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Drag on a Flat Plate in Low-Reynolds-Number Gas Flows

Quanhua Sun* and Iain D. Boyd"
University of Michigan, Ann Arbor, Michigan 48109

Airflow over a flat plate at zero incidence is investigated as a function of the Reynolds number Re and the Mach
number M under subsonic, low-Reynolds-number conditions. The flows are simulated using the direct simulation
Monte Carlo (DSMC) method and the information preservation (IP) method that is a modified DSMC method
developed for low-speed rarefied gas flows. Good agreement is obtained between the DSMC and IP results and
between the IP results and available experimental data. The simulations predict that the drag coefficient on the
flat plate depends on the Reynolds number and the Mach number, and both the rarefied and compressible effects
on the drag coefficient increase when the flow Reynolds number decreases. It is found that the normalized drag
Cp - M depends on \/(Re)/MO'8 when this parameter varies between 1 and 100, which suggests a scaling law for

engineering analysis.
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1. Introduction

HE problem of flow past a flat plate at zero incidence is one
of fundamental interest in fluid mechanics because it gener-
ates a wide range of basic flow phenomena. At a high-Reynolds-
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number condition, the flow experiences the leading-edge, lami-
nar boundary-layer, turbulent transition, turbulent boundary-layer,
trailing-edge, and wake regions. Furthermore, the flow is rarefied
within the leading- and trailing-edge regions with a scale of several
mean free paths of the gas molecules. The rarefied effects, however,
are negligible because the rarefied domain is so small compared to
the plate length scale. Therefore, the Navier—Stokes (NS) equations
(or turbulent model equations) can describe high-Reynolds-number
flows, and even the boundary-layer equations can predict the drag on
a flat plate. However, when the flow Reynolds number decreases,
the interaction between the boundary layer and the outer stream
becomes strong, which results in larger leading- and trailing-edge
regions. Meanwhile, low-Reynolds-number flows generally mean
that the rarefied effects (e.g., the slip velocity of gas on the plate) are
important, because the Reynolds number is inversely proportional
to the Knudsen number if the Mach number remains unchanged
(Re=M/Kn). Then the NS equations or their approximations are
not valid any more, and kinetic theory must be applied to study
low-Reynolds-number flows.

Flow past a flat plate has been studied extensively for incom-
pressible flows at low Reynolds numbers.! Studies focused on
solving continuum equations with a slip velocity boundary con-
dition. Schaaf? considered a linearized slip flow past a semi-infinite
flat plate using a boundary-layer form of the Oseen equations.
Laurmann® studied the same problem but used the full linearized
Oseen equations, whereas Murray* obtained an asymptotic solution
to the Navier—Stokes equations. When the mean free path A of the
gas is small (strictly speaking, when the Knudsen number based
on the boundary-layer thickness is small), the correction for the
shear stress to the Blasius solution is O (A%) according to Schaaf,
O (A) according to Laurmann, and O [log A/ Re,] according to Mur-
ray. However, these methods are more or less approximate, and
comparison between their results and experimental data is diffi-
cult because phenomena with a length scale of several mean free
paths are difficult to detect in an experiment with a “semi-infinite”
flat plate. On the other hand, the NS equations were solved with a
no-slip velocity boundary condition for flow over a plate having a
finite length. Janssen® obtained a solution using an electrical ana-
log method. However, Janssen’s results are unsatisfactory because
not enough lattice points were used. Later, Dennis and Dunwoody®
obtained much better results using a numerical approach. The drag
predicted by Dennis and Dunwoody agrees very well with exper-
imental results of Janour’ for Reynolds numbers between 10 and
1000.

Compressible flow past a flat plate is much more complicated. For
supersonic, low-Reynolds-number flows, slip effects are masked
by shock wave—boundary layer interactions. There is also strong
nonequilibrium among internal energy modes. To exclude the shock
wave effects, we limit our discussion to subsonic flows. At high-
Reynolds-number flow condition, the Blasius solution is still valid
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and the Reynolds number is the dominant parameter. However, for
low-Reynolds-number flows, the Mach number becomes another
important parameter even when the flow speed is small as indi-
cated in the experiments by Schaaf and Sherman.® Moreover, the
rarefied effects are not limited to the slip velocity. Schaaf and Sher-
man pointed out that the higher order approximations to the stress
tensor and heat flux vector than those given by the Navier—Stokes
expressions must also be considered. Hence, approaches based on
kinetic theory may be needed to accurately predict the drag on a flat
plate in low-Reynolds-number compressible flows.

