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Nonlinear semi-analytic filtering methods to sequentially estimate spacecraft states and their associated

uncertainties are presented. We first discuss the state transition tensors that characterize the localized nonlinear

behavior of the trajectory statistics and illustrate the importance of higher-order effects on orbit uncertainty

propagation. We then present a semi-analytic filtering method by implementing the state transition tensors to

sequentially update the filter information with contributions from eachmeasurement, which requires no integration

once the tensors are computed. A sun–Earth halo orbit about the L1 point is considered as an example with realistic

orbit uncertainties, and the results are compared with the extended Kalman filter and unscented Kalman filter.

Nomenclature

g, gi = system dynamics vector and its ith component
h, hi = measurement vector and its ith component
Kk = Kalman gain computed at time tk
m, mi = mean vector and its ith component
m�k , �m�k �i = predicted mean vector at time tk and its ith

component
m�k , �m�k �i = updated mean vector at time tk and its ith

component
N = system dimension
n�k , �n�k �i = predicted measurement function at time tk and its

ith component
P, Pij = covariance matrix and its �i; j� entry
P�k , �P�k �ij = predicted covariance matrix at time tk and its

�i; j� entry
P�k , �P�k �ij = updated covariance matrix at time tk and its �i; j�

entry
p = probability density function
Qk, Q

ij
k = diffusion (process noise) matrix at time tk and its

�i; j� entry
Rk, R

ij
k = measurement noise matrix at time tk and its �i; j�

entry
t = time
U = potential function for circular restricted three-

body problem
u, v, w = spacecraft velocity components
v, vi = measurement noise vector and its ith component
w, wi = process noise vector and its ith component
x, xi = state vector and its ith component
x, y, z = spacecraft position components
x0, x

i
0 = initial state vector and its ith component

�x, �xi = relative state vector and its ith component
�x0, �x

i
0 = initial relative state vector and its ith component

�ij = Dirac delta function
�S = solar gravitational constant, 1:32712440018 �

1011 km3=s2

�� = Earth gravitational constant, 398; 600:44 km3=s2

� = state transition matrix

�, �i = solution flow and its ith component
�i;�1 ����p = pth order state transition tensor
 ,  i = inverse solution flow and its ith component
 i;�1 ����p = pth order inverse state transition tensor
!E = mean motion of the Earth about the sun,������������������

AU3=�S
p

� 1:991 � 10�7 s�1

I. Introduction

O RBIT uncertainty propagation plays an important role in
various space-related applications, such as orbit determination,

parameter estimation, correction maneuver design, small-body
collision/encounter analysis, etc. In practice, it is usually assumed
that the truemotion (in a statistical sense) of a spacecraft with respect
to a nominal trajectory is within a boundary where the linear
assumption sufficiently approximates the relative dynamics and the
covariance matrix is mapped using the Riccati equations. In some
cases, however, the linear assumption fails to provide an accurate
realization of the local trajectory motion and in such cases a different
method which accounts for the system nonlinearity must be
implemented.

The best known technique for nonlinear orbit uncertainty propa-
gation is a Monte Carlo (MC) simulation, which approximates the
probability distribution by averaging over a large set of random
samples [1]. A Monte Carlo simulation can provide true statistics in
the limit, but is computationally intensive and only solves for the
statistics of a specific epoch and its associated uncertainties. Hence,
for mission operations, these difficulties make Monte Carlo
simulations inefficient for practical spacecraft applications.
Recently, Park and Scheeres [2–5] have developed a semi-analytic
method for orbit uncertainty propagation by solving for the higher-
order Taylor series terms that describe the localized nonlinearmotion
and by analytically mapping the initial uncertainties. By considering
sufficiently high-order solutions, they have shown that their semi-
analytic approach for orbit uncertainty propagation can replicate
MonteCarlo simulationswith the benefit of addedflexibility in initial
orbit statistics.

In this paper, we derive nonlinear filters by assuming a Gaussian
statistic and by implementing the semi-analytic orbit uncertainty
propagation technique developed by Park and Scheeres. A filter is
usually composed of two parts, prediction and update. Orbit
uncertainty propagation relates to the prediction problem while the
uncertain distribution of a measurement and state influences the
update part. In conventional trajectory navigation, one is usually
given a reference (nominal) trajectory with precise ephemerides and
the extended Kalman filter (EKF) is used for trajectory estimation.
The objective of trajectory navigation is then to follow the reference
trajectory while minimizing some predefined optimality constraints,
such as the number of trajectory correction maneuvers, flight time,
fuel, etc. [Note that when the trajectory deviates from the reference
trajectory over some error boundary a correctionmaneuver is applied
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to recourse the spacecraft to the reference trajectory (or to an alternate
trajectory that satisfies mission objectives).] The basic underlying
concept of such a process is to stay within the linear region by taking
a sufficient number of measurements and linearly map the deviation
and statistics via the state transition (fundamental) matrix with
respect to the nominal trajectory. However, when the nonlinearity is
significant or when only a limited number of measurements are
available, it may be necessary to consider a filter that incorporates
system nonlinearity.

