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ABSTRACT

In the past decades, a lot of effort has been put into the study
of the behavior of non-linear systems, both qualitatively and
numerically. However, due to the fact that superposition does not
hold for these systems, no satisfactory method has been developed
to determine their response to an arbitrary excitation in a way that
would mimic linear modal analysis for linear systems. Therefore,
when such a response is needed, a linear modal analysis of the
non-linear system is typically performed, and the resulting set of
non-linear equations is truncated to retain a small number of linear
modes —typically one or two. The resulting reduced-order model
may be inaccurate —or even qualitatively incorrect, as in the case
of internal resonances—, due to the loss of the non-linear interac-
tions between the modeled and unmodeled linear modes. How-
cver, increasing its size to include additional linear modes can
yicld a computationally expensive model. The recent definition of
non-lincar normal modes of vibration of non-linear systems as
moltions occurring on invariant manifolds allows one to incorpo-
rate the effects of several linear normal modes into one so-called
non-lincar normal mode. This is very suitable for a restricted class
of motions —namely, those lying on the manifolds characterizing
the non-lincar normal modes— or if a single-mode model of the
system is needed. However, for more general motions or if mote
modes arc to be included in the model, a generalization of this
concept is presented herein, which allows for the determination of
multi-mode invariant manifolds. These manifolds include the
clfects of scveral non-linear normal modes —thus allowing inter-
actions between them—-, each of which captures a possibly signif-
icant number of lincar normal modes, thereby resulting in a
substantially smaller reduced-order model, for a given desired
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accuracy, than that obtained from a linear modal analysis of the
non-linear system. In this paper, the multi-mode invariant mani-
fold method is developed and its usefulness is investigated on a
case study. The possibility of neglecting some of the interactions
between the various non-linear normal modes is also examined, in
which case an approximation of general motions could be
obtained directly from the single-mode invariant manifolds.
Numerical results obtained with the methods presented arc
described and compared to those obtained with a classical linear
modal analysis of the non-linear system, along with a brief discus-
sion of their potential and of on-going work.

1. INTRODUCTION

The concept of normal modes of motion is well developed for
linear oscillatory systems, due to the special featurcs of the lincar
differential equations governing their dynamics. These features
allow for a definition of normal modes in terms of cigenvectors (or
eigenfunctions) and the expression of an arbitrary system response
as a superposition of modal responses3. In particular, given the
invariance of the normal modes, truncation procedures have been
developed to allow for the reduction of the number of modeled
(i.e., simulated) modes, and yet for the elimination, in many cases,
of most the contamination of the non-modeled modes.

Many relevant ideas can be generalized to non-linear sys-
tems. For example, much work has been done on the existence and
stability of normal modes of motion for two-degree of freedom,
conservative systems® & 19 More recently, new methodologies
have been developed” 8.9 generalize these definitions to a very
wide class of systems which includes non-conservative, gyro-
scopic, and infinite-dimensional systems. Essentially, they define
normal modes in terms of motions which occur on low —typically
two— dimensional invariant manifolds in the system’s phasc



space. Such a motion must be inherently like that of a lower
dimensional system, and this is exactly what is desired for a nor-
mal mode motion. A constructive technique for generating such
manifolds in terms of asymptotic series, without having to solve
the cquations of motion, is provided by a simple generalization of
the method used in constructing approximate center manifolds in
bifurcation lheoryz. Using this approach, it is possible to deter-
minc the manifolds which represent the normal modes for weakly
non-lincar systems. The equations of motion restricted to these
manifolds then provide the dynamics of the associated normal
modes. The tangent planes to the manifolds at the equilibrium
point are the planes on which the usual modal dynamics of the lin-
ecarized system take place, i.e., they are the familiar eigenspaces.
By definition, these non-linear normal mode manifolds are invari-
ant, so that any motion starting exactly in one non-linear normal
mode will be comprised only of that one for all time and will not
gencrate any motion in the other non-linear normal modes. On the
contrary, a standard linear modal analysis of the system’s dynam-
ics on that same manifold —obtained by mere projection of the
cquations of motion onto the linear modes— would produce a
two-way cxchange of energy, or contamination, between the linear
mode tangent to the manifold on which the motion is initiated and
the other lincar modes, due to the non-linear coupling terms
between the obtained projected equations. As was demonstrated
previously!, this may yield inaccurate results if one includes only
few lincar modcs, or expensive solutions if one includes many of
them. A summary of this material is provided in Section 2.

Just like the primary use of normal modes of motion of linear
systems is the modal analysis associated to them, the concept of
non-lincar normal modes of vibration suggests the definition of a
proper “non-lincar modal analysis” in order to be able to obtain
the response of a system under general excitation in terms of some
non-lincar modal coordinatcs. Moreover, one ought to be able to
perform model reductions using the non-linear modal coordinates
—as is done for linear systems—, which requires the development
of efficient truncation procedures, the ultimate goal being to be
able to usc fewer non-linear modes than linear ones to perform
cqually accurate modal analyses of non-linear systems.

