
(c)2001 American Institute of Aeronautics & Astronautics or Published with

15th AIAA Computational Fluid
Dynamics Conference

11-14 June 2001 Anaheim, CA

Permission of Author(s) and/or Author(s)1 Sponsoring Organization.

A01-31041
AIAA-2001-2525

DEVELOPMENT AND VALIDATION OF
SOLUTION-ADAPTIVE, PARALLEL SCHEMES FOR

COMPRESSIBLE PLASMAS

K. G. Poweli: G. Tothf D. L. De ZeeuwJ P. L. Roe§

T. L GombosiWl Q. F. Stout11

University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

Abstract

Techniques that have become common in
aerodynamics codes have recently begun to
be implemented in space-physic codes, which
solve the governing equations for a com-
pressible plasma. These techniques include
high-resolution upwind schemes, block-based
solution-adaptive grids and domain decompo-
sition for parallelization. While some of these
techniques carry over relatively straightfor-
wardly from aerodynamics to space physics,
space physics simulations pose some new chal-
lenges. This paper gives a brief review of
the state-of-the-art in modern space-physics
codes, including a validation study of several
of the techniques in common use. A remain-
ing challenge is that of flows that include re-
gions in which relativistic effects are impor-
tant; some background and preliminary re-
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suits for these problems are given.

Governing Equations
The governing equations for an ideal, non-
relativistic, compressible plasma may be writ-
ten in a number of different forms. In primi-
tive variables, the governing equations, which
represent a combination of the Euler equations
of gasdynamics and the Maxwell equations of
electromagnetics, may be written as:
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where the current density j and the electric
field vector E are related to the magnetic field
B by Ampere's law and Ohm's law, respec-
tively:

j = - V x B (2)- V x B

E = -u x B (3)

For one popular class of schemes, the equa-
tions are written in a form in which the gasdy-
namic terms are put in divergence form, and
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the electromagnetic terms in the momentum where
and energy equations are treated as source
terms. This gives:

= 0
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V-(u(Egd+p)) = j E (4)

where Egd is the gasdynamic total energy,
given by

P u.u

is
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The fully conservative form of the equations

dU (V-F) T = 0, (5)

where U is the vector of conserved quantities

U

and F is a flux diad,
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where Emfld is the magnetohydrodynamic en-
ergy, given by

Q = -V B

p u u B B
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Godunov [1] showed that the fully conserva-
tive form, Equation 5, is not symmetrizable.
The symmetrizable form may be written as

(6)

0 \

u
uB

(7)

Vinokur [2] separately showed that Equation 6
can be derived starting from the primitive
form, if no stipulation is made about V • B
in the derivation. Powell [3] showed that
this symmetrizable form can be used to de-
rive a Roe-type approximate Riemann solver
for solving the MHD equations in multiple di-
mensions.

The MHD eigensystem arising from Equa-
tion 5 or Equation 6 leads to eight eigen-
value/eigenvector pairs. The eigenvalues and
associated eigenvectors correspond to an en-
tropy wave, two Alfven waves, two magneto-
fast waves, two magnetoslow waves, and an
eighth eigenvalue/eigenvector pair that de-
pends on which form of the equations is be-
ing solved. This last pair has a zero eigen-
value in the fully conservative case, and an
eigenvalue equal to that associated with the
entropy wave, in the symmetrizable case. The
expressions for the eigenvectors, and the scal-
ing of the eigenvectors, are more intricate than
in gasdynamics [4].

Solution Techniques
Because the MHD equations are a system
of hyperbolic conservation laws, many of
the techniques that have been developed for
the Euler equations can be applied relatively
straightforwardly. In particular, the high-
resolution finite-volume approach [5] (i.e. ap-
proximate Riemann solver + limited inter-
polation scheme + multi-stage time-stepping
scheme) is perfectly valid. The Rusanov/Lax-
Friedrichs approximate Riemann solver can be
applied directly; no knowledge of the eigen-
system of the MHD equations is required,
other than the fastest wave speed in the sys-
tem. A Roe-type scheme can be constructed,
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but requires more work, because of the com-
plexity of the eigensystem. In addition, an
HLLE-type Riemann solver has been derived
by Linde [6]; it is less dissipative than the
Rusanov/Lax-Friedrichs scheme, but more ro-
bust and less computationally intensive than
the Roe scheme. Whichever approximate Rie-
mann solver is chosen to serve as the flux func-
tion, standard interpolation schemes and lim-
iters can be used to construct a finite-volume
scheme.