The sun–Earth halo orbit about the L1 point based on the circular
restricted three-body problem (CR3BP) is chosen as an example
because the overall nonlinearity is small, but the trajectory is unstable
and when the spacecraft is not sufficiently observed, the nonlinear
effect can become significant. The proposed semi-analytic filters are
compared with the extended Kalman filter and unscented Kalman
filter with realistic orbit uncertainties. The result shows that our
higher-order filters provide faster convergence and a superior
solution as compared to linear filters.

II. Higher-Order Perturbation Analysis

The motion of a spacecraft can be modeled with first-order
ordinary differential equations:

dx�t�
dt
� g	t;x�t�
 (1)

where g	t;x�t�
 represents the system dynamics vector with a
dimension N and x� fxi j i� 1; . . . ; Ng represents the spacecraft
state vector with the initial condition x�t0� � x0. The solution flow,
which maps the initial state at t0 to t, is then defined as

x �t� � ��t;x0; t0� (2)

The solution flow is governed by

d��t;x0; t0�
dt

� g	t;��t;x0; t0�
 (3)

� �t0;x0; t0� � x0 (4)

By considering a similar notation, we define the inverse solutionflow
that maps the state at t to the initial state as

x 0 � �t;x; t0� (5)

In this framework we define the local trajectory dynamics �x by
applying a Taylor series expansion about the reference (nominal)
trajectory, that is, �x�t� � ��t;x0 � �x0; t0� � ��t;x0; t0�, for some
initial deviation �x0. The mth order solution can be stated using the
Einstein summation convention as

�xi�t� �
Xm
p�1

1

p!
�
i;�1 ����p
�t;t0� �x�10 � � � �x

�p
0 (6)

where �j 2 f1; . . . ; Ng, superscripts �j denote the �jth component of
the state vector, and

�
i;�1 ����p
�t;t0� �t;x0; t0� �

@p�i�t; �0; t0�
@��10 � � � @�

�p
0

����
�j
0
�xj

0

(7)

We call the higher-order partials of the solution flow Eq. (7) the state
transition tensors (STTs), which map the initial deviations to the
current time. Note that the first-order case (p� 1) reduces to the
usual state transition matrix (STM). The differential equations up to
fourth-order deviation are given in Eqs. (8–11). For more details on
how to obtain these differential equations, readers are referred to
[4,5].

_� i;a � gi;���;a (8)

_� i;ab � gi;���;ab � gi;����;a��;b (9)

_�i;abc � gi;���;abc � gi;�����;a��;bc � ��;ab��;c � ��;ac��;b�
� gi;�����;a��;b��;c (10)

_�i;abcd � gi;���;abcd � gi;�����;abc��;d � ��;abd��;c � ��;acd��;b

� ��;ab��;cd � ��;ac��;bd � ��;ad��;bc � ��;a��;bcd�
� gi;������;ab��;c��;d � ��;ac��;b��;d � ��;ad��;b��;c

� ��;a��;bc��;d � ��;a��;bd��;c � ��;a��;b��;cd�
� gi;������;a��;b��;c��;d (11)

The initial conditions of the STTs are �i;a�t0 ;t0� � 1 if i� a and zero

otherwise. Once these STTs are computed, they serve a role identical
to the STM except that higher-order effects are now included, and
thus the solution is nonlinear. Therefore, a significance of the STTs is
that the local nonlinear motion of a spacecraft trajectory can be
mapped analytically and requires no integration.

The inverse series also exists and is defined as

�xi0 �
Xm
p�1

1

p!
 
i;�1 ����p
�t0 ;tk� �x

�1 � � � �x�p (12)

where �j 2 f1; . . . ; Ng and

 
i;�1 ����p
�t0 ;t� �t;x; t0� �

@p i�t; �; t0�
@��1 � � � @��p

����
�j�xj

(13)

We call these higher-order partials the inverse state transition tensors
(ISTTs). The ISTTs can be computed by using a similar integration
approach as in the STT computation; however, it is more convenient
to compute them via series reversion because numerical integration
can be costly for large m. As functions of the STTs, the ISTTs
mapping from t to t0 are

 i;a � 	��1�t; t0�
ia (14)

 i;ab �� i;���;j1j2 j1 ;a j2 ;b (15)

 i;abc ��	 i;���;j1j2j3 �  i;�����;j1��;j2j3 � ��;j1j2��;j3

� ��;j1j3��;j2 �
 j1;a j2;b j3;c (16)

 i;abcd �� 	 i;���;j1j2j3j4 �  i;�����;j1j2j3��;j4 � ��;j1j2j4��;j3

� ��;j1j3j4��;j2 � ��;j1j2��;j3j4 � ��;j1j3��;j2j4 � ��;j1j4��;j2j3

� ��;j1��;j2j3j4 � �  i;������;j1j2��;j3��;j4 � ��;j1j3��;j2��;j4

� ��;j1j4��;j2��;j3 � ��;j1��;j2j3��;j4 � ��;j1��;j2j4��;j3

� ��;j1��;j2��;j3j4�
 j1;a j2;b j3;c j4 ;d (17)

where all indices are 1; . . . ; N, � �t0;t� and�� ��t;t0� are used for
the concise notations. Note that Eqs. (14–17) are analytic in the STTs
and require no integration.