Given the definition of the non-linear normal modes in terms
of two-dimensional invariant manifolds, it is clear that (1) they
will not interact during a pure modal motion, and (2) they are
bound to interact during more general motions. Therefore, in order
to extend modal analysis idcas to non-linear systems, it is essential
to be able to account for the interactions between the various non-
lincar mades involved in the dynamics of the particular system at
hand, which are not readily available with the current formulation.
Scction 4 of this paper discusses some relevant ideas related to the
problems and possibilitics allowed by these individually invariant
non-lincar normal modes. However, it is believed at this point that,
cven if proper modal interactions could be recovered, the non-
modeled non-lincar normal modes would certainly be contami-
nated by this process, which might not allow for reliable low-order
modcls.

Conscquently, a new formulation has been developed to
cnsure the invariance of the set of modeled non-linear modes with
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respect to the non-modeled ones. This formulation, described in
Section 3, essentially generalizes the individually invariant non-
linear normal mode manifolds to multi-mode invariant manifolds.
A multi-mode manifold is of dimension 2M when M non-linear
modes are modeled, and includes the influence of all of the M indi-
vidual non-linear manifolds defined previously. Besides, the inter-
actions between the various modeled non-linear modes are
accounted for at the very first stage of the definition process, thus
eliminating the need for later work to recover them. The genera-
tion of a multi-mode invariant manifold follows very closely that
of an individually invariant manifold, and approximations for
weakly non-linear systems can be constructed easily using the
same method. In the same manner as individually invariant non-
linear modes do not interact during pure modal motions, the
modes constituting a multi-mode manifold do not interact with the
non-modeled ones for motions occurring on that manifold, hence
ensuring non-contamination of the non-modeled modes if all rele-
vant modes are embedded in the multi-mode manifold to begin
with,

Numerical results have been obtained for the example of a
continuous system with a discrete non-linearity. These illustrate
the benefits of the formulation compared to classical linear modal
analyses of non-linear systems (i.e., projections of equations of
motion onto the linear modes). The dynamics recovered by the
multi-mode manifold methodology are generally more accurate
than those obtained by a linear modal analysis using the same
number of linear modes, since the multi-mode manifold reduces to
this linear subspace upon linearization. In the worst case (i.e., in
the case of linear systems), the rcsults are identical, while they
might be much improved when the non-lincarities increase. The
computational savings thus obtaincd will of course be case-depen-
dent, but are expected to be significant.

2. INDIVIDUAL NON-LINEAR NORMAL MODES

The equations of motion of the structural systems considered
are assumed to be of the form

X=y
. i=1,...
Vi = filXy ooy Xp Y1y oos Vi)

or z=4() @

with 27 = [x,y), ..o, xp 017 and AT = [ypfis oo Y i) T
(where Tdenotes a transpose), where any required discretization
as been achieved if necessary, for instance using the modes of the
linearized system. In the case of a discretized continuous system,
xT =[x, ..., xy]Tand y" = [y,, ..., ¥y]7 would represent some
assumed modal coordinates and velocities, while for discrete sys-
tems they would represent generalized coordinates (displacements
or rotations) and the corresponding generalized velocitics. Fur-
thermore, 7 = [fi,...,fy] T represents some general forcing on
the system.~



For a non-linear, autonomous, oscillatory system such as that
defined above, a normal mode of motion is a motion which takes
place on a two-dimensional invariant manifold in the system’s
phase-space. This manifold passes through a stable equilibrium
point (xy) = (0,0) of the system and it is tangent to an eigens-
pace of the system linearized about that equilibrium’. Therefore,
an invariant manifold and the dynamics on it can be described by a
pair of independent coordinates, which can be chosen to be a sin-
gle displacement-velocity pair (note that in some degenerate
cases, some pairs may not be suitable for such a description, in
which case the procedure has to be modified” 8; the procedure has
also been applied to the case of internally resonant systems where
the dimension of the invariant manifolds has to be augmented4).
For the kth non-linear normal mode, it is a natural choice to define
u, = x, and v, = y,, so that all displacements and velocities can
be related to (u,, v,) only —thus enforcing the two-dimensional-
ity and the invariance of the motion— as

i=1,...N i#k

{ X; = X,‘ (”b Vk) (3)

Y=Y (U, vy)

Substitution into the equations of motion yields a set of con-
straint equations which describe the geometry of the non-linear
invariant manifold, as

X vyt —

i#k

ax,
du
2y @)
Ju

Y,
vt 3= X =,

wherc use has becn made of the krh pair of equations of motion,
ie., iy = v, and v, = f,. Notice no assumption has yet been
made on u, and v,, and therefore Eq. (4) describes the kth non-
linear normal mode in a non-local sense. Thus, if one can find the
exact solution of Eq. (4), this solution will describe the exact
shape of the manifold. However, solving Eq. ( 4) is in general not
possible.

