

In general, we consider an n-dimensional dynamic system
governed by the system of differential equations

-^-=fj(X,u,t) j = l,2,

where x is the ^-dimensional state vector

X=(Xj,X2,...,Xn)

and u is the m-dimensional control vector

U=(Ui,U2,...,Um)

(13)

(14)

(15)

We consider the case in which, at each instant, the state
variables are related by the constraining relations

$k(x)=Q k=l,2,...,p (16)

Each of these p relations defines an (n- l)-dimensional
surface in the /^-dimensional state space. The trajectory
satisfying the relation must lie on this constraining surface.
With Eq. (16), we can express p state variables, at least
formally, in terms of the n-p remaining variables. The system
in Eq. (13) is reduced to order (n-p). To permit a trajectory to
be generated, p must be less than n. Furthermore, for the
trajectory to lie on the constraining surface requires that, at
each instant, the tangent to the trajectory be also a tangent of
the surface, where such exists:

k k—^dx, + -^d*2 + ... + —±dx n =0 k=l,2,...,p (17)
dx} 8x2 dxn

Using the state Eqs. (13) in Eq. (17) gives

(18)

At every instant, these equations must be satisfied by a
value of the control vector u. The trajectory cannot be
generated if u cannot be so chosen within its bound. Since u
has m components, it is necessary that p be less than or equal
to m. If p is less than m, then m-p components of the control
can be selected arbitrarily. If m =p, the system (18) provides a
finite number of solutions for the set (ulfu2»...,um) in terms



NOVEMBER 1977 LIFT MODULATION INSIDE A PLANETARY ATMOSPHERE 1619

of the remaining state variables and the time. By substituting
any of these solutions into the (n-p) remaining state
equations, we can integrate these equations from the initial
state, and thus generate a trajectory satisfying the constraints.
If the physical characteristics of the control u allow a
discontinuity in any of its components, we can switch from
one solution of Eq. (18) to another.

Finally, the state space may be bounded. When the
trajectory reaches the boundary and the control vector cannot
be selected to move the trajectory along or away from the
boundary, the motion is terminated.

This brief sketch of the theory is sufficient for the practical
use envisioned here; the theory of state variable constraints is
complex and highly developed. If greater rigor is desired, or if
more complicated problems are attempted, there is a large
body of work available.

IV. Flight at Constant Speed
First, let us apply the general considerations to the specific

case of flight at constant absolute speed over a spherical
planet. The state equations are Eqs. (9), with three state
variables W, t>, and 7, and the single component X for the
control in its bounded space [Eq. (5)]. The constraining
relation is simply

V-V:

Equation (18) for the control provides

(19)

(20)

If f / < 2 , 7 is positive and the trajectory is descending. The
altitude W decreases monotonically. We further restrict our
analysis to subcircular speed, v, < 1.

Equations (9) and (19) combine to give

(21)

Incorporating X from Eq. (20), we can generate the trajectory
in the (7, W) space by integrating from the initial point

W

X = 0

7, 7* 90° y

Fig. 2 Flow of trajectories for positive-lift flight at constant speed
over a spherical planet.

:(yif Wt\. Equation (20) gives the drag modulation required to
keep constant speed along the trajectory. But, for each drag
coefficient, we have the option to select a positive or negative
lift coefficient. We shall first investigate the case of flight with
positive lift, using a parabolic drag polar, as given by Eq. (4).

Flight with Positive Lift
We write the control law

(22)

In the (y,W) space, the domain of flight is bounded by the
curve X = 0 and X = Xmax (Fig. 2). It is also bounded below by
the ground level, W=WS. When X = 0, minimum drag has
been reached, and flight at constant speed cannot be main-
tained by further modulation of the drag. Although the curve
X = 0 is a part of the boundary of flight, only a portion of it is
enforced. In order to prove this, we consider a trajectory
leading to X = 0. At this point, the slope of the trajectory in the
(7, W) plane is

dW -(3rv2

On the other hand, the slope of the X = 0 curve is

dW
E*(2-vi)sm2y

(23)

(24)

Comparing the two slopes, we find a critical flight path angle
7^ such that the two slopes are equal:

As indicated by the arrows in Fig. 2, when 7<7!)c, the
trajectory intersects the curve X = 0 from the left to the right,
and cannot lead into it. From Eq. (21), we see that the flight
path angle increases when