By applying the forward and inverse state transition tensors, the
STTs mapping from time tr to ts, where tr, ts 2 	t0; tf
 for some final
time tf and tr � ts, can be represented as

�i;a�ts;tr� � 	��ts; t0��
�1�tr; t0�
ia � �i;�s  �;ar (18)

�i;ab�ts;tr� � �
i;�
s  

�;ab
r � �i;��s  �;ar  

�;b
r (19)

�i;abc�ts;tr� � �
i;�
s  

�;abc
r � �i;��s

�
 �;ar  

�;bc
r �  �;abr  �;cr �  �;acr  �;br

�

� �i;���s  �;ar  
�;b
r  �;cr (20)
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�i;abcd�ts;tr� ��
i;�
s  

�;abcd
r ��i;��s

�
 �;abcr  �;dr � �;abdr  �;cr � �;acdr  �;br

� �;abr  �;cdr � �;acr  �;bdr � �;adr  �;bcr � �;ar  �;bcdr

�

��i;���s

�
 �;abr  �;cr  

�;d
r � �;acr  �;br  �;dr � �;adr  �;br  �;cr

� �;ar  �;bcr  �;dr � �;ar  �;bdr  �;cr � �;ar  �;br  �;cdr

�

��i;����s  �;ar  
�;b
r  �;cr  �;dr (21)

where all indices are 1; . . . ; N,  r �  �t0;tr�, �s � ��ts;t0�, and the
ISTTs are computed by applying Eqs. (14–17). In other words, once
the STTs are computed for the entire reference trajectory 	t0; tf
, the
map from an arbitrary point in space to some future time becomes a

simple algebraic manipulation. Note that �
i;�1 ����p
�ts;tr� can also be

computed by integrating the differential equations given in Eqs. (8–
11) for each time interval �ts; tr�.

One concern is numerical consistency when Eqs. (8–11) are
integrated over a long duration of time. To address this, we note that
the reference trajectory can be segmented arbitrarily to meet the
desired numerical accuracy. Another question that may arise is the
computational difficulty (or the long integration time) as we consider
the higher-order solutions. Specifically, assuming a system with
N � 6, the mth order analysis requires integration of

P
m�1
q�1 6

q

equations. For example, when m� 3, one must integrate
1554 equations simultaneously. However, the higher-order solutions
can be computed offline, and especially when the orbit is periodic
(e.g., halo orbit), these only need to be computed once. Last, the
computation of the partials of the dynamicsmay be of concern. Here,
note that there are symbolic manipulators available which provide
automatic differentiations, and also note that many of these partials
vanish to zero for systems of spacecraft navigation interest. Once the
partials are computed, these equations can be cast into a first-order
differential equation form and can be integrated forward in time.

III. Higher-Order Extended Kalman Filters

Suppose we are given the continuous trajectory model defined in
Eq. (3). Because a spacecraft tracking model is usually discrete,
consider the following discrete system model:

x k�1 � ��tk�1;xk; tk� � wk (22)

z k�1 � h�xk�1; tk�1� � vk�1 (23)

where xk is the true spacecraft state, wk is the process noise
perturbing the spacecraft state, zk is the actual measurement, h is the
measurement function, and vk is the measurement noise character-
izing the observation error. The process noise and measurement
noise are assumed to be noncorrelated, that is, E	viwTj 
 � 0, with the

autocorrelations:

E
h
wiw

T
j

i
�Qi�ij (24)

E
h
viv

T
j

i
�Ri�ij (25)

for all discrete time indexes i and j. Here,Qi andRi are also known
as the diffusion and measurement noise matrices, respectively.

A. Kalman Filter

Although the Kalman filter algorithm can be derived from Bayes’
rule of conditional densities, as pointed out by Julier and Uhlmann
[6], the Kalman filter can also be derived from estimations of a few
expectations involving a state and a measurement [7]. To show this,
consider the system model equations (22) and (23) and suppose we
are given a state xk with mean m�k � E	xk j zk
 and covariance
matrix P�k � E	�xk �m�k ��xk �m�k �T j zk
 at time tk. The general
filtering algorithm can be defined as follows:

Prediction equations:

m �
k�1 � E	��tk�1;xk; tk� � wk j zk
 (26)

P�k�1 � Ef	��tk�1;xk; tk� � wk
	��tk�1;xk; tk� � wk
T j zkg
� �m�k�1��m�k�1�T (27)

n �k�1 � E	h�xk�1; tk�1� � vk�1 j zk
 (28)

where n�k�1 � E	hk�1 j zk
 is the expectation of the measurement
computed at tk�1.