For weakly non-linear systems, an approximate local solution
can be computed by assuming a Taylor series expansion of X; and
Y, with respect to u, and v, up to the desired order as

k k
X = al e+ ah v+ a5l + dl v+ as v

{t

vai i+ ak e+ al uyvivah vit ... )

Yi = b+ b v+ bl + b v, + B vi

+ b + b v+ by uvi+ by i+ ..

Substituting Eq. (5) into Eq. ( 4) and equating coefficients of like
powers in i and v, yields a set of linear equations which can be
solved, one order at a time, for the a};’s and b};’s. These represent
the non-lincar corrections (at various orders) in the kth non-linear

normal mode due to the i linear mode.
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Fig. 1: Simply-supported Euler-Bernoulli
(linear) beam connected to a purely
cubic spring.

The dynamics on one particular non-lincar normal mode are
found by back substitution of the X;’s and ¥;’s into Eq. (1) for
i = k, determination of the dynamics of wu(t) (for example by
numerical integration), and then by recombination of the motion
using Eq. (5). This process requires solving only one non-linear
ordinary differential equation (ODE) to determine the motion on
each non-linear normal mode, as compared to N coupled ODE’s
involved in a direct integration of Eq. ( 1). Besides, it can be
shown that, for systems where the lowest non-linearity is of order
Q, the order of approximation of the dynamics is N’+Q-1 where
N’ is the order of approximation of the manifold. In the case of
general (e.g., quadratic) non-linearities, this means that the
approximation of the dynamics is one order higher than that of the
manifold itself, and two orders higher in the case of odd non-lin-
earities.

Example : A Simply Supported Euler-Bernouilli Beam Con-
strained by a Non-Linear Spring

The above methodology is applied to a homogeneous, simply
supported Euler-Bernoulli beam with a non-linear cubic spring
attached at its middle —see Fig. 1. While the beam itself is
assumed to deform in the linear range, the spring is chosen as
purely cubic so that the linearized system’s normal modes are
those of the simply supported beam alone (i.e., pure sine waves).
With this choice the influence of the various linear modes on the
non-linear ones can be visualized easily. Notice that since the
spring is located at a node of the antisymmetric (cven) modes, it
does not affect them, so that the antisymmetric modes of the non-
linear system are the same as those of the linearized system.
Therefore, only the symmetric (odd) modes are influenced by the
non-linear spring and, furthermore, they feature only contributions
of the symmetric linear modes.

If the beam is of length I = 1, the equation of transverse
motion of the system can be shown to be, in non-dimensional
form:

se 10,1[

i2+au',m+Bu38(s—-%) =0, ©)

where o = EI/m, = y/m, E is the Young’s modulus, [ is its
second moment of area, m is its mass per unit Iength, ¥ is the non-



lincar stiffness of the spring, s represents the abscissa along the
beam, u(s,2) is the transverse deflection, .4 denotes a derivative
with respect to s, an overdot represents a derivative with respect to
time and 8 is the Dirac function. The associated boundary condi-
tionsare u(0) = u(1) =0andu ,(0) =u ,(1) =0.

The beam deflection, u(s,?), is first discretized using the natu-
ral modes of the linearized system, ¢,(s) = sin (jxs), as’

N
uls) =y M, (1) ¢, (s) )
j=t1
where N is the number of terms in the expansion, i.e., the number
of tcrms that would be retained for a linear modal analysis of the
non-lincar system. Projection of equation of motion onto the it
lincar mode yields

ﬁ.-+0t(irt)“n,-+2l3[2ﬂ,-sm (ig)] sin(i1—2t) =0 ®
j=1

fori = 1,..., N, which can be written in first-order form as

X =y
{ . i=1,.,N ©)
Yi =ﬁ(x1!---yxmy1,--~yy~)

where X; = n,'v yi = ﬁi’ and

f = —a(in:)‘x,—2[3[2x,sin (j;)i, sin (i;)

The set of differential equations, Eq.(9) is what is simulated for a
typical lincar modal analysis. Alternatively, the procedure
described earlier in this section can be applied to Eq. (9) to deter-
mine the third- or higher order approximation of the non-linear
normal modes of the system. The kth non-linear mode is given by,
to fifth-order! :

N = Uy, M = %
and fori=1,....N, i#k:
n,=m=0 (i even)
N, = akui + ayuvi
+ ailsrr: + a'ﬁuivi + a"lgukv: +... (iodd) (10)
n = 175,,-112\&‘”75,."’2
+ b vy + bl upvy + by Vi + ... (iodd)
where if kiscven af;, = a, = a5, = a}y; = af,; = 0,and if k

isodd. fori=1,....N, ik, i odd

k+i »

= [i* =7k

£, = 2B (<1) ?

