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ABSTRACT 

In the past decades, a lot of effort has been put into the study 
of the bchavior of non-linear systems, both qualitatively and 
numerically. However, due to the fact that superposition does not 
hold for thcse systems, no satisfactory method has been developed 
to delermine their response to an arbitrary excitation in a way that 
would mimic linear modal analysis for linear systems. Therefore, 
when such a response is needed, a linear modal analysis of the 
non-linear system is typically performed, and the resulting set of 
non-linear equations is truncated to retain a small number of linear 
modes -typically one or two. The resulting reduced-order model 
may be inaccurate -or even qualitatively incorrect, as in the case 
of internal resonances-, due to the loss of the non-linear interac- 
lions between the modeled and unmodeled linear modes. How- 
ever, increasing its size to include additional linear modes can 
yicld a computationally expensive model. The recent definition of 
non-linear normal modes of vibration of non-linear systems as 
mo~ions occurring on invariant manifolds allows one to incorpo- 
rate the effects of several linear normal modes into one so-called 
non-linear normal mode. This is very suitable for a restricted class 
of motions -namely, those lying on the manifolds characterizing 
the non-linear normal modes- or if a single-mode model of the 
systcm is needed. However, for more general motions or if more 
modes are to be included in the model, a generalization of this 
concept is prescnted herein, which allows for the determination of 
multi-mode invariant manifolds. These manifolds include the 
clTccts of several non-linear normal modes --thus allowing inter- 
actions between them-, each of which captures a possibly signif- 
icant numhcr of linear normal modes, thereby resulting in a 
subslantially smaller reduced-order model, for a given desired 
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accuracy, than that obtained from a linear modal analysis of the 
non-linear system. In this paper, the multi-mode invariant mani- 
fold method is developed and its usefulness is investigated on a 
case study. The possibility of neglecting some of the interactions 
between the various non-linear normal modes is also examined, in 
which case an approximation of general motions could be 
obtained directly from the single-mode invariant manifolds. 
Numerical results obtained with the methods presented arc 
described and compared to those obtained with a classical linear 
modal analysis of the non-linear system, along with a brief discus- 
sion of their potential and of on-going work. 

1. INTRODUCTION 

The concept of normal modes of motion is well devclopcd for 
linear oscillatory systems, due to the special fcaturcs of the linear 
differential equations governing their dynamics. These features 
allow for a definition of normal modes in terms of eigenvectors (or 
eigenfunctions) and the expression of an arbitrary system response 
as a superposition of modal responses3. In particular, given the 
invariance of the normal modes, truncation procedures have becn 
developed to allow for the reduction of the number of modeled 
(i.e., simulated) modes, and yet for thc elimination, in many cases, 
of most the contamination of the non-modeled modes. 

Many relevant ideas can be generalized to non-linear sys- 
tems. For example, much work has been done on the existence and 
stability of normal modes of motion for two-degree of freedom, 
conservative systems4. 6' lo. More recently, new methodologies 
have been developed7. *.' to generalize these definitions to a vcry 
wide class of systems which includes non-conservative, gyro- 
scopic, and infinite-dimensional systems. Essentially, they define 
normal modes in terms of motions which occur on low -typically 
two- dimensional invariant manifolds in the system's phase 
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space. Such a motion must be inherently like that of a lower 
dimensional system, and this is exactly what is desired for a nor- 
mal modc motion. A constructive technique for generating such 
manifolds in terms of asymptotic series, without having to solve 
the cquations of motion, is provided by a simple generalization of 
thc method used in constructing approximate center manifolds in 
bifurcation theory2. Using this approach, it is possible to deter- 
mine the manifolds which represent the normal modes for weakly 
non-lincar systems. The equations of motion restricted to these 
manifolds then provide the dynamics of the associated normal 
modes. The tangent planes to the manifolds at the equilibrium 
point are the planes on which the usual modal dynamics of the lin- 
earized system take place, i.e., they are the familiar eigenspaces. 
By dcfnition, these non-linear normal mode manifolds are invari- 
ant. so that any motion starting exactly in one non-linear normal 
modc will be comprised only of that one for all time and will not 
gcncratc any motion in the other non-linear normal modes. On the 
contrary, a standard linear modal analysis of the system's dynam- 
ics on that samc manifold -obtained by mere projection of the 
equations of motion onto the linear modes- would produce a 
two-way cxchangc of energy, or contanhation, between the linear 
modc tangent to the manifold on which the motion is initiated and 
thc othcr lincar modes, due to the non-linear coupling terms 
bctwccn the obtained projected equations. As was demonstrated 
previously', this may yield inaccurate results if one includes only 
fcw lincar rnodcs, or expensive solutions if one includes many of 
hm. A summary of this material is provided in Section 2. 

Just like the primary use of normal modes of motion of linear 
systems is the modal analysis associated to them, the concept of 
non-lincar normal modes of vibration suggests the definition of a 
proper "non-lincar modal analysis" in order to be able to obtain 
thc rcsponse of a systcm under general excitation in terms of some 
non-lincar modal coordinatcs. Moreovcr, one ought to be able to 
perform modcl rcductions using the non-linear modal coordinates 
-as is done for linear systems-, which requires the development 
of efficient truncation procedures, the ultimate goal being to be 
ablc to use fewer non-linear modes than linear ones to perform 
cqually accuratc modal analyses of non-linear systems. 