Update equations:

K k�1 � Pxz
k�1

�
Pzz
k�1

��1
(29)

m�
k�1 �m�k�1 �Kk�1

�
zk�1 � n�k�1

�
(30)

P�k�1 � P�k�1 �Kk�1P
zz
k�1K

T
k�1 (31)

where Kk is known as the Kalman gain matrix, Pxz
k is the cross-

covariance matrix of the state and the measurement, Pzz
k is the

covariance matrix of the measurement, zk is the observation, and the
difference between the actual and predicted measurement (i.e.,
zk � n�k ) is called the residual or innovation. When a linear
dynamical system and Gaussian linear measurement function are
considered, Eqs. (26–31) simplify to the conventional linear Kalman
filter (LKF).

B. Extended Kalman Filter

For estimation problems, the LKF is probably the most well-
known filtering technique. The LKF allows one to compute the
minimummean-square-error (MMSE) solution; however, it can only
be used for linear systems, and in general, cannot be used for
trajectory navigation. In conventional spacecraft trajectory
navigation, the EKF is usually implemented. [In practice, the
extended Kalman filter is implemented for trajectory navigation
often in a square-root information filter (SRIF) or in U-D filter
formulation for numerical precision.] The EKF is based on the filter
algorithm given in Eqs. (26–31), but assumes the true trajectory is
within the boundary where the linear approximation can sufficiently
model the trajectory dynamics and its statistics. Under this
assumption, the mean trajectory is propagated according to the
deterministic solution flow and the covariance matrix is mapped
linearly [8,9].

EKF prediction equations:

m �
k�1 � �

�
tk�1;m

�
k ; tk

�
(32)

P �k�1 ���tk�1; tk�P�k �T�tk�1; tk� �Qk (33)

n �k�1 � h
�
m�k�1; tk�1

�
(34)

EKF update equations:

K k�1 � Pxz
k�1

�
Pzz
k�1

��1 � P�k�1H
T
k�1

�
Hk�1P

�
k�1H

T
k�1 �Rk�1

��1
(35)

m�
k�1 �m�k�1 �Kk�1

�
zk�1 � n�k�1

�
(36)

P�k�1 � P�k�1 �Kk�1P
zz
k�1K

T
k�1 � P�k�1 �Kk�1Hk�1P

�
k�1 (37)

where h�m�k�1; tk�1� is the measurement function evaluated at tk�1
as a function ofm�k�1 andHk�1 � @hk�1=@xk�1 is the measurement
partial computed at tk�1. Note that the STM ��tk�1; tk� in Eq. (33),
which is the first of the STTs, is computed along the previously
updated mean trajectory, that is, m�k .
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Among the many important properties of the extended Kalman
filter, we point out two which will be discussed in the example
section in more detail. Considering the gain Eq. (35) and the
mean update Eq. (36), we observe that as the a priori covariance
matrix becomes more accurate (i.e., P�k�1 ! 0) the filter values
the residual less (i.e., the actual measurement is trusted less). On
the other hand, as the measurement becomes more accurate (i.e.,
Rk�1 ! 0) the filter values the residual more (i.e., the actual
measurement is trusted more). Therefore, effective weighting of
the residual is a critical component of maximizing the filter
performance.

C. Higher-Order Numerical Extended Kalman Filter

In deriving the higher-order numerical extended Kalman filter
(HNEKF), we assume that the reference trajectory and its higher-
order state transition tensors are integrated for each time interval
between the measurements according to Eqs. (8–11). Under this
assumption the local trajectory motion can be mapped
analytically over this time interval while incorporating nonlinear
effects, and the same analogy applies when mapping the
trajectory statistics. We note that this process is numerically quite
intensive considering higher-order solutions; however, this can
yield a more accurate filter solution.

Once the higher-order state transition tensors are available for
some time interval 	tk; tk�1
, the mean and covariance matrix of
the relative dynamics at tk can be mapped analytically to tk�1 as
functions of the probability distribution at tk. From tk to tk�1, the
propagated mean and covariance can be stated as [4,5]

�mi
k�1��xk� � E

h
�xik�1

i
�
Xm
p�1

1

p!
�
i;�1 ����p
�tk�1;tk�E

h
�x�1k � � � �x

�p
k

i
(38)

Pijk�1��xk� � E
h�
�xik�1 � �mi

k�1

��
�xjk�1 � �m

j
k�1

�i

�
�Xm
p�1

Xm
q�1

1

p!q!
�
i;�1 ����p
�tk�1;tk��

j;�1 ����q
�tk�1 ;tk�E

h
�x�1k � � � �x

�p
k �x

�1
k � � � �x

�q
k

i�

� �mi
k�1�m

j
k�1 (39)

where f�j; �jg 2 f1; . . . ; Ng. As the order of the solution
increases, that is, m!1, the higher-order solution yields the
true mean and covariance matrix computed from Monte Carlo
simulations. Now, the only unknowns in Eqs. (38) and (39) are
the expectations (i.e., moments) of the deviations. Even if the
state at time tk is Gaussian, except for the case m� 1, it is
obvious that the mapped trajectory distribution is no longer
Gaussian due to system nonlinearity, and hence exact
computation requires computation of the higher-order moments.