%= 2BCD * o R o]

an

k+i

= ~12B(=1) * !

ot [ - k] [i* - 9K*]

ays = [—azn‘(z‘— 176" (' - 13K )

+20°n2% (i - 13Kl - 720k} } /A

1 an= [—a’n“(z‘—Sk‘) (- 13Ky 12)
+20amt (i - 13k ) ]/A

- 120} + 6amt (i* - Sk ),
A

and, forallkandi=1,....N, i 2k, iodd:

i —
Ay =

by, = —20n*k'a; ;+3a;,
(13)

£k
by, = ay;

b = Sais;— 20 (kn)*ay,, — 4Bay

k

bl&i

3a}, - 4o (kT) *aly, (14)
b;o..- = a’:o,i

where, for the fifth-order terms,

3

A = r [ (i -5k (F =178 (P =138y,
+ 32k (i + 5k 1
(135)

T 2;3[3(Za;sin Ug))sin (ig) +2a§—b§]

i i . K . ,.I i
| B, = 2[3[3 (;agsm (/5)) sin (15) —22a§1
Consequently, the deflection of the beam in the kA non-linear
mode, u"(s,t), can be expressed in terms of the k& non-linear
modal coordinate, u;(?), and the associated modal velocity, vi(t), as

u'(s.) = u,sin (kns) 16
+ z [aiid + abuv? + dlsid) + diquovi + digu,vi] sin (ins) + ...
iodd
ink
while the dynamics of the non-linear modal coordinate itself is
governed by



. 4 3| . n
i+ o (k) u, + 2Pu, | sin (ki) +

: i i b
+ (32 [t + alv} + digul + duivi + dovi] sin G3) ) an
jodd
jzk

o= N - G _
+3sin (k) (jazd;[agu,+a’gv,] sin 05)) sin (k) +... = 0

j=k

for k = 1,...,N. Here, u*(s,0) refers to the deflection of the point of
abscissa s at time ¢ when the system undergoes a motion in the kth
non-linear normal mode. It should not to be confused with u, (7),
which is the non-linear modal coordinate and is not meant to rep-
resent the motion of any particular point. Note that the dynamics
of the N non-linear modal oscillators are individually decoupled
from one another, which accounts for the invariance of the non-
linear normal modes.

As noted above, one can obtain the dynamics of the kth non-
linear mode up to an accuracy of fifth-order with only a third-order
accurate invariant manifold, as is apparent from Eq. ( 17) (retain-
ing only the cubic coefficients ag;’s and a3 ;s yields the complete
fifth-order dynamics), and up to seventh-order with a fifth-order
accurate manifold.

Figures 2, 3 and 4 display results obtained using the proce-
dure presented herein, along with results obtained with classical
linear modal analyses of the non-linear system performed with
various number of modeled linear modes. In these figures, the
“exact” solution was determined using a linear modal analysis
with 25 lincar modes. In this particular case it appears at least
three to five lincar modes are necessary to achieve an accuracy
comparable to that obtained with the seventh- or fifth-order
dynamics as obtained above. Bearing in mind that the latter results
are obtained by simulation of one differential equation only (Eq.
(17)), it is evident that the non-linear normal mode approach is a
better candidate than linear modal analysis of the non-linear sys-
tem for the generation of reduced-order models consisting of only
one mode. In the case of single-mode linear modal analysis the
influence of the other linear modes would be missing whereas it is
embedded in the non-linear normal mode (see Fig. 4 which repre-
sents simulations all utilizing only one ODE).

3. MULTI-MODE INVARIANT MANIFOLDS

The potential of non-lincar normal modes is evident from the
previous scction. However, it is important to note that, by defini-
tion, they are only individually invariant. Therefore, they do not
interact when the system undergoes a motion in any one of the
modal manifolds, but nothing prevents them from interacting dur-
ing an arbitrary motion. This immediately reminds one of the
problems encountered in the linear modal analysis of the non-lin-
car system —where contamination between the various linear nor-
mal modcs almost inevitably occurs—, which were at the origin of
the definition of the non-linear normal modes as tools to try to
eliminate the phenomenon of contamination. An attempt at utiliz-
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ing these individual non-linear normal modes to obtain directly the
dynamics of the system undergoing an arbitrary motion will be
presented in Section 4. In this approach the interaction between
the non-linear modes is essentially ignored, thereby allowing for
the direct use of the single-mode non-linear manifold results. The
remainder of this section, however, concentrates on completely
removing this contamination (to a given order), which, at this
point, requires additional work.

In order to properly ensure the non-contamination of the non-
linear modes which are not included in the reduced-order model, a
new formulation is necessary, which generalizes the individually
invariant non-linear normal modes and reduces to them in special
cases. The underlying idea is to generate high-dimensional invari-
ant manifolds, referred to as multi-mode manifolds, essentially in
the same manner as the individually invariant manifolds were pro-
duced in the Section 2. These multi-mode manifolds, when com-
prising the influence of M non-linear modes, are of dimension 2M
in the phase-space for the oscillatory systems typically of interest
in structural dynamics. Evidently, these multi-mode manifolds are
still not completely invariant —in the sense that two different
multi-mode manifolds would interact during a general motion, as
the non-linear normal modes did— but, for motions on a given
multi-mode manifold, invariance is ensured between itself and the
rest of the (non-modeled) non-linear modes —essentially in the
same manner as the non-linear normal modes were not interacting
during purely modal motions.