Givcn the dcf nition of the non-linear normal modes in terms 
of two-dimensional invariant manifolds, it is clear that (1) they 
will not interact during a pure modal motion, and (2) they are 
hound to intcract during more gcncral motions. Therefore, in order 
to cxrcnd modal analysis ideas to non-linear systems, it is essential 
to hc ablc to account for the interactions between the various non- 
linear modcs involved in the dynamics of the particular system at 
hnnd. which arc not readily available with the current formulation. 
Scction 4 of this paper discusses some relevant ideas related to the 
prohlcms and possibilities allowed by these individually invariant 
non-lincar normal modes. However, it is believed at this point that, 
cvcn if propcr modal interactions could be recovered, the non- 
modclcd non-linear normal modes would certainly be contami- 
natcd hy this proccss, which might not allow for reliable low-order 
modcls. 

respect to the non-modeled ones. This formulation, described in 
Section 3, essentially generalizes the individually invariant non- 
linear normal mode manifolds to multi-mode invariant manifolds. 
A multi-mode manifold is of dimension 2M when M non-linear 
modes are modeled, and includes the influence of all of the M indi- 
vidual non-linear manifolds defined previously. Besides, the inter- 
actions between the various modeled non-linear modes are 
accounted for at the very first stage of the definition process, thus 
eliminating the need for later work to recover them. The genera- 
tion of a multi-mode invariant manifold follows very closely that 
of an individually invariant manifold, and approximations for 
weakly non-linear systems can be constructed easily using the 
same method. In the same manner as individually invariant non- 
linear modes do not interact during pure modal motions, the 
modes constituting a multi-mode manifold do not interact with the 
non-modeled ones for motions occurring on that manifold, hcncc 
ensuring non-contamination of the non-modeled modes if all rele- 
vant modes are embedded in the multi-mode manifold to begin 
with. 

Numerical results have been obtained for the example of a 
continuous system with a discrete non-linearity. These illustrate 
the benefits of the formulation compared to classical linear modal 
analyses of non-linear systems (i.e., projections of equations of 
motion onto the linear modes). The dynamics recovered by the 
multi-mode manifold methodology are generally more accurate 
than those obtained by a linear modal analysis using the samc 
number of linear modes, since the multi-mode manifold reduces to 
this linear subspace upon linearization. In the worst case (i.e., in 
the case of linear systems), the rcsults are identical, while they 
might be much improved when the non-linearities increase. The 
computational savings thus obtaincd will of course be case-dcpcn- 
dent, but are expected to be significant. 

2. INDIVIDUAL NON-LINEAR NORMAL MODES 

The equations of motion of the structural systems considered 
are assumed to be of the form 

or z = A (5) (2) 

with Z' = [ x , ,  Y , ,  ..., x,, y,l ' and A ( 5 )  ' = [ y , , f , ,  ..., yN,fNl ' 
(where 'denotes a transpose), where any required discretization 
as been achieved if necessary, for instance using the modes of the 
linearized system. In the case of a discretized continuous system, 
5' = [x , ,  ..., x,] ' and yT = [y,, ..., y,] ' would represent some 
assumed modal coordinates and velocities, while for discrete sys- 
tems they would represent generalized coordinates (displaccmcnts 
or rotations) and the corresponding gencralizcd velocitics. Fur- 
thermore, f = Lfi ,  ..., f,] ' represents some general forcing on 
the systemq 

Conscqucntly, a ncw fo'ormulation has been developed to 
cnsurc thc inva~iancc of the sct of modeled non-linear modes with 



For a non-linear, autonomous, oscillatory system such as that 
defined above, a normal mode of motion is a motion which takes 
place on a two-dimensional invariant manifold in the system's 
phase-space. This manifold passes through a stable equilibrium 
point (T,!) = (0,O) of the system and it is tangent to an eigens- 
pace of the system linearized about that equilibrium7. Therefore, 
an invariant manifold and the dynamics on it can be described by a 
pair of independent coordinates, which can be chosen to be a sin- 
gle displacement-velocity pair (note that in some degenerate 
cases, some pairs may not be suitable for such a description, in 
which case the procedure has to be modified7* '; the procedure has 
also been applied to the case of internally resonant systems where 
the dimension of the invariant manifolds has to be augmented). 
For the kth non-linear normal mode, it is a natural choice to define 
IJ, = x, and v, = y,, so that all displacements and velocities can 
be related to (u,, v,) only -thus enforcing the two-dimensional- 
ity and the invariance of the motion- as 

Substitution into the equations of motion yields a set of con- 
straint equations which describe the geometry of the non-linear 
invariant manifold, as 

ax, ax- 
- xv ,+- 'x f ,=  Yi 

a v  
i =  1, ...a iic k (4) 

wherc usc has been made of the kth pair of equations of motion, 
i .e. ,  I;, = vk and Ck = f,. Notice no assumption has yet been 
made on 11, and v,, and therefore Eq. ( 4 )  describes the kth non- 
linear normal mode in a non-local sense. Thus, if one can find the 
exact solution of Eq. (4).  this solution will describe the exact 
shape of the manifold. However, solving Eq. ( 4) is in general not 
possible. 