In particle-based filters, this problem is remedied by using an
ensemble of sample points to approximate the probability
distribution, whereas a more formal approach is to use the
Edgeworth/Gram-Chalier [10] or Laplace approximations to
approximate the posterior density function. In trajectory
navigation, however, the Gaussian assumption has shown to
provide a sufficiently accurate statistical approximation. Hence,
we assume that the updated estimates are Gaussian and we
implement the joint characteristic function to compute the higher-
order moments up to 2mth order as apparent from Eq. (39). By
assuming the updated state can be approximated with Gaussian
statistics, the higher-order moments are functions of the first two
moments. Moreover, if we consider a zero initial mean, all the
odd moments of the initial conditions vanish and the equations
for the propagated mean and covariance matrix simplify a great
deal.

Now, suppose at time tk, the state estimate has mean m�k and
covariance matrix P�k . Also, let x�tk� �m�k � �xk be the true
trajectory we want to estimate. Following the Kalman filter
algorithm, the HNEKF algorithm is given as follows:

HNEKF prediction equations:

�
m�k�1

�
i � E

h
�i
�
tk�1;m

�
k � �xk; tk

�
� wik

i
� �i

�
tk�1;m

�
k ; tk

�

� �mi
k�1��xk� � �i

�
tk�1;m

�
k ; tk

�

�
Xm
p�1

1

p!
�
i;�1 ����p
�tk�1;tk�E

h
�x�1k � � � �x

�p
k

i
(40)

�
P�k�1

�
ij � E

nh
�i
�
tk�1;m

�
k � �xk; tk

�
� wik

i

�
h
�j
�
tk�1;m

�
k � �xk; tk

�
� wjk

io
�
�
m�k�1

�
i
�
m�k�1

�
j

(41)

�
�Xm
p�1

Xm
q�1

1

p!q!
�
i;�1 ����p
�tk�1;tk��

j;�1 ����q
�tk�1 ;tk�E

h
�x�1k � � � �x

�p
k �x

�1
k � � � �x

�q
k

i�

� �mi
k�1��xk��m

j
k�1��xk� �Q

ij
k (42)

�
n�k�1

�
i � E

h
hi
�
tk�1;m

�
k � �xk; tk

�
� vk�1

i

� hi
�
tk�1;m

�
k ; tk

�
� �nik�1��xk� � hi

�
tk�1;m

�
k ; tk

�

�
Xm
p�1

1

p!
h
i;�1 ����p
�tk�1;tk�E

h
�x�1k � � � �x

�p
k

i
(43)

where the STTs [i.e., �i�tk�1;m�k ; tk�] are computed along the
solution flow ��tk�1;m�k ; tk� and

h
i;�1 ����p
�tk�1 ;tk� �

@phik�1
@x�1k � � � @x

�p
k

����
xk�1���tk�1;m�k ;tk�

(44)

Note that hi�tk�1;m�k ; tk� denotes that the measurement function is
evaluated at tk�1 as a function of the solution flow��tk�1;m�k ; tk�. [It
is important to note that h�tk�1;m�k ; tk� ≠ h�m�k�1; tk�1� in general
becausem�k�1 ≠ ��tk�1;m�k ; tk� for general nonlinear systems.] The

partial derivatives h
i;�1 ����p
�tk�1 ;tk� up to fourth order are defined as

hi;a�tk�1 ;tk� � h
i;�
k�1�

�;a
k�1 (45)

hi;ab�tk�1 ;tk� � h
i;�
k�1�

�;ab
k�1 � h

i;��
k�1�

�;a
k�1�

�;b
k�1 (46)

hi;abc�tk�1;tk� � h
i;�
k�1�

�;abc
k�1 � h

i;��
k�1

�
��;ak�1�

�;bc
k�1 � ��;abk�1�

�;c
k�1 � ��;ack�1�

�;b
k�1

�

� hi;���k�1 �
�;a
k�1�

�;b
k�1�

�;c
k�1 (47)

hi;abcd�tk�1;tk� � h
i;�
k�1�

�;abcd
k�1 � hi;��k�1

�
��;abck�1 �

�;d
k�1 � ��;abdk�1 �

�;c
k�1

� ��;acdk�1 �
�;b
k�1 � ��;abk�1�

�;cd
k�1 � ��;ack�1�

�;bd
k�1 � ��;adk�1�

�;bc
k�1

� ��;ak�1�
�;bcd
k�1

�
� hi;���k�1

�
��;abk�1�

�;c
k�1�

�;d
k�1 � ��;ack�1�

�;b
k�1�

�;d
k�1

� ��;adk�1�
�;b
k�1�

�;c
k�1 � ��;ak�1�

�;bc
k�1�

�;d
k�1 � ��;ak�1�

�;bd
k�1 �

�;c
k�1

� ��;ak�1�
�;b
k�1�

�;cd
k�1

�
� hi;����k�1 ��;ak�1�

�;b
k�1�

�;c
k�1�

�;d
k�1 (48)

where�k�1 � ��tk�1 ;tk� is used for a concise notation and that these are
similar to the differential equations of the STTs given in Eqs. (8–11).
Note that this prediction step is a simple algebraic operation once the
STTs are computed for the time interval 	tk; tk�1
.