Consequently, for a system for which M non-linear modes arc
to be modeled and for which the remaining ones are to be merely
ignored, the multi-mode manifold should comprise all M modes,
so that (1) the interactions between those M modes can be
accounted for, and (2) the interactions with the non-modeled
modes can be completcly removed. If a mode is non-modeled
despite an internal resonance with a modeled one, the mathemati-
cal process of generating the multi-mode manifold will become
singular, thereby detecting the anomaly.

The procedure to determine multi-mode invariant manifolds
follows closely the one presented in Section 2. If S, denotes the
subset of indices corresponding to the modeled modes, and u,_, and
v, represent the vectors of the corresponding non-linear modal
coordinates and velocities, then the various linear modal coordi-
nates are expressed as functions of the modeled modes as

X = Uy
for ke S, (18)
Ve =V
X; = X,‘ (.U,,.a Y,,.)
for e S, 19)
{ Vi =Y (4, v,) g

Taking the time-derivatives for j ¢ S, yields :



Za

kes,

2 au,

J
—f
Kes, dv; *
which can be substituted into the j”' pair of equations of motion to
produce equations resembling Eq. ( 4). In most cases (namely, for
weakly non-linear systems), approximations will be sought in a
series expansion form. One has, to third order :

k
XUy, = Zal.j‘"k"'a'ii"’k

Kes,
% k1 L1
+ N b+ dg) uw+ag v,
keS lesS, (20)
+ Z Z 2 agi? - wuug+asit way,
keS leS qeS
+agtt uvy,+asi vy, + ..
Y(u,v,) = by u+ by
JNTm Zm Lj k % k
Kes,
k! ki &1
+ Z Z by wu, + 055w+ b3 - v,
Kes ies, @1
+ Z z 2 bEb - wgu, + 0500w,
keS leS qeS
2 VARE AV Y L R TRV VAT

Note that this decomposition is not unique, and that the number of
coefficients of order p when M non-linear modes are modeled is,
forcach X; and Y, :

comerer . 2M=14p)!
eM-1)1p!

which increases very rapidly with both p and M. Substituting Eqs.
(20) and ( 21) into the j pair of equations of motion and equating
like powers in u,, and v,,, one obtains the first- and higher-order
cocfficients scquentially, one order at a time. If one uses the linear
normal modes to discretize the continuous system (or, equiva-
lently casts the linearized discrete system in terms of the linear
modal coordinates), the first-order coefficients can be shown to
vanish for all j & §,,. For systems with purely cubic non-lineari-
tics (which is the case of the example studied below), all second-
order coefficients are zero, while the equations for the third-order
cocfficients can be put in matrix form as

(a)ef = b @)

A B = @

where g/ and b{¥ represent the third-order coefficients and f©
is problem dependent and is linear in both g/ and b ([AZ] ,

a/” . and b/ arc given in the Appendix for the example of two-
modc modcl) Combining Eqs. (22) and ( 23) then yields

(23)
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(3)

‘}‘ a(a) =

where f is in general linear in a‘” (the hat on f ’ denotes the
fact that Eq. (22) has been used whcrcver necessary). Equation
(24) can be solved for g/ (using Maple™ for example), and
b is then obtained using Eq. ( 22). Higher-order approximations
of the multi-mode manifold can be computed sequentially in the
same manner.

24

Once the multi-mode manifold of interest has been approxi-
mated to the desired order, the dynamics of the system on it are
obtained by solving the reduced set of equations of motion corre-
sponding to the modeled modes, i.e.,

for ke S, (25)

{ Uy = v,

Vi = fi (U V)
where Egs. (20) and ( 21) have been utilized where necessary, and
then by recombining the linear modal amplitudes using Eqs. ( 18)
and (19). At this point, the manner in which the contamination
with the non-modeled modes has been removed becomes evident.
On the one hand, it is clear from Eq. ( 25) that the dynamics on the
multi-mode manifold itself depend only on the non-linear modal
coordinates corresponding to non-lincar modes that constitute it.
On the other hand, the non-modeled non-linear modes can be
viewed in two generic ways : either as a whole (i.e., as another
multi-mode manifold, constituted of all the non-modeled modes),
in which case their dynamics (dictated by equations resembling
Eq. (25)) are independent of those of the modeled modes; or as
individual non-linear normal modes (as defined in Section 2),
which can merely be considered as special cases of the multi-
mode invariant manifold concept, in which case the previous
remark still applies. Consequently, if the initial conditions are
given in terms of the modeled non-linear modes only (while the
non-modeled ones are initially zero —which is the case when onc
merely ignores them), the non-modeled modes will remain quies-
cent for all time even if their dynamics are simulated, and there-
fore their contributions will not be missing.