For weakly non-linear systems, an approximate local solution 
can be computed by assuming a Taylor series expansion of Xi and 
Y, with respect to 11, and v, up to the desired order as 

Substituting ?3q. ( 5) into Eq. ( 4) and equating coefficients of like 
powers in uk and vk yields a set of linear equations which can be 
solved, one order at a time, for the at i ' s  and bi,'s. These represent 
the non-lincar corrections (at various orders) in the kth non-linear 
normal mode due to the i'" linear mode. 

Fig. 1: Simply-supported Euler-Bernoulli 
(linear) beam connected to a purely 
cubic spring. 

The dynamics on one particular non-linear normal mode are 
found by back substitution of the Xi's and Yi's into Eq. ( 1) for 
i = k, determination of the dynamics of udt) (for example by 
numerical integration), and then by recombination of the motion 
using Eq. ( 5). This process requires solving only one non-linear 
ordinary differential equation (ODE) to determine the motion on 
each non-linear normal mode, as compared to N coupled ODE'S 
involved in a direct integration of Eq. ( 1). Besides, it can be 
shown that, for systems where the lowest non-linearity is of order 
Q, the order of approximation of the dynamics is N1+Q-l where 
N' is the order of approximation of the manifold. In the case of 
general (e.g., quadratic) non-linearities, this means that the 
approximation of the dynamics is one order higher than that of the 
manifold itself, and two orders higher in thc case of odd non-lin- 
earities. 

Example : A Simply Supported Euler-Bernouilli Beam Con- 
strained by a Non-Linear Spring 

The above methodology is applied to a homogeneous, simply 
supported Euler-Bernoulli beam with a non-linear cubic spring 
attached at its middle -see Fig. 1. While the beam itself is 
assumed to deform in the linear range, the spring is chosen as 
purely cubic so that the linearized system's normal modes are 
those of the simply supported beam alone (i.e., pure sine waves). 
With this choice the influence of the various linear modes on the 
non-linear ones can be visualized easily. Notice that since thc 
spring is located at a node of the antisymmetric (cven) modes, it 
does not affect them, so that the antisymmetric modes of the non- 
linear system are the same as those of the linearized system. 
Therefore, only the symmetric (odd) modes are influenced by the 
non-linear spring and, furthermore, they feature only contributions 
of the symmetric linear modes. 

If the beam is of length 1 = 1, the equation of transverse 
motion of the system can be shown to be, in non-dimensional 
form: 

where a = EI/nl ,  P = y/nr, E is the Young's modulus, I is its 
second moment of area, nl is its mass per unit Icngth, y is the non- 



lincar stiffness of the spring, s represents the abscissa along the 
beam, u(s,t) is the transverse deflection, .,, denotes a derivative 
with respect to s, an overdot represents a derivative with respect to 
time and 6 is the Dirac function. The associated boundary condi- 
tions are 11 ( 0 )  = u (1)  = 0 and u ,,, (0) = u ,,, (1) = 0. 

The beam deflection, u(s,t), is first discretized using the natu- 
ral modes of the linearized system, @, (s) = sin (jxs) , as9 

where N is the number of terms in the expansion, i.e., the number 
of tcrms that would be retained for a linear modal analysis of the 
non-lincar system. Projection of equation of motion onto the i" 
lincar mode yields 

for i = 1, . . ., N, which can be written in first-order form as 

where xi = q, ,  ) J ~  = q,. and 

x 
f, = - a ( ix)  4 ~ i  - 2P x x , s i n  u-) sin ( i - )  [:, ; 1' 

Thc set of differential equations, Eq.(9) is what is simulated for a 
typical linear modal analysis. Alternatively, the procedure 
dcscrihcd earlier in this section can be applied to Eq. ( 9) to deter- 
mine the third- or higher order approximation of the non-linear 
normal modes of the system. The kth non-linear mode is given by, 
to fifth-ordcr' : 

and for i = 1, ...,A', i k k :  

17, = 4 = 0 ( i  even) 

17, = akui + a',lrkv: 

3 2 + a',,rr: + a17rr,vk + ~ ' , ~ u , v ;  + ... (i odd) (10) 

i, = b:,rr~vk + b;.,v: 

+ b:,,u:vk + b:, ,u:v: + bk,,v: + . . . (i odd) 

where if k is even at, ,  = a i i  = a:,, = a:,., = a:,, = 0 ,  and if k 
is odd. for i = 1,. . .,N, i#k, i odd 

a:, = [-a'n8(:- 17k4) (:- 13k4)p: 

and,foral lkandi= 1, ...A, i i k ,  iodd: 

where, for the fifth-order terns, 

n n 
pi = 2p [3 ( ~ a ~ s i n  ( j T ) )  sin (i-) + 20; - bg 

l * k  
2 

n 
pi = 2 ~ [ 3  ( Z a i s i n  t i i ) )  sin (i-) - 220; 