PARK AND SCHEERES 1671



HNEKF update equations:

�
Pzz
k�1

�
ij � E
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� E
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�
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�
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�
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h
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(49)
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K k�1 � Pxz
k�1

�
Pzz
k�1

��1
(51)

m�
k�1 �m�k�1 �Kk�1

�
zk�1 � n�k�1

�
(52)

P �k�1 � P�k�1 �Kk�1P
zz
k�1K

T
k�1 (53)

Note that if we consider the measurement function Eq. (23) to be
linear in xk, Eq. (43) simplifies to

�
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�
i � hi
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�
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�
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�
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� � hi

�
m�k�1; tk�1

�
(54)

and gives ��n�k�1�i � hi;�k�1��m�k�1��. Applying this result, Eqs. (49)
and (50) simplify to

�
Pzz
k�1

�
ij �

�
hi;�k�1h

j;�
k�1

Xm
p�1

Xm
q�1

1

p!q!
�
�;�1 ����p
�tk�1 ;tk��

�;�1 ����q
�tk�1 ;tk�

� E
h
�x�1k � � � �x

�p
k �x

�1
k � � � �x

�q
k

i�
� Rijk�1 �

�
�n�k�1

�
i
�
�n�k�1

�
j

�
�
Rijk�1 � hi;�k�1h

j;�
k�1E

h
�x�k�1�x

�
k�1

i�
�
�
�n�k�1

�
i
�
�n�k�1

�
j

�
�
Hk�1P

�
k�1H

T
k�1 �Rk�1

�
ij

(55)
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(56)

which indicates that the measurement prediction and update
equations are identical to the EKF algorithm. Also note that when
m� 1, the HNEKF becomes the EKF algorithm as shown in
Eqs. (32–37).

D. Higher-Order Analytic Extended Kalman Filter

From the derivation of the HNEKF, it is obvious that we can also
derive a higher-order analytic extended Kalman filter (HAEKF) by
assuming that the reference trajectory and the higher-order solutions
(i.e., STTs) are computed over some time span before filtering. The
filter algorithm is similar to theHNEKF except that the point of series
expansion is now with respect to the initial reference trajectory, not
the updated mean as in the HNEKF algorithm.

Suppose the STTs are computed for the time interval of 	t0; tf
 and
let �xk � ��tk;x0; t0� represent the reference trajectory for
tk 2 	t0; tf
, where x0 has mean m�0 and covariance matrix P�0 .
Moreover, let x�tk� � �xk � �xk be the true trajectory we want to
estimate. Following the Kalman filter algorithm, the HAEKF
algorithm is given as follows:

HAEKF prediction equations:

�
m�k�1

�
i � �i

�
tk�1; �xk; tk
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�
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1
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h
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i
(59)

where the STTs are computed along �xk�1 � ��tk�1; �xk; tk� and

h
i;�1 ����p
�tk�1;tk� �

@phik�1
@x�1k � � � @x

�p
k

����
xk�1� �xk�1

(60)

HAEKF update equations:
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�
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(63)
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�
zk�1 � n�k�1

�
(64)

P�k�1 � P�k�1 �Kk�1P
zz
k�1K

T
k�1 (65)

As in the HNEKF case, the update equations for the HAEKF
become the same as the EKF when we consider a measurement
function that is linear in xk. Also, note that when m� 1 (i.e., first
order), the HAEKF becomes the linear Kalman filter, not the EKF.
(We call it the higher-order analytic extended Kalman filter, not the
higher-order linear Kalman filter, because the prediction equations
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are nonlinear in general.) The superiority of the EKF over the LKF is
clearly demonstrated by Maybeck [10]. However, when the true
trajectory iswithin the convergence radius of the reference trajectory,
we shall see later that the HAEKF can provide a more accurate
solution and faster convergence than the EKF. An advantage of the
HAEKF is that it can be precomputed and used online with no
numerical integrations.

E. Unscented Kalman Filter

The unscented Kalman filter (UKF), first introduced by Julier and
Uhlmann, is being implemented in a diverse field of engineering,
science, and economics due to its simplicity while providing faster
convergence and better accuracy than the extended Kalman filter.
The UKF is initialized with a set of predetermined sigma points and
incorporates the second-order trajectory information in the filter
model. Detailed derivation and algorithm can be found in [6,11–14].