Example : A Simply Supported Euler-Bernouilli Beam Con-
strained by a Non-Linear Spring

In the particular case of the system depicted in Fig. 1, a two-
mode invariant manifold is computed with the aid of the symbolic
manipulation package Maple™. In this case, the first-order terms
vanish except for those corresponding directly to the linear modes
(since the linear modes are used to discretize the system), and all
second order terms are zgro (no quadratic non-linearitics). If

= {k, 1}, the vectorf in Eq. (24) reduces to



I N
sin (ki)

X n 2, n
3sin (k;) sin ('5)

n x 2
X T in (k=) sin (I=
]:j(s) _ —oc(jn)‘g,-‘” —2Bsin UE) 3sin (kz)sm (12) 26)
3
sin (l;)
0
0

Itis then found that a5, }" = af}" = O forall {p,g,r} € §,,and

(= j* +76%) Bsin (";) gin (j;)

k bk
dei = 2 27
! art (B — 10/4% + 9k8)
Kk 8 4444 A4, 8, 8 . %2
ag;' = 6B -6/ =27k =261 +1° 4+ 8k") sin (ki)
. T . n
x sin (13) sin (i3) / [ (on®* (= + 1) (28)
x (-8t —sif it 168+ B =2 4 1By
. n 3, ®
Bsin (k-) sin (ji)
gt = 2oy 5 29
a2x8 (8 — 10/*%* + oc®)
., ® 2, =
astl = —12B (36* + j* — ity sin (13) sin (,'-)/[0:21:8
(30)
X (= + 8 % (st =gt + 1618 +18—214k +i8) ]
. w2, ®. . .
Bsin (k) sm(t—)sm(j-)
k&1 2 2
ag; = 24 3 P 3 s @31
28 (st — st 1+ B0t 4 B

with similar relations when k and [ are switched, from which one
obtains, b5 = bg?" = 0 forall {p,q,r} € S,,and

(-;*+36%) Bsin (k;)  sin (j;)

bijt =6

(32)
an? (8~ 104 + 94®)

2
bi5' = 6Bsin (kg) sin (112-t) sin (i;)
x (B -2t =28t — ekt + B 8iB) / [on* (=4 + 1Y) (33)
x (—et it st + 16+ B - 2t 48 ]
840 Bein (45 2 cin (15 cin (1T
(= = j*+4K%) Bsin (k3) sin (13) sin (=)
ELE — 1o 34
" and (-8t =gt 1618 + B2 4+ 1B)
., BT
Bsin (ki) sin (}5)
BEEE = 12 ©33)

o2t (72 - 10/ + oiB)
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2
bt = Bsin (kf) sin (z’_‘) sin (,-’_‘) (-1 =3 + 4t

/[o2n Y 8,4k“+16k +8 -2+ 8

36)
(= + 1% (—sxt

with, again, similar relations when & and / are switched.
It can be noted by inspection of Egs. (27), ( 29) and ( 11) that

Lk k

agtt = ai,; as obtained for the kth non-linear  (37)
normal mode
and
ag;t = a}, as obtained for the kzh non-linear  (38)

normal mode

This is expected since the multi-mode manifold reduces to the kth
non-linear normal mode when §,,={k}. Consequently, an alterna-
tive to directly solving Eq. ( 24) is first to solve for the individual
non-linear normal modes (as in Section 2), and then to use all sin-
gle-mode coefficients as known coefficients, thereby somewhat
reducing the size of the system in Eq. (24) (see Appendix).
Although linear sets of equations such as Eq. (24) can be dealt
with very efficiently with symbolic manipulation packages such as
Maple™ or Mathematica™, it should always be kept in mind that
the number of coefficients involved at each step increases very
rapidly with both the order of approximation and the number of
modeled modes, so that the use of relations such as Egs. (37) and
(38) should be made wherever applicable. For instance, while
there are 20 cubic coefficients involved in a two-mode model,
there are 56 of them for a three-mode model. In the latter case,
directly solving for those coefficients using Eq. ( 24) would result
in a 56x56 linear system of equations, while making use of the
above remark would result in solving succcssively a 4x4, a 12x12,
and an 8x8 system of equations corresponding to the cubic orders
of the single-, two- and three- mode models, respectively. Along
the same line, it should be noted that, regardless of the number of
modeled modes in the multi-mode manifold at hand, each cubic
coefficient will always involve no more than three modes at a
time, and therefore all cubic coefficients are known for any num-
ber of modeled modes as soon as the three-mode model has been
solved to cubic order. For example, if one was to construct a five-
mode model, there would be 220 cubic coefficients, resulting in a
220x220 system of equations to be solved using the brute force
approach, whereas in fact no work at all should be required once
the three-mode model has been solved for to cubic order analyti-
cally!