\<[(l-vi)/vi]Wcosy (26)

Using the control law (22), we have the condition

A = (]-vi)2cos2yW2-E*vl(2-vt)sinyW+ v2>0 (27)

In the (7, W) plane, we plot the curve A =0. It has the line
7 = 90 deg as asymptote. It is above the curve X = 0 and is
tangent to that curve at the point 7 = 90 deg, W— vtE*(2 - v , ) .
The flight path angle increases when the trajectory is outside
the A curve, and decreases inside the curve. The curve A =0
has a vertical tangent at the point

tany, = \ = (28)

From this point, we generate a limiting trajectory T, by
integrating Eq. (21) forward and backward. As may be seen
from Fig. 2, in terms of the behavior of the flight path angle,
there are three types of trajectories:

Type 1: Trajectories along which the f l ight path angle
increases continuously. The flight terminates when either X
reaches X m a x , or when minimum drag, X = 0, is attained.

Type 2: Trajectories along which the flight path angle
decreases to a minimum and then increases unt i l minimum
drag is attained.

Type 3: Trajectories along which the fl ight path angle
increases and then decreases, and finally increases un t i l
minimum drag is attained.

The boundary Ws is a function of the physical charac-
teristics of the vehicle and the atmosphere. It does not change
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the behavior of the trajectories. Its inclusion has only the
effect of further restricting the domain of fl ight. Whenever
the flight terminates at minimum drag, the final flight path
angle yf is such that 7 />7 # . Also, the final flight path angle
can never reach 90 deg.

Flight with Negative Lift
When X<0, since W is decreasing, Eq. (21) shows that the

flight path angle increases continuously. In this case, the
flight path angle can reach 90 deg with X?*0, and hence with
some freedom of control remaining. In order to continue the
flight, since the control law (22) must hold, and the state
variables W and 7 are continuous, we can switch from
negative to positive lift and continue the flight as described in
the previous section. To discuss this type of switching in detail
we now consider the trajectory in the Oy,X) plane.

Trajectories in the (7, A) Plane
Lift modulation with both positive and negative lift can be

discussed conveniently using the (7,X) plane. The control law,
[Eq. (22)], allows us to replace H^by X in Eq. (9):

dX2 /
-77- = - ——d0 y/tany

Hence X 2 increases whenever

(29)

(30)

When 7>7*> the condition is not satisfied for positive X, and
X 2 , or equivalently the drag coefficient, decreases. We
consider the B = Q curve, that is the curve of stationary lift, in
the (7, X) plane:

X2-

In similar form, the A - 0 curve is given by

(1-v,)

(31)

(32)

The two curves are plotted in Fig. 3. The B curve has the
line 7 = 7* as its asymptote, and the A curve has the line 7 = 90
deg as its asymptote. The curves are nonintersecting> and the
A curve is entirely in the positive X space. The limiting
trajectory T, also is reproduced in the figure. The limiting
trajectory Tmax is obtained by integrating Eq. (29) and the
equation for 7

(33)

forward and backward from the points X= ±Xmax on the B
curve. The limiting trajectory T0 is the trajectory leading to
the point (7 = 90 deg, X = 0).

For positive lift, in terms of the behavior of the drag
coefficient, there are three types of trajectories:

1) If the initial point is to the right of the B curve, the drag
coefficient decreases continuously until its minimum value
(X = 0) is reached.

2) If the initial point is to the left of the B curve and above
the limiting trajectory Tmax, the drag coefficient increases
continuously until its maximum value (X = Xmax) is reached.

3) If the initial point is to the left of the B curve and below
the limiting trajectory Tmax, the drag coefficient first in-
creases, passes through a relative maximum, and then
decreases until its absolute minimum is reached.

For negative lift, in terms of the behavior of the drag
coefficient, there are four types of trajectories:

1) If the initial point is to the left of the limiting trajectory
rmax, the drag coefficient increases continuously along the
trajectory until it maximum value CD = Q/(Xmax) is attained.

2) If the initial point is between the limiting trajectory Tmax
and the B curve, the drag coefficient increases to a relative
maximum value, and then decreases until its minimum is
attained.

3) If the initial point is between the B curve and the limiting
trajectory T0, the drag coefficient decreases continuously
until its minimum value is attained.