2 " I 
Consequently, the deflection of the beam in the kth non-linear 
mode, uk(s,t), can be expressed in terms of the kth non-linear 
modal coordinate, udt), and the associated modal velocity, vk(t), as 

ukdF.t) = u,sin (kxs) 
(16) + [a$: + al,ukv: + a',,u: + a;,u:l( + af9srkv:] sin (ins) + . . . 

iodd 
i c k  

while the dynamics of thc non-linear modal coordinate itself is 
governed by 



X 
3 x  [du: + d,v: + d,,u: + d,,uivi + &v;] sin (ji) ) (17) 

jodd 

1F 
[d,u:+d,v:] sin 

j t t  

for k = I,.. .JV. Here, uk(s,r) refers to the deflection of the point of 
abscissa s at time t when the system undergoes a motion in the kth 
non-linear normal mode. It should not to be confused with u, (t)  , 
which is the non-linear modal coordinate and is not meant to rep- 
resent the motion of any particular point. Note that the dynamics 
of the N non-linear modal oscillators are individually decoupled 
from one another, which accounts for the invariance of the non- 
linear normal modes. 

As noted above, one can obtain the dynamics of the kth non- 
linear mode up to an accuracy of fifth-order with only a third-order 
accurate invariant manifold, as is apparent from Eq. ( 17) (retain- 
ing only the cubic coefficients ~ : , ~ ' s  and ~ : , ~ ' s  yields the complete 
fifth-order dynamics), and up to seventh-order with a fifth-order 
accurate manifold. 

Figures 2, 3 and 4 display results obtained using the proce- 
dure presented herein, along with results obtained with classical 
linear modal analyses of the non-linear system performed with 
various number of modeled linear modes. In these figures, the 
"exact" solution was determined using a linear modal analysis 
with 25 linear modes. In this particular case it appears at least 
three to five linear modcs are necessary to achieve an accuracy 
comparable to that obtained with the seventh- or fifth-order 
dynamics as obtained above. Bearing in mind that the latter results 
are obtained by simulation of one differential equation only (Eq. 
( 17)), it is evident that the non-linear normal mode approach is a 
bcttcr candidate than linear modal analysis of the non-linear sys- 
tem for the generation of reduced-order models consisting of only 
one mode. In the case of single-mode linear modal analysis the 
influence of the other linear modes would be missing whereas it is 
cmbcddcd in the non-linear normal mode (see Fig. 4 which repre- 
scnts simulations all utilizing only one ODE). 

3. MULTI-MODE INVARIANT MANIFOLDS 

Thc potential of non-linear normal modes is evident from the 
prcvious scction. However, it is important to note that, by defini- 
tion, they are only individually invariant. Therefore, they do not 
interact whcn the system undergoes a motion in any one of the 
modal manifolds, but nothing prevents them from interacting dur- 
ing an arbitrary motion. This immediately reminds one of the 
problems encountered in the linear modal analysis of the non-lin- 
ear system -where contamination between the various linear nor- 
mal modcs almost inevitably occurs-, which were at the origin of 
thc dcfinition of the non-linear normal modes as tools to try to 
eliminate the phenomenon of contamination. An attempt at utiliz- 

ing these individual non-linear normal modes to obtain directly the 
dynamics of the system undergoing an arbitrary motion will be 
presented in Section 4. In this approach the interaction between 
the non-linear modes is essentially ignored, thereby allowing for 
the direct use of the single-mode non-linear manifold results. The 
remainder of this section, however, concentrates on completely 
removing this contamination (to a given order), which, at this 
point, requires additional work. 

In order to properly ensure the non-contamination of the non- 
linear modes which are not included in the reduced-order model, a 
new formulation is necessary, which generalizes the individually 
invariant non-linear normal modes and reduces to them in special 
cases. The underlying idea is to generate high-dimensional invari- 
ant manifolds, referred to as mulri-mode manifolds, essentially in 
the same manner as the individually invariant manifolds were pro- 
duced in the Section 2. These multi-mode manifolds, when com- 
prising the influence of M non-linear modes, are of dimension 2M 
in the phase-space for the oscillatory systems typically of interest 
in structural dynamics. Evidently, these multi-mode manifolds are 
still not completely invariant -in the sense that two different 
multi-mode manifolds would interact during a general motion, as 
the non-linear normal modes did- but, for motions on a given 
multi-mode manifold, invariance is ensured between itself and the 
rest of the (non-modeled) non-linear modes --essentially in the 
same manner as the non-linear normal modes were not interacting 
during purely modal motions. 

Consequently, for a system for which M non-linear modes are 
to be modeled and for which the remaining ones are to be merely 
ignored, the multi-mode manifold should comprise all M modcs, 
so that (1) the interactions between those M modes can be 
accounted for, and (2) the interactions with the non-modelcd 
modes can be completely removed. If a mode is non-modeled 
despite an internal resonance with a modeled one, the mathemati- 
cal process of generating the multi-mode manifold will hccomc 
singular, thereby detecting the anomaly. 