IV. Examples

In this section, we present several simulations of a halo orbit,
which is a periodic orbit where the in-plane and out-of-plane
frequencies are the same, computed based on the CR3BP. The
governing equations of motion for CR3BP, in nondimensional form,
are given as [15]

�x � 2_y� @U
@x

(66)

�y� 2_x� @U
@y

(67)

�z� @U
@z

(68)

where

U� �1 � ��
r1

� �
r2
� �x

2 � y2�
2

(69)

r1 � 	�x� ��2 � y2 � z2
1=2 (70)

r2 � 	�x � 1� ��2 � y2 � z2
1=2 (71)

Here, U is the CR3BP potential and �� ��=��S � ���.
Consider a halo orbit about the sun–Earth L1 point in a

nondimensionalized frame, which can be dimensionalized by
applying the length scale of ‘� 1AU� 1:49597870691 � 108 km,
where AU stands for “astronomical unit,” and the time scale of
	 � 1=!E. Figure 1 shows the reference (nominal) trajectory for one
orbital period (�177:86 days), which corresponds to case 1 given in
Table 1. The initial conditions for these orbits are (in nondimensional
units)

r case 1�t0�
� 	 0:988884102845168; 0:0; 0:000921858528329094 
T

v case 1�t0� � 	 0:0; 0:00893471471659142; 0:0 
T

r case 2�t0�
� 	 0:98888423093423; 0:0; 0:000929261736280955 
T

v case 2�t0� � 	 0:0; 0:00893688204973967; 0:0 
T

For the measurement model, we assume a simple linear model
where only the y coordinate is observed, that is,

zk � yk � vk (72)

where yk represents the vertical position component of the state
vector and vk represents the measurement error. This measurement
model can be viewed as a range measurement obtained by optical
imaging of the Earth relative to distant stars or a very long baseline
interferometry (VLBI) measurement. The measurement noise is
assumed to be 0.1 m for each range measurement. This linear
assumption simplifies the problem a great deal because the
measurement sensitivity does not require the computation of the
higher-order partials. This way, it is easier to understand the effect of
the nonlinear orbit uncertainty propagation on filter performance.

Initially, the spacecraft state is assumed to be a zero mean
Gaussian with position uncertainties of 100 km and velocity
uncertainties of 0:1 m=s. [The initial covariance matrix is a diagonal
matrix with �100 km�2 and �0:1 m=s�2 for position components and
velocity components, respectively.] The initial mean and covariance
matrix are mapped using the STT approach for m� f1; 3g,
unscented transformation, and Monte Carlo simulations based on
106 sample points. Figure 2 shows the mean and the projection of the
1-
 covariance matrix onto the x–y plane after one orbital period.
Assuming the Monte Carlo simulation is the true solution, the result
shows that the third-order solution is the most accurate
approximation, whereas the linear solution fails to characterize the
orbit uncertainty distribution.

We now consider the same initial uncertainties, but assume the
initial guess (mean) is off by 100 km for the position components
and 0:1 m=s for the velocity components so that they lie on the
boundary of the initial 1-
 ellipsoid. A set of pseudomeasurements
are computed based on the reference trajectory with a 20-day
increment. Using the same measurements, the initial mean and
covariance matrix are mapped and solved using the EKF, the UKF,
the third-order HNEKF, and the third-order HAEKF. For the
HAEKF, because the trajectory is periodic, the STTs are computed
and stored for only one orbital period, which is divided into two
segments for numerical consistency, and reversion of the series is
applied to map states analytically. [Note that all filter simulations
are based on single runs where the same set of pseudomeasurements
are considered (i.e., random noises added to perfect measurements).
We have also simulated many different set of pseudomeasurements
on the side and have obtained negligible difference in the filter
performance given the state and measurement uncertainties
considered in this paper.]
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Fig. 1 Nominal halo orbit about the sun–Earth L1 point.

Table 1 Halo orbit maximum amplitudes with

respect to the sun–Earth L1 point

Cases Ax, km Ay, km Az, km

1 245,924 668,228 137,908
2 246,069 668,416 139,015
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Figure 3 shows the a priori (predicted) and a posteriori (updated)
position and velocity root–sum–square errors, where 
R���������������������������������

xx � 
yy � 
zz

p
and 
V �

����������������������������������

uu � 
vv � 
ww
p

, and 
ii represents

the �i; i� component of the covariance matrix. A sudden drop in the
uncertainties right after 100 days is due to the fact that the initial
covariance matrix is quite large and requires at least six independent
measurements to obtain a well-defined (i.e., reduced to the
measurement noise level in all directions) a posteriori covariance
matrix. The result shows that theEKFoverestimates the uncertainties
(i.e., assumes they are smaller than they are in actuality) while the
UKF, HNEKF, and HAEKF provide conservative uncertainty
estimates.

Figure 4 shows themagnitude of the absolute position and velocity
errors, that is, the magnitude of the difference between the updated
mean and the true state. The result shows that the EKF does not
perform well as compared to the higher-order filters. This clearly
explains the importance of nonlinear orbit uncertainty propagation.
The covariance matrix computed by using the first-order method
(i.e., EKF) overestimates the solution, and hence, the residual is
trusted less. On the other hand, the UKF and the higher-order filters
predict more conservative uncertainties andmore effectively balance
the a priori uncertainties and the actual measurements (i.e.,
measurements are valued more than the a priori information in this
case). Figures 5 and 6 are based on the same filter setup except that
the measurements are updated every 5 days. It shows that there is not
much difference in the propagated uncertainties, but the absolute
errors are computed more accurately in UKF and higher-order filter
runs.