One added difficulty in solving the MHD
equations is that the MHD energy has three
components: internal, magnetic and kinetic.
Thus, as in gasdynamics, flows with substan-
tially more kinetic energy than internal energy
can lead to positivity problems when comput-
ing the pressure. Also, in contrast to gasdy-
namics, regions in which the magnetic field is
large can yield similar problems. Conserva-
tive and positive HLL-type schemes for MHD
have been described by Janhunen [7]. Another
alternative, due to Balsara and Spicer [8], is
to use a hybrid scheme: both the conservative
energy equation and the entropy equations are
solved. Close to shock waves the energy equa-
tion is used to obtain the correct weak solu-
tion, at other places the more robust and pos-
itive entropy equation can be used. A variant
of this technique has been implemented in our
code.

Controlling V • B
Another way in which the numerical solution
of the MHD equations differs from that of the
gasdynamic equations is the constraint that
V • B — 0. Enforcing this constraint numer-
ically, particularly in shock-capturing codes,
can be done in a number of ways, but each way
has its particular strengths and weaknesses.
Only a brief overview is given below; each of
the schemes discussed below is explained more
fully in the references cited, and Toth has pub-
lished a numerical comparison of many of the

approaches for a suite of test cases [9].
Brackbill and Barnes [10] first proposed us-

ing a Hodge-type projection to the magnetic
field. This approach leads to a Poisson equa-
tion that must be solved each time the projec-
tion takes place:

V2</> = V B
^projected = B — V</>

(8)
(9)

The resulting projected magnetic field is
divergence-free on a particular numerical sten-
cil, to the level of error of the solution of the
Poisson equation. While it is not immedi-
ately obvious that the use of the projection
scheme in conjunction with the fully conserva-
tive form of the MHD equations gives the cor-
rect weak solutions, Toth has proven this to be
the case [9]. The projection scheme has sev-
eral advantages, including the ability to used
standard software libraries for the Poisson so-
lution, its relatively straightforward extension
to general unstructured grids, and its robust-
ness. It does, however, require solution of an
elliptic equation at each projection step; this
can be expensive, particularly on distributed-
memory machines.

Powell [3, 11] first proposed an approach
based on the symmetrizable form of the MHD
equations, Equation 6. In this approach, the
source term on the right-hand side of Equa-
tion 6 is computed at each time step, and in-
cluded in the update scheme. Discretizing this
form of the equations leads to enhanced stabil-
ity and accuracy, however, there is no stencil
on which the divergence is identically zero. In
most regions of the flow, the divergence source
term is small. However, near discontinuities,
it is not guaranteed to be small. In essence,
the inclusion of the source term changes what
would be a zero eigenvalue of the system to
one whose value is un, the component of veloc-
ity normal to the interface through which the
flux is computed. The scheme is typically re-
ferred to as the eight-wave scheme; the eighth
wave is corresponds to propagation of jumps
in the normal component of the magnetic field.
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The eight-wave scheme can be thought of as a
hyperbolic or advective approach to control-
ling V • B; symmetrizable form of the equa-
tions, Equation 6, are consistent with the pas-
sive advection of V • B/p. The eight-wave
scheme is computationally inexpensive, easy
to add to an existing code, and quite robust.
However, if there are regions in the flow in
which the V • B source term (Equation 7) is
large, the conservation errors can create prob-
lems.

Recently, several approaches have been
developed that have combined a Riemann-
solver-based scheme with constrained-
transport approach. The constrained-
transport approach, first proposed by Evans
and Hawley [12] treated the MHD equations
in the gasdynamics/electromagnetic-split
form of Equation 4. The grid used was
a staggered one, and the V • B = 0 con-
straint was met identically, on a particular
numerical stencil. Dai and Woodward [13]
and Balsara and Spicer [14] modified the
constrained-transport approach by coupling
a Riemann-solver-based scheme for the
conservative form of the MHD equations,
Equation 5 with a constrained-transport ap-
proach for the representation of the magnetic
field. In their formulations, this required two
representations of the magnetic field: a cell-
centered one for the Godunov scheme, and a
face-centered one to enforce the V • B — 0
condition. Toth [9] subsequently showed that
these formulations could be recast in terms
of a single cell-centered representation for the
magnetic field, through a modification to the
flux function used. Advantages of the conser-
vative constrained-transport schemes include
the fact that they are strictly conservative
and that they meet the V • B = 0 constraint
to machine accuracy, on a particular stencil.
Their primary disadvantage is the difficulty
in extending them to general grids. Toth and
Roe [15] made some progress on this front;
they developed divergence-preserving pro-
longation and restriction operators, allowing

the use of conservative constrained-transport
schemes on h-refined meshes. However,
they also showed that the conservative
constrained-transport techniques lose their
V • B-preserving properties if different cells
are advanced at different physical time rates.
This rules out the use of local time-stepping.
Thus, while for unsteady calculations the
cost of the conservative constrained-transport
approach is comparable to the eight-wave
scheme, for steady-state calculations (where
one would typically use local time-stepping),
the cost can be prohibitive.