The procedure to determine multi-mode invariant manifolds 
follows closely the one presented in Section 2. If S ,  denotes the 
subset of indices corresponding to the modeled modes, and I(, and 
y, represent the vectors of the corresponding non-linear modal 
coordinates and velocities, then the various linear modal coordi- 
nates are expressed as functions of the modeled modes as 

for k c  S, 

Taking the time-derivatives for j E S, yields : 



which can be substituted into the jfh pair of equations of motion to 
produce equations resembling Eq. ( 4). In most cases (namely, for 
weakly non-linear systems), approximations will be sought in a 
series expansion form. One has, to third order : 

+ C C C b k j q .  ukuIuq + b : , j q .  U t U l V q  

k t :  ~ - 1 t :  S - 4 s  S, 

Note that this dccomposition is not unique, and that the number of 
coefficients of order p when M non-linear modes are modeled is, 
for cach X, and Y, : 

which increases very rapidly with both p and M. Substituting Eqs. 
( 20) and ( 21) into thc j"' pair of equations of motion and equating 
likc powers in g, and y, ,  one obtains the first- and higher-order 
cocrficients scqucntially, one order at a time. If one uses the linear 
normal modcs to discretize the continuous system (or, equiva- 
lently casts the linearized discrete system in terms of the linear 
modal coordinates), the first-order coefficients can be shown to 
vanish for all j 4 S,. For systems with purely cubic non-lineari- 
tics (which is the case of the example studied below), all second- 
ordcr coefficients are zero, while the equations for the third-order 
coefficients can be put in matrix form as 

A(3) ~ 0 )  
where 4 is in general linear in _a3) (the hat on f_l denotes the 
fact that Eq. ( 22) has been used wherever necessary). Equation 
(24) can be solved for g;3) (using Maplem for example), and 
&$)) is then obtained using Eq. ( 22). Higher-order approximations 
of the multi-mode manifold can be computed sequentially in the 
same manner. 

Once the multi-mode manifold of interest has been approxi- 
mated to the desired order, the dynamics of the system on it are 
obtained by solving the reduced set of equations of motion corre- 
sponding to the modeled modes, i.e., 

where Eqs. ( 20) and ( 21) have been utilized where necessary, and 
then by recombining the linear modal amplitudes using Eqs. ( 18) 
and ( 19). At this point, the manner in which the contamination 
with the non-modeled modes has been removed becomes evident. 
On the one hand, it is clear from Eq. ( 25) that the dynamics on the 
multi-mode manifold itself depend only on the non-linear modal 
coordinates corresponding to non-linear modes that constitute it. 
On the other hand, the non-modeled non-linear modes can be 
viewed in two generic ways : either as a whole (i.e., as another 
multi-mode manifold, constituted of all the non-modeled modes), 
in which case their dynamics (dictated by equations resembling 
Eq. ( 25)) are independent of those of the modeled modes; or as 
individual non-linear normal modes (as defined in Section 2), 
which can merely be considered as special cases of the multi- 
mode invariant manifold concept, in which case the previous 
remark still applies. Consequently, if the initial conditions are 
given in terms of the modeled non-linear modes only (while the 
non-modeled ones are initially zero -which is the case when onc 
merely ignores them), the non-modeled modes will remain quies- 
cent for all time even if their dynamics are simulated, and thcrc- 
fore their contributions will not be missing. 

Example : A Simply Supported Euler-Bernouilli Beam Con- 
strained by a Non-Linear Spring 

In the particular case of the system depicted in Fig. 1, a two- 
mode invariant manifold is computed with the aid of the symbolic 
manipulation package MapleTM. In this case, the first-order tcrms 
vanish except for those corresponding directly to the linear modcs 
(since the linear modes are used to discretize the system), and all 
second-order terms are zqro (no quadratic non-linearitics). I f  
S, = { k ,  1 )  , the vector f in Eq. ( 24) reduces to 

-1 

whcrc g13' and represent the third-order coefficients and f'" 
is problcm dcpcndcnt and is linear in both d3) and _b13) ( b], 
$". and LS(3) are given in the Appendix for the example of two- 
modc modcl). Combining Eqs. ( 22) and ( 23) then yields 



sin ( k Z )  i n 3 1  
x 2 

13sin ( k 5 )  sin ( I ! )  2 1 

It is then found that at?' = 47' = 0 for all { p ,  4, r }  E S,, and 

ak.Ll = x 2 
6. I 6p ( j 8  - 6j414 - 2j4k4 - 2k414 + l8  + 8 k 8 )  sin ( k I )  

x sin ( 1 ; )  sin ( j f )  / 1 ( a x 4  (- j 4  + 1') ( 2 8 )  