Results of simulations performed using cither the above
multi-mode manifold procedure or a linear modal analysis of the
non-linear system are shown on Figs. 5-10 for two different sets of
initial conditions on a three-mode manifold. In these examples, the
three-mode model is composed of the first three modes and can
therefore be obtained directly from the two-mode model involving
only the first and third modes —since all the coefficients corre-
sponding to the added even mode vanish. As expected from the
theory, a given number of non-linear modes embedded in the
multi-mode manifold yiclds better results than the same number of



linear modes used in a linear modal analysis procedure, all the
more so as the influence of the non-linearity increases.

Note that for this example system, as was the case for single-
mode manifolds, the dynamics are obtained at order N'+2 when
the order of approximation of the multi-mode manifold is N'. In
general the dynamics are of order N+ Q-1 when the lowest non-
linearity is of order Q. In the present case, the dynamics are
obtained at fifth-order by the coupled equations

ljg=vk

- o (k) *u, — 2Bsin (k1—2r') [2 u,sin (11_2:)13
€S,

— 6Bsin (kg) [2 usin (175')]2 [2 X®sin (jg)J ‘...
€S, j

€s,

Vi

(39

for ke S, where X;* represents the cubic part of X;. Note that,
in contrast with the case of single-mode manifolds, the dynamics
of the various modeled non-linear modes are coupled, so that
cssential interactions between them are allowed. However, the
dynamics are uncoupled from that of the non-modeled modes.

4. NON-LINEAR MODAL ANALYSIS REVISITED

The multi-mode procedure presented in Section 3 allows for
complete removal of the contamination of the non-modeled non-
linear modes (to a given order), and yet for proper interaction
between the modeled ones. However, an alternative method was
previously introduced’, in which an attempt at superposition was
proposcd to recombine the linear modal components directly from
the single-mode non-linear components. This can be formalized as

2= M) = (M) +[M, ]+ M)+ Iy ©O)

where w™ = (uy, vy, ..., Uy, ', [Mo is the identity matrix (if
onc uses the linear normal modes in the discretization process),

M, (y)] is linear in w (and is identically zero when no quadratic
non-lincarities are present), and | M, (w) | is quadratic in w and is
assembled from the 2Nx2 matrices representing the cubic part of
cach individual non-linear normal mode (see reference [7] for
more details). This method has not been fully investigated yet, and
some work is currently under way, but some general ideas will be
outlined here.

From Egs. (40) and ( 2), the equations of motion become

w = B;M} "A(M(w)) @n

w

Note that Eq. (41) requires one to model as many non-linear
modes as linear ones in order to obtain a square matrix inversion.
The cfficiency of this process might be improved by use of the
generalized inverse when fewer non-linear modes than linear ones
arc modeled. In such a case,
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z=N(q)

where g is the restriction of w to the modeled non-linear modes,
and [agv/ aq:| is now rectangular. The equations of motion there-
fore become

(42)

3

- T -1 T
oN| _ ||on| |oN|| |9V

M M [ﬁ} M

The above approach essentially consists of a direct extension
of the ideas used in modal truncation of linear systems. However,
it is based on non-linear modes which are individually invariant,
but whose behavior in this context is as of now largely unknown.
The reduced-order models thus obtained possess the desirable
property of accounting for some non-linear coupling between the
various modeled non-linear modes, but the influence of the modal
contamination of the non-modeled modes is yet to be determined.
These issues are currently under investigation. In particular, view-
ing the non-linear modal coordinates as curvilinear coordinates
along some particular directions (i.e., along the non-linear mani-
folds), it may be possible to determine a “non-linear projection” so
that the linear modal coordinates of the system can be decomposed
on this set of curvilinear coordinates. Utilizing this non-linear pro-
jection to replace Eq. (40), the procedure could, possibly without
too much computations, provide a most accurate description of the
interactions between the individual non-linear modes, although

the issue of the contamination of the non-modeled modes would
probably still not be addressed.

where

It should also be noted that this procedure will not necessarily
always be less demanding than the one presented in Section 3,
since it is very likely to involve the numerical factorization of a
non-square matrix at each time-step during the simulation,
whereas the former procedure, once the multi-mode manifold is
determined, consists of explicit simulations followed by simple
(but possibly long) recombinations. These issues are also currently
under investigation.

5. CONCLUSION

The developments in Scctions 2 and 3 suggest that the con-
cept of invariant manifolds has potentially important implications
for non-linear structural dynamics problems. This is the first time
that the problem of defining a non-linecar modal analysis for non-
linear systems is tackled effectively, in the sense that proper inter-
action between the various modeled modes is allowed and
accounted for, while contamination with the non-modecled modes
is ensured to be eliminated (i.e., even if they were simulated, they
would remain quiescent for all time in the absence of resonances).
This property, which is essential for proper simulation of the
dynamics of a system once its most important modes have been



selected, is an extension to non-linear systems of what exists for
the modal analysis of linear systems.