4) For initial points to the right of the limiting trajectory
T0, the flight path angle quickly reaches 90 deg before the
drag coefficient attains its minimum value.

The last type of trajectory involves a switch point, a
discontinuity in the control X. In order to understand this
flight program, first consider the point 1 in Fig. 3,
representing an initial condition such that by the control law
(22), the initial drag coefficient is relatively large. Then if we
choose flight with positive lift, the drag coefficient will
decrease continuously, while the flight path angle first
decreases along a pull-up maneuver, passes through a
minimum, and then increases until the end. But, if with the
same initial condition, we choose to start the flight with
negative lift, then in the (7,X) plane, the trajectory starts at the
point 1'. With negative lift, the flight path angle increases
rapidly and reaches 90 deg while the drag coefficient is still
above its minimum value. At the point 5', called the switching
point, from Eqs. (29) and (33), by making tan 7^00,
the slope of the trajectory in the (7,X) plane is

dX f3rvi (7 + X 2 ) 2

~dy~ 2E*(2-Vj) X2 (34)

Fig. 3 Flow of trajectories in the (7, A) plane for flight at constant
speed over a spherical planet.

The flight is continued by switching from the point s' to its
symmetric s in the positive X space. The last portion of the
flight is effected with positive lift, as discussed previously.

V. Flight at Constant Sinking Speed
In the second specific example, the rate of descent, or

sinking speed, is kept at a constant value. This is a flight
program of practical interest during the approach phase. The
speed is relatively small; hence, an analysis using a flat planet
model is adequate. The equations to be used are Eqs. (12).
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The contraining relation in this case is

ui/2siny = (35)

where A'is a positive constant, representing the dimensionless
sinking speed. By taking the derivative of this equation, using
Eqs. (12), we have the lift control law

shvyA2 +2E*\ iny = 2E*ysin2y/K2 (36)

At each instant, the lift coefficient required to maintain
constant rate of descent K is obtained by solving this
quadratic equation in X. If

y>K2/2E*siny (37)

then both a positive and a negative lift coefficient are
solutions. Positive lift should be selected to reduce the
deceleration. When condition (37) is not satisfied, both roots
of Eq. (36) are negative, and low negative lift must be
selected.

Domain of Flight in the (7, A) Plane
The discussion of the variation of the lift coefficient along

the descending trajectory can be carried out explicitly in the
(y,\) plane. In this plane, the constraint on lift capability is
simply represented by the line X = ±Xmax. On the other hand,
the flight can be effected if and only if, within the bounded
lift control space, Eq. (36) provides real roots. Hence, we
have the boundary of imaginary roots:

(38)

Furthermore, the condition >>>0 in the lift control law
implies that

tan7>-2E*X/(7 + X 2 ) (39)

This gives another boundary curve, as depicted in Fig. 4. This
boundary is called the ground boundary, ys—0. The
imaginary boundary and the ground boundary intersect each
other at the level X= - 1. Hence, if X m a x >l , the boundary
X= -Xmax is not enforced and flight at negative lift can never
reach maximum drag.

The speed u and the flight path angle 7 pass through their
extrema at the same time. The equation of the A curve, that is

the curve of stationary 7, is given by

\2-2E*tany\ + l = (40)

By taking the derivative of Eq. (36) with respect to x, using
Eqs. (12), we have

dX
dx ysiny

E*B

where

(41)

(42)

Since £'*cos7 + Xsin7>0 in the domain or flight, the lift
coefficient is increasing or decreasing according to B positive
or negative. In particular, if K> 1 the lift coefficient decreases
monotonically along the trajectory. When K> 1 the B curve,
that is the curve of stationary X, is involved. Its equation is

K2 - = ± (43)

where y is given in terms of X and7 by Eq. (36).
A detailed discussion of the B curve for both the flat planet

and the spherical planet case is given in Ref. 2. For the flat
planet case, the behavior of the B curve is illustrated in Fig. 5.
For small values of K (low sinking speed), the allure of the B
curve is shown in Fig. 5a. Figure 5c represents the case of
large values of K (high sinking speed). Of course the B curve
disappears when K> 1 (very high sinking speed). Figure 5b is
the transition case for a critical value of K, K=KCT. For a
prescribed value of £*, this critical value of K is obtained by
first solving the quintic equation