Some of the most recent work on the V-B =
0 constraint has been related to modifying the
eight-wave approach by adding a source term
proportional to V(V • B) so that the the di-
vergence satisfies an advection-diffusion equa-
tion, rather than a pure advection equation.
This technique, due to Linde and Malagoli [16]
referred to as diffusive control of V • B, has
the same advantages and disadvantages as the
eight-wave approach. It is not strictly con-
servative, but appears to keep the level of
V-B lower than the eight-wave approach does.
In other recent work by Dedner et al [17],
a generalized Lagrange-multiplier method has
been proposed, incorporating the projection
approach, the eight-wave approach, and the
diffusive-control approach into a single frame-
work.

Validation Studies
In this section, validation studies are pre-
sented that compare the solution methods and
V • B control techiques cited above.

The first test cases are plasma-shock-tube
problems. In Figure 1, the results of a
one-dimensional plasma-shock-tube problem
known as the Brio-Wu problem [18] are pre-
sented for three schemes: the eight-wave
scheme, based on the symmetrizable form of
the equations, the conservative constrained
transport scheme, based on the fully conser-
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vative form of the equations, and the non-
conservative constrained transport scheme,
based on the gasdynamic/electromagnetic
split form of the equations. For this prob-
lem, the results of the eight-wave scheme and
the conservative constrained transport scheme
are indistinguishable, and are shown in black.
The non-conservative constrained transport
scheme results, shown in red, display errors
as large as 20%, particularly in the veloc-
ity. This is not surprising, of course; the
various jumps in the Brio-Wu problem corre-
spond to the Rankine-Hugoniot conditions for
a plasma, which differ from those of a gasdy-
namic shock. Because the equations are not
discretized in a divergence form, substantial
errors are expected in the presence of non-zero
magnetic fields.

One-dimensional plasma-shock-tube prob-
lems such as the Brio-Wu problem are popular
validation cases for base schemes, but do not
test the V • B = 0 constraint techniques. This
is because, in one dimension, the constraint
that V • B = 0 degenerates to the constraint
that Bx — constant. However, rotating a one-
dimensional problem so that the discontinu-
ities run oblique to the grid yields a problem
that can test the V • B constraint technique.
In Figure 2, results are presented for the com-
ponent of the magnetic field parallel to the di-
rection of motion of the waves (i.e. the analog
to Bx in the one-dimensional case). The exact
solution for this quantity is a constant (B\\ —
\/2); the numerical results differ depending on
the V • B constraint technique. The largest
error, on the order of 10%, comes from us-
ing the eight-wave scheme in conjunction with
the Roe approximate Riemann solver. This is
due to the V • B source term, which is not
small in the region of the fast magnetosonic
shock in this case, and leads to conservation
errors. Surprisingly, the eight-wave scheme in
conjunction with the Rusanov/Lax-Friedrichs
approximate Riemann solver yields errors that
are an order of magnitude smaller. The dif-
fusive V • B control technique, used in con-

junction with the Roe approximate Riemann
solver, yields errors on the order of 2%; the
conservative constrained-transport technique,
yields results that are centered on the correct
value, but somewhat oscillatory. It should be
noted that only B\\ is shown here, in part be-
cause the errors in other variables are much
smaller: the differences in Bj_, pressure, den-
sity, and u\\ among the schemes are two or-
ders of magnitude smaller than those in B\\\
the differences in u± among the schemes are
more than one order of magnitude smaller
than those in B\\.

The third validation case is one that is
more representative of space-physics calcula-
tions. It represents a quasi-steady interaction
of the solar wind with Earth's magnetic field.
The boundary condition upstream of Earth is
a steady plasma flow, with:

• a density of 5 molecules per cubic cen-
timeter,

• a temperature of 180,000 K,

• a velocity of 400 kilometers per second,
pointed directly outward from the Sun,

• a magnetic field of 5 nanoTesla, pointed
northward.

Earth (including its atmosphere through the
ionosphere) is represented as a conducting
sphere with an embedded, non-tilted, non-
rotating magnetic dipole. These conditions
are a simplification of the real situation, in
which the flow from the Sun would be un-
steady, and the Earth's intrinsic magnetic field
more complicated. The calculation is carried
out on a three-dimensional, solution-adaptive
grid, on a parallel machine. Details of the ap-
proach are given by Groth et al [19]. The code
can be run first-order or as a second-order
MUSCL scheme, using any combination of the
solvers and V-B control techniques mentioned
above.