Besides, when the original equations of motion are given in
terms of the linear modal coordinates, each non-linear mode or
multi-mode manifold is certain to comprise at least the contribu-
tions of the linear modes to which it reduces upon linearization,
which guarantees, for a fixed number of modeled modes, to obtain
results at least as good as those from a linear modal analysis of the
non-linear system with the same number of modes. In general,
however, the results obtained by the proposed method will be bet-
ter than those obtained with the same number of linear modes,
since part of the influence of some higher linear modes is included
in the non-linear normal mode or multi-mode model considered.

Regarding the generation of those multi-mode manifolds, it
should be emphasized that the use of symbolic manipulation pack-
ages can greatly reduce the amount of work required to obtain a
multi-mode model at a given order. Specifically, if the determina-
tion of all the lower-dimensional multi-mode manifolds is prelimi-
nary carried out analytically, many of the coefficients involved for
the desired number of modeled modes are known by inspection.

Finally, an alternative method based on the individual non-
linear normal modes was presented, which, by neglecting some of
the interactions between the various non-linear modes, allows for
an approximate non-linear modal analysis of the system. Since the
contamination with the non-modeled is not removed in this case,
the accuracy of the reduced-order model is not clear as of now. A
generalization of this approach by use of curvilinear coordinates
and a “non-linear projection” may yield some interesting qualita-
tive results concerning the nature of the interactions between the
individual non-linear modes. This work is still in progress.

The methods proposed herein to generate reduced-order
modcls have potentially important implications for many areas,
including structural dynamics and control, where accurate low-
order models are of interest.
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7. APPENDIX : MATRICES AND VECTORS INVOLVED
IN THE DETERMINATION OF THE CUBIC PART OF A
TWO-MODE INVARIANT MANIFOLD

The following shows the matrices involved in solving the full
20x20 system of equations (Eq. ( 24)) for the cubic coefficients of
a two-mode invariant manifold in the Euler-Bernoulli beam case-
study. Alternately, a reduced system can be used if one takes
advantage of the results obtained for the single-mode calculations.
The corresponding matrices are also provided here.

The equations for the cubic coefficients are put in matrix
form as shown in Egs. (22) and ( 23), where the components of
a/®, and b are ordered in the same manner, as follows :

(VT — [ kbt EkI kLI LLE Lk LKL LLE LLT kLK kLl
(g;")" = lag; a6y, a6, agj avy's asy s vy, aq g dy s agf
LEk ELL Lek LLL kKD Lkl kkk Kk ELL LLIT

Asj » Qg a8, 055,05 ,05;,05; 5,09 ,0dg;,dg;

Following this ordering, the matrix Eq] is given by

CRlw

where A, = [Alleﬂ Anishi|, Ay =

as

|:A12e[l A;ighl , A4 = l:Al:ﬁ A;igh] R
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right __
AN =

—3a (kx)* 0 0
0 0 —a (kn)*
0 —a (im)* 0
0 0 0
0 —20 (kn)* 0
0 0 -2 (In)*
0 0 0
0 0 0
0 0 0
0 0 0

0

In the case where one takes advantage of the knowledge of

the single-mode manifolds,
matrix as :

where

>
b

0 0 -c(m)* 0 —ao (kn)*
0 0 0 —o (kn)*
1 0 0 0 0
01 0 0 0
2 0 0 0 0
0 2 0 0 0
0 0 0 0
0 0 0 0
0 0 —a(km)* 0
0 0 0 0
0 —2a (kx)* —a(ix)* O
—2a (ir)* 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 2 0 1
0 0 0 2 0
0 0 0 0 0
0 0 0 0 0

[A] would be replaced by a 12x12

-4

A3 A,

0
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O O O o o ©
o O o o o O

(= R =R
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Fig. 2: Deflection of the middle-point of the beam as found by the various non-
linear normal mode dynamics approximations (initiated on the fifth-order
accurate first non-linear normal mode manifold). o = 1,8 = 10¢,
u, (t=0) = 0.15,v,(+=0) = 0.
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Fig. 3: Deflection of the middle-point of the beam as obtained by various linear
modal analysis simulations initiated on the fifth-order approximation of
the first non-linear normal mode manifold. o = 1,B = 10¢,
u, (+1=0) = 0.15,v,(r=0) = 0.
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Fig. 4: Deflection of the middle-point of the beam as obtained by the various
simulations initiated on the third-order approximation of the non-linear
normal mode manifold. All curves correspond to the simulation of only
one ODE o = 1,B = 10*, u, (+=0) = 0.15,v,(+=0) = 0.
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accurate three-mode invariant manifold. o = 1,8 = 5000, u,;(r=0) = 0.2,
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linear modal analysis of the non-linear system. o = 1,B = 5000, u(1=0) =
0.2, uy(1=0) = 0.1, u3(1=0) = 0.01, v;(t=0) = v5(1=0) = v3(t=0) = 0.
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0.2, up(1=0) = 0.1, u3(1=0) = 0.01, v;(t=0) = vx(=0) = v3(+=0) = 0.
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