+E*

+ 2E*2+2E*3r-E*2=0

to obtain

Then Kcr is given by

(1+E*2)(1+T2)

(44)

(45)

(46)

Fig. 4 Domain of flight in the (7,A) plane showing the flow of
trajectories for very high sinking speed over a flat planet model.

b)

90°

c)

Fig. 5 Behavior of the B curve (curve of stationary lift control) as a
function of K, for K less than 1.
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4 -

3 -

-A,

A = 0

-3 -

Fig. 6 Flow of trajectories at constant sinking speed over a flat
planet model for K greater than Ker and less than 1.

where T is the solution of Eq. (44). Now we can discuss the
characteristics of flight for glide at constant sinking speed.

Glide at Very High Sinking Speed
This is the case in which K> 1. The B curve is nonexistent

and the lift coefficient decreases continuously along the flight
path (Fig. 4). The limiting trajectory T, is obtained by in-
tegrating the equations of motion forward and backward
from the point

(47)

In terms of the variation of the flight path angle, there are
three types of trajectories:

Type 1: Trajectories along which the flight path increases
continuously.

Type 2: Trajectories along which the flight path angle first
decreases, passes through a minimum, and then increases.

Type 3: When Xmax > 1, we have a third type of trajectory
along which the flight path angle first increases, passes
through a relative maximum, then decreases, passes through a
relative minimum, and finally increases until the end.

In the figure the ground boundary ys is entirely in the
negative X region. Hence, the flight always terminates with
negative l i f t . When

ys>K2/2E* (48)

this boundary is in the positive X region for large y and the
domain of flight is bounded below by the curve y^. The flight
always terminates at ground level. In other words, the
physical and aerodynamic characteristics of the vehicle allow
the continuation of the glide, at prescribed sinking speed K,
until ground level. Explicitly, Eq. (48) is

4(mg/s)(3/gpsC*D>K2 (49)

This displays explicitly the influence of the wing loading and
the characteristic drag coefficient. If the condition is satisfied,
there exists a fourth type of trajectory along which the flight

E* = 2
K = 0.2

Fig. 7 Flow of trajectories at constant sinking speed over a flat
planet model for K less than Kcr.

path angle decreases continuously until it reaches ground level
(Type 4).

Glide at High Sinking Speed (Kcr < K< 0)
For the discussion, we refer to Fig. 6, and assume that

ys ^0. The limiting trajectory T2 is obtained by integrating
the equations of motion forward and backward from the
relative maximum X point of the B curve. Then there are the
following types of trajectories in terms of the variation of the
lift coefficient:

Type 1: If the initial point is in region I, the lift coefficient
decreases continuously.

Type 2: If the initial point is in region II , the lift coefficient
first increases, passes through a maximum, and then
decreases.

Type 3: If the initial point is in region I I I , the lift coefficient
first decreases, then increases, and finally decreases again.

In terms of the variation of the flight path angle, the
classification of the trajectories is the same as for the case of
very high sinking speed.

Glide at Low Sinking Speed (0< K< Kcr)
For the discussion, we refer to Fig. 7, with y^ — 0. Among

all of the trajectories starting with a positive l if t , there are
three types:

Type 1: If the initial point is in region I (to the right of the B
curve), then the lift coefficient decreases continuously.

Type 2: If the initial point is in region II (inside the B
curve), then the lift coefficient first increases, passes through
a maximum, and then decreases.

Type 3: If the initial point is in region III (to the left of the
B curve), then the lift coefficient first decreases, passes
through a relative minimum, increases unti l it reaches a
relative maximum, and finally decreases until the end.

In terms of the variation of the flight path angle, the
classification of the trajectories is the same as for the case of
high sinking speed.

VI. Conclusions
A set of dimensionless equations for three-dimensional

flight with lift and bank modulation inside a stationary,
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spherical planetary atmosphere has been derived. A theory of
flight subject to constraints on the state variables has been
presented and applied to two flight programs of special in-
terest. It has been shown that the behavior of the trajectory
and the variation of the lift control depend on the initial state
and two characteristic parameters, the maximum lift-to-drag
ratio, £"*, and the flight program adopted. The characteristics
of the flight and the modulation of the lift control are
displayed explicitly.
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