Figure 3 shows the effect of order of ac-
curacy, grid resolution, and solver choice on
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the flow. In the figure, color contours of pres-
sure are superimposed on magnetic field-line
traces, in a two-dimensional cut through the
noon-midnight plane. A comparison of the
upper left and upper right panels of the plot
shows the effect of increased grid resolution
when the scheme is first-order; the panel on
the right resulted from a run with eight times
as many cells as that on the left. A compar-
ison of the upper left and lower right pan-
els of the plot shows the effect of increasing
the order of accuracy of the scheme; the lower
right panel resulted from a run using a second-
order MUSCL scheme. A comparison of the
two lower panels shows the effect of different
solvers; the Rusanov scheme (on the left) is
more dissipative than the Linde scheme (on
the right). Of the four panels, the bottom
right one is the closest to the grid-converged
solution.

Figure 4 shows the effect of V • B control
technique. Four methods — the eight-wave,
diffusive control, projection and conservative
constrained transport techniques — are com-
pared, using a second-order MUSCL scheme
with a Rusanov solver, and a grid with a
smallest cell size of a quarter RE- Although
the grid for this case is relatively coarse, the
various V • B control techniques lead to results
that differ by only 1-2%. The relative cost de-
pends on implementation, but the eight-wave
and diffusive-control techniques are the least
expensive, the projection scheme somewhat
more (because of the elliptic step each time
the magnetic field is projected) and the con-
strained transport is substantially more ex-
pensive (approximately a factor seven over the
eight-wave scheme) because of the inability to
use local time-stepping in this steady problem.

Semi-Relativistic Plasmas
While the solar-wind speed remains non-
relativistic in the solar system, the intrinsic
magnetic fields of several planets in the solar

system are high enough, and the density of the
solar wind low enough, that the Alfven speed,

VA =

can reach appreciable fractions of the speed
of light. In the case of Jupiter, the Alfven
speed in the vicinity of the poles is of order
ten! Even Earth has a strong enough intrinsic
magnetic field that the Alfven speed reaches
twice the speed of light in Earth's near-auroral
regions.

For these vicinities, solving the non-
relativistic ideal MHD equations does not
make sense. Having waves in the system prop-
agating faster than the speed of light, besides
being non-physical, causes a number of nu-
merical difficulties. However, solving the fully
relativistic MHD equations is overkill. What
is called for is a semi-relativistic form of the
equations, in which the flow speed and acous-
tic speed are non-relativistic, but the Alfven
speed can be relativistic. A derivation of
these semi-relativistic equations from the fully
relativistic equations is given in Gombosi et
al [20]; the final result is presented here.

The semi-relativistic ideal MHD equations
are of the form

au,
dt

+ (V • Fsr)T = 0 (10)

where the state vector, Usr, and the flux diad,
Fsr, are
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P4 = J^
Mo'

~E E

are the Poynting vector, the electromagnetic
energy density, and the electromagnetic pres-
sure tensor, respectively. The electric field E
is related to the magnetic field B by Ohm's
law, Equation 3.

This new system of equations has wave
speeds that are limited by the speed of
light; for strong magnetic fields, the modified
Alfven speed (and the modified magnetofast
speed) asymptote to c. The modified mag-
netoslow speed asymptotes to a, the acoustic
speed. This property offers the possibility of
a rather tricky convergence-acceleration tech-
nique, first suggested by Boris [21]; the wave
speeds can be lowered, and the stable time-
step thereby raised, by artificially lowering the
value taken for the speed of light.

The equations above are valide in physical
situations in which VA > c. A slight modifica-
tion yields a set of equations, the steady-state
solutions of which are independent of the value
taken for the speed of light. Defining the true
value of the speed of light to be c0, to distin-
guish it from the artificially lowered speed of
light, c, the equations are:

O\J er /.—, -̂  \ T ^

Oi ' V * ST J '"WCQat
where the state vector, U5r, and the flux diad,
F5r, are as defined above, and the new source
term is

An implementation of the semi-relativistic
equations has been made. It is based on
the Rusanov/Lax-Friedrichs approximate Rie-
mann solver; the Roe scheme for the semi-
relativistic equations would be quite a mess,
due to the complicated expressions for the
eigenvalues and eigenvectors. The eight-wave
scheme is used to control V B.

Figure 5 shows steady-state results for the
same magnetosphere case as above. Two runs
were made: a non-accelerated run, with c = CQ
(and painfully small time steps); and an accel-
erated run, with c = c0/200. The accelerated
run took an order of magnitude less time, due
to the higher stable time step. The test con-
firmed that the two solutions are the same to
the level of truncation error.
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