X (- 8 k 4 f  - 8j4k4 + 16k8 + j8  - 2j414 + 18) ] 

n 3  x 
psin ( k Z )  sin (j-) 

at .k t  = 12 2 
8 . j  

a 2 x 8  ( j 8  - 10j4k4 + 9 k 8 )  
( 2 9 )  

x 2  x 
a::' = - 1 2 b  ( 3 k 4  + j 4  - d l 4 )  sin ( 1 1 )  sin (j-) / [ a 2 r 8  

2 

X (- j 4  + k 4 )  X (- 8k414 - 8j414 + 1618 + j 8  - 2j4k4 + k 8 )  ] 
( 3 0 )  

x 2  x 
psin ( k i )  sin ( 1 - )  sin ( j T )  

uk." = 2 24 
2 

8.1 
a 2 K 8  (- 8k414 - 8j4k4 + 16k8 + j 8  - 2j414 + 18) 

( 3 1 )  

with similar relations when k and I are switched, from which one 
obtains, 4 7 '  = &:Tr = 0 for all {p, q, r }  E S,, and 

x 3 
(- j 4  + 3 s i n  ( - 1  sin (ji) 

bk.Lk = 6 
2 

7.1 
a x 4  ( j 8  - 10j4k4 + 9 k 8 )  

b'." = x 2  x 
7. j apsin ( t i )  sin ( l i )  sin ( i f )  

x 2  x 
(- l4  - j 4  + 4 k 4 )  Psin ( k - )  sin ( I - )  sin ( j T )  

bt.Lk = 12 2 2 
7. 1 

a x 4  (- 8k414 - 8j4k4 + 16k8 + j 8  - 2 j 4 f  + 18) 
( 3 4 )  

K 3  K 
psin ( k - )  sin ti-) 

bk.k t  = 12 2 2 
9.1 

a 2 x 8  (j8 - 10j4k4 + 9 k 8 )  

u 2  x 
btf '  = Psin ( k - )  sin ( 1 - )  sin ( j ? )  (- 14 - 3 j4  + 4k4)  

2 2 2 ( 3 6 )  

/ [ a 2 n 8 ( - j 4 + 1 4 )  ( - 8 k 4 1 4 - 8 j 4 k 4 +  1 6 k 8 + j 8 - 2 j 4 1 4 + 1 8 ) ]  

with, again, similar relations when k and 1 are switched. 

It can be noted by inspection of Eqs. ( 27), ( 2 9 )  and ( 11) that 

aaf' = a& as obtained for the k t h  non-linear ( 3 7 )  
normal mode 

and 

akkk  = k 
8.1 a , j  as obtained for the k t h  non-linear ( 3 8 )  

normal mode 

This is expected since the multi-mode manifold reduces to the k t h  

non-linear normal mode when S,={k). Consequently, an alterna- 
tive to directly solving Eq. ( 2 4 )  is first to solve for the individual 
non-linear normal modes (as in Section 2), and then to use all sin- 
gle-mode coefficients as known coefficients, thereby somewhat 
reducing the size of the system in Eq. ( 2 4 )  (see Appendix). 
Although linear sets of equations such as Eq. ( 2 4 )  can be dealt 
with very efficiently with symbolic manipulation packages such as 
MapleTM or MathematicaTM, it should always be kept in mind that 
the number of coefficients involved at each step increases very 
rapidly with both the order of approximation and the number of 
modeled modes, so that the use of relations such as Eqs. ( 3 7 )  and 
( 3 8 )  should be made wherever applicable. For instance, while 
there are 20 cubic coefficients involved in a two-mode model, 
there are 56 of them for a three-mode model. In the latter case, 
directly solving for those coefficients using Eq. ( 24) would result 
in a 56x56 linear systcm of equations, while making use of thc 
above remark would result in solving succcssivcly a 4x4, a 12x12, 
and an 8x8 system of equations corresponding to thc cubic orders 
of the single-, two- and three- mode models, respectively. Along 
the same line, it should be noted that, regardless of the number of 
modeled modes in the multi-mode manifold at hand, each cubic 
coefficient will always involve no more than three modes at a 
time, and therefore all cubic coefficients are known for any num- 
ber of modeled modes as soon as the three-mode model has been 
solved to cubic order. For example, if one was to construct a five- 
mode model, there would be 220 cubic coefficients, resulting in a 
2 2 0 x 2 2 0  system of equations to be solved using the brute force 
approach, whereas in fact no work at all should be required once 
the three-mode model has been solved for to cubic order analyti- 
cally! 

Results of simulations performed using either the abovc 
multi-mode manifold procedure or a linear modal analysis of the 
non-linear system are shown on Figs. 5 - 1 0  for two different sets of 
initial conditions on a three-mode manifold. In these examples, the 
three-mode model is composed of the first three modes and can 
therefore be obtained directly from the two-mode model involving 
only the first and third modes -since all the coefficients corre- 
sponding to the added even mode vanish. As expected from thc 
theory, a given number of non-linear modes embeddcd in thc 
multi-mode manifold yields better results than the same number of 



linear modes used in a linear modal analysis procedure, all the . . 

more so as the influence of the non-linearity increases. 