Figures 7 and 8 show the HNEKF results for cases m 2 f1; 2; 3g.
Asmentioned earlier, note that the casem� 1 is identical to the EKF
formulation. The result shows that the higher-order filters,
m 2 f2; 3g, provide superior filter performance over the first-order
case and it is observed that the second-order effect contains most of
the system nonlinearity, indicating that the second-order filter is
sufficient for an accurate nonlinear filter in our example. Figures 9
and 10 show the HAEKF uncertainties and absolute error plots,
respectively, for m 2 f1; 2; 3g. The uncertainties for m� 1 are
similar to the EKF solution and for m� 2 are similar to the case
m� 3 as shown in Fig. 3. The absolute error plot shows that all three
filters provide good estimation performance even for the casem� 1.
This is expected because the pseudomeasurements are computed
based on the reference trajectorywhich the STTs are computed based
on. In other words, the reference trajectory can be thought of as a
regression solution for the simulated measurements.

To analyze the robustness of the higher-order filtering techniques,
the pseudomeasurements are now generated from the case 2 halo
orbit given in Table 1. Figures 11 and 12 show the simulated filter
solutions. The results show that the higher-order solutions are
superior over the linear filters, that is, EKF and HAEKF for m� 1.
As expected, this indicates that the linear Kalman filter is only
feasible when the reference trajectory is sufficiently close to the true
trajectory. TheHAEKFs form> 1, however, havemoreflexibility in
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Fig. 2 Sun–Earth halo orbit: mean and 1-� error ellipsoid projected

onto the position plane after being propagated for one orbital period.
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the reference trajectory. The overall filter convergence is slightly
slower than the previous cases because the initial mean is assumed to
be the same as in the previous cases, and thus, it is farther away from
the true trajectory (i.e., the trajectory in which the pseudomeasure-
ments are generated).

In this study, the EKF required integration of N � N2 � 42
equations [or N � N�N � 1�=2� 27 equations if the covariance
matrix is directly integrated] and the UKF required integration of
�2N � 1�N � 78 equations between each measurement update, and
in the actualfilter runs, the EKFwas slightly faster than theUKF. The
HNEKFs for m> 1 provide superior results over the linear filters
(even UKFwhenm> 2); however, the computational load increases
significantly as m increases. For example, the third-order HNEKF
requires integration of 1554 equations. On the other hand, the
HAEKF does not require any integration in the actual filtering
process. The most expensive numerical operation in the HAEKF is
the higher-order moment computation; however, there exist various
techniques for efficient computation of moments. Hence, for
missions with predetermined reference trajectories, the higher-order
analytic filter may be suitable for the trajectory navigation while
obtaining faster convergence and a more accurate filter solution than
the EKF.

To be more specific, having the higher-order semi-analytic
method onboard a spacecraft or a launch vehicle provides a complete
solution space for the given reference trajectory depending on the
order of solution. Hence, for problems where the nonlinearity is

significant and requires a rapid convergence, such as spacecraft
launch, planetary/small-body orbit insertion, or autonomous
precision landing, applying the HAEKF can result in a more rapid,
accurate, and robust state estimation than the EKF.
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Fig. 5 Comparison of the root–sum–square errors with a 5-day

increment measurement update.
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Fig. 6 Comparison of the absolute errors with a 5-day increment

measurement update.
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Fig. 7 Comparison of the root–sum–square errors with a 20-day
increment measurement update.
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Fig. 8 Comparison of the absolute errors with a 20-day increment

measurement update.
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Fig. 9 Comparison of the root–sum–square errors with a 20-day

increment measurement update.
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V. Conclusions

We derived two Kalman-type filters, called higher-order
numerical extended Kalman filter and higher-order analytic
extended Kalman filter, by directly applying the higher-order
solutions to the Kalman filter algorithm. These higher-order filters
were comparedwith the conventional extendedKalman filter and the
unscented Kalman filter based on halo orbits computed in a restricted
three-body problem frame about the sun–Earth L1 point. The filter
simulations were carried out assuming the dynamics of the system
are perfectly known, but there are errors in the initial state and in the
measurements. The results showed that a higher-order filter provides
faster convergence, a superior filter solution, and more flexibility in
the initial guess over linear filters. Also, the Gaussian assumption of
the a posteriori state yielded a sufficient approximation even for
nonlinear filters. For the cases where the reference trajectory was
relatively close to the true trajectory, the HAEKF provided solutions
essentially equivalent to both the UKF and the HNEKF, and yielded
a much faster filter process. This indicates that once trajectory
solutions are stored on a spacecraft, an autonavigation processor that
incorporates trajectory nonlinearity and allows fast convergencemay
be feasible in practice.
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Fig. 10 Comparison of the absolute errors with a 20-day increment
measurement update.
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Fig. 11 Comparison of the root–sum–square errors with a 20-day

increment measurement update based on the halo orbit case 2.
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Fig. 12 Comparison of the absolute errors with a 20-day increment
measurement update based on the halo orbit case 2.
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