Note that for this example system, as was the case for single- 
mode manifolds, the dynamics are obtained at order N1+2 when 
the order of approximation of the multi-mode manifold is N'. In 
general the dynamics are of order N'+Q-1 when the lowest non- 
linearity is of order Q. In the present case, the dynamics are 
obtained at fifth-order by the coupled equations 

I 7 t  
1;. = - a (kn) 'u. - 2psin (ki) &u,sin ( l i ) ]  

for k E S,, where x;" represents the cubic part of Xj. Note that, 
in contrast with the case of single-mode manifolds, the dynamics 
of the various modeled non-linear modes are coupled, so that 
essential interactions between them are allowed. However, the 
dynamics are uncoupled from that of the non-modeled modes. 

4. NON-LINEAR MODAL ANALYSIS REVISITED 

The multi-mode procedure presented in Section 3 allows for 
complete removal of the contamination of the non-modeled non- 
linear modes (to a given order), and yet for proper interaction 
between the modeled ones. However, an alternative method was 
previously introduced7, in which an attempt at superposition was 
proposed to recombine the linear modal components directly from 
the single-mode non-linear components. This can be formalized as 

where _wT = (u,, v,, ..., u,, v,) is the identity matrix (if 

each individual non-linear normal mode (see reference [7] for 
more details). This method has not been fully investigated yet, and 
some work is currently under way, but some general ideas will be 
outlined here. 

From Eqs. ( 40) and ( 2). the equations of motion become 

Note that Eq. (41)  requires one to model as many non-linear 
modes as linear ones in order to obtain a square matrix inversion. 
Thc efficiency of this process might be improved by use of the 
generalized inverse when fewer non-linear modes than linear ones 
are modeled. In such a case. 

where q is the restriction of y to the modeled non-linear modes, 
and a N l a q  is now rectangular. The equations of motion there- [: 1 
fore become 

The above approach essentially consists of a direct extension 
of the ideas used in modal truncation of linear systems. Howevcr, 
it is based on non-linear modes which are individually invariant, 
but whose behavior in this context is as of now largely unknown. 
The reduced-order models thus obtained possess the desirable 
property of accounting for some non-linear coupling between the 
various modeled non-linear modes, but the influence of the modal 
contamination of the non-modeled modes is yet to be determined. 
These issues are currently under investigation. In particular, view- 
ing the non-linear modal coordinates as curvilinear coordinates 
along some particular directions (i.e., along the non-linear mani- 
folds), it may be possible to determine a "non-linear projection" so 
that the linear modal coordinates of the system can be decomposed 
on this set of curvilinear coordinates. Utilizing this non-linear pro- 
jection to replace Eq. (40), the procedure could, possibly without 
too much computations, provide a most accurate description of the 
interactions between the individual non-linear modes, although 
the issue of the contamination of the non-modeled modes would 
probably still not be addressed. 

It should also be noted that this procedure will not necessarily 
always be less demanding than the one presented in Section 3, 
since it is very likely to involve the numerical factorization of a 
non-square matrix at each time-step during the simulation, 
whereas the former procedure, once the multi-mode manifold is 
determined, consists of explicit simulations followed by simple 
(but possibly long) recombinations. These issues are also currently 
under investigation. 

5. CONCLUSION 

The developments in Sections 2 and 3 suggest that the con- 
cept of invariant manifolds has potentially important implications 
for non-linear structural dynamics problems. This is the first time 
that the problem of defining a non-linear modal analysis for non- 
linear systems is tackled effectively, in the sense that proper inter- 
action between the various modeled modes is allowed and 
accounted for, while contamination with the non-modcled modes 
is ensured to be eliminated (i.e., even if they were simulated, they 
would remain quiescent for all time in the absence of resonances). 
This property, which is essential for proper simulation of the 
dynamics of a system once its most important modes have been 



selected, is an extension to non-linear systems of what exists for 
the modal analysis of linear systems. 

Besides, when the original equations of motion are given in 
terms of the linear modal coordinates, each non-linear mode or 
multi-mode manifold is certain to comprise at least the contribu- 
tions of the linear modes to which it reduces upon linearization, 
which guarantees, for a fixed number of modeled modes, to obtain 
results at least as good as those from a linear modal analysis of the 
non-linear system with the same number of modes. In general, 
however, the results obtained by the proposed method will be bet- 
ter than those obtained with the same number of linear modes, 
since part of the influence of some higher linear modes is included 
in the non-linear normal mode or multi-mode model considered. 

Regarding the generation of those multi-mode manifolds, it 
should be emphasized that the use of symbolic manipulation pack- 
ages can greatly reduce the amount of work required to obtain a 
multi-mode model at a given order. Specifically, if the determina- 
tion of all the lower-dimensional multi-mode manifolds is prelimi- 
nary carried out analytically, many of the coefficients involved for 
the desired number of modeled modes are known by inspection. 

Finally, an alternative method based on the individual non- 
linear normal modes was presented, which, by neglecting some of 
the interactions between the various non-linear modes, allows for 
an approximate non-linear modal analysis of the system. Since the 
contamination with the non-modeled is not removed in this case, 
thc accuracy of the reduced-order model is not clear as of now. A 

generalization of this approach by use of curvilinear coordinates 

and a "non-linear projection" may yield some interesting qualita- 
tive rcsults concerning the nature of the interactions between the 
individual non-linear modes. This work is still in progress. 

The methods proposed herein to generate reduced-order 
models have potentially important implications for many areas, 
including structural dynamics and control, where accurate low- 
order models are of interest. 
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7. APPENDIX : MATRICES AND VECTORS INVOLVED 
IN THE DETERMINATION OF THE CUBIC PART OF A 
TWO-MODE INVARIANT MANIFOLD 

The following shows the matrices involved in solving the full 
20x20 system of equations (Eq. ( 24)) for the cubic coefficients of 
a two-mode invariant manifold in the Euler-Bernoulli beam case- 
study. Alternately, a reduced system can be used if one takes 
advantage of the results obtained for the single-mode calculations. 
The corresponding matrices are also provided here. 

The equations for the cubic coefficients are put in matrix 
form as shown in Eqs. ( 22) and ( 23). where the components of 
@j3', and bj3' are ordered in the same manner, as follows : 

( # ) I T  = [ a ~ f k , a k k . l , a " . l  a k ' ; l , a k . k . k  a a t l  aa"'.k a'.L' a'"' ak'.' 
6 . j  6.19 7 . j  9 7 . j  9 7.1 1 7 . 1 9  7.1 7 7 . j  

& k t  aki!l a l , k k  ai , l ' l  k k l  l k i  k k k  k k l  k l . l , a k , ' ; l ] T  
8.1 9 8.1 9 8.j 9 8 . j  9 a8 , j '  9 ai; 9 9 '9.1 9 ' 9 . j  

Following this ordering. the matrix bd is given by 

[4] A. H. Nayfeh, C. Chin. On nonlinear modes of systems with 
internal resonances, to appear. 





-3a (kx) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

-a ( 1 ~ 1 4  

0 

-2a (ka) ' 
0 

0 

0 

0 

0 

0 

-a (ka) 

0 

0 

0 

-2a (la) 

0 

0 

0 

0 

In thc case where one takes advantage of the knowledge of 
the single-mode manifolds, bj would be replaced by a 12x12 
matrix as : 

where 

0 0 -a ( 1 ~ ) ~  0 - ~ ( k a ) ~  0 

0 0  0 a ( a )  0 -a ( la)4 

1 0  0 0 0 0 
A,  = 

0 1  0 0 0 0 

- 
A4 = 

0 0 0 0 -2a(k1t)~ 0 

0 0 0 0  0 -2a (la) 

0 1 1 0  0 0 
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Fia. 2: Deflection of the middle-r>oint of the beam as found by the various non- " 
linear normal mode dynainics approximations (initiated on the fifth-order 
accurate first non-linear normal mode manifold). a = 1, P = lo4, 
u, (t=O) = 0.15, v, (t=O) = 0.  
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Fig. 3: Deflection of the middle-point of the beam as obtained by various linear 
modal analysis simulations initiated on the fifth-order approximation of 
the first non-linear normal mode manifold. a = 1, P = lo4, 
u, (t=O) = 0.15, v, ( t = O )  = 0.  
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Fig. 4: Deflection of the middle-point of the beam as obtained by the various 
simulations initiated on the third-order approximation of the non-linear 
normal mode manifold. All curves correspond to the simulation of only 
one ODE a = 1 ,  P = lo4, u, (t=O) = 0.15, v, (t=O) = 0.  



Fig. 5: Deflection of the middle-point of thebeam as obtained by a third-order 
accurate three-mode invariant manifold. a = 1, P = 5000, ul(t=O) = 0.2, 
u2(r=0) = 0.1, u3(r=O) = 0.01, vl(t=O) = v2(t=O) = v3(t=O) = 0. 

Fig. 7:Deflection of the middle-point of the beam as obtained by a five-mode 
linear modal analysis of the non-linear system. a = 1, j3 = 5000, ul(r=O) = 
0.2, u2(r=O) = 0.1, u3(r=O) = 0.01, vl(t=O) = v2(t=O) = v3(t=O) = 0. 



----- 
Fig. 8: Deflection of the middle-point of the beam as obtained by a third-order 

accurate three-mode Invariant manifold. a = 1, j3 = 5000, ul(t=O) = u3(t=O) 
= 0.2, u2(t=0) = 0.1, vl(t=O) = v2(t=0) = v3(t=O) = 0. 

Fig. 9: Deflection of the middle-point of the beam as obtained by a three-mode 
linear modal analysis of the non-linear system. a = 1,P = 5000, ul(t=O) = 
u3(t=O) = 0.2, uZ(t=O) = 0.1, vl(t=O) = v2(t=0) = v3(t=O) = 0. 

Fig. 10:Deflection of the middle-point of the beam as obtained by a five-mode 
linear modal analysis of the non-linear s stem. a = 1, j3 = 5000, ul(t=O) = 
u3(t=0) = 0.2, u2(t=0) = 0.1, vl(t=o) = v2(t=0)'= v3(t=o) = 0. 