In this paper, we simulate subsonic, low-Reynolds-number gas
flows past a flat plate at zero incidence using two particle approaches:
the direct simulation Monte Carlo (DSMC) method and the infor-
mation preservation (IP) method. We first discuss several numerical
difficulties and summarize the information preservation method in
Sec. II. Then the general numerical procedure is described in Sec. I11.
Numerical results and discussions are presented in Sec. IV, where
the correlation of the drag on the flat plate is investigated. Finally,
we end with some concluding remarks.

II. Numerical Approach

For compressible gas flow at low-Reynolds-number condition,
it is clear that the no-slip boundary condition is invalid, and it is
very possible that the Navier—Stokes equations are inappropriate
because the shear stress and heat flux may not be modeled correctly.
Even in cases where the NS equations are valid, there are some fac-
tors limiting the application of numerical methods based on the NS
equations. First, there is no generally applicable criterion to indi-
cate when the NS equations break down although there are several
suggested continuum breakdown parameters. Second, current slip
models are based on a one-dimensional Knudsen layer approxima-
tion. This approximation may be invalid near sharp edges, corners,
and other singular points on a body. Kogan® pointed out that the
drag on a plate at zero incidence cannot be predicted by solving the
NS equations with a general slip boundary condition to an accu-
racy of order 1/Re. Therefore, the most generally valid numerical
approaches are those based on kinetic theory.

There are several popular methods based on kinetic theory,
including direct Boltzmann methods'® and molecular dynamics
techniques.!' The main difficulty of these methods is the tremendous
numerical cost, which limits their application to simple geometry
problems. The DSMC method,'? on the other hand, is very effective
for high-speed rarefied gas flows. This method decouples the par-
ticle motions and interparticle collisions over small time intervals
in simulated physical space where each particle represents a large
number of real gas molecules. Particle motions are modeled deter-
ministically, whereas the collisions are treated statistically. Using
these strategies, the DSMC method is several orders of magnitude
more numerically efficient than the molecular dynamics simulation.
Therefore, the DSMC method has been widely used in many fields,
including rarefied atmospheric gas dynamics, materials processing,
and vacuum systems. However, it is a challenge to apply the DSMC
method for simulating low-speed flows. First, the statistical noise
associated with the DSMC method makes its results difficult to in-
terpret for low-speed gas flows unless a huge sampling size is used.
Second, conventional boundary conditions for the DSMC method,
such as freestream conditions and vacuum conditions, do not work
for subsonic flows. Instead, characteristic boundary conditions are
required to capture the propagation of flow information across the
boundaries.

To reduce the statistical difficulty associated with the DSMC
method, an IP technique' was proposed to extend the application
of the DSMC method to low-speed gas flows.'*!> The IP method
simulates microscopic particles as in the DSMC method but also
solves information at the macroscopic level to obtain macroscopic
flow information. Namely, a large number of represented particles
are simulated in the computational domain, and each simulated par-
ticle is assigned with microscopic information (spatial coordinate,
microscopic velocity, internal energy, etc.) and preserved informa-
tion at the macroscopic level (flow velocity, temperature). During
the simulation, every particle moves according to its microscopic

velocity and experiences collisions with other particles and walls
as in the DSMC method. The preserved information, however, is
modeled based on the transfer equation of the Boltzmann equation.
For example, the transfer equation for momentum can be written as
Eq. (1), and the preserved velocity of particle i is modeled according
to Eq. (2):

%(nmvf) + V- (nme; V) = =V - [nm(c; — Vi) (¢; — )]
=—-Vp' +V.1 (1)

a
m (nmV;) + microscopic movement = —V p + collisions 2)

where V; is the preserved velocity of particle i; ¢ is the flow ve-
locity; ¢; is the microscopic velocity of particle i; n is the number
density; m is the mass of gas molecules; and p’ and 7’ are the
normal and shear stresses of the collision term in the transfer equa-
tion, respectively. In other words, the preserved information at the
macroscopic level is initialized by the ambient flow condition or
the inflow/outflow boundary condition, is carried by the particle, is
updated during collisions, and is modified to include the pressure
effects. The cell information is then set as the average of the cor-
responding preserved information of particles in the cell, and the
density is obtained by solving the continuity equation using a finite
volume method. Finally, the simulation results are obtained by sam-
pling the cell information after the simulation reaches a steady state.
It should be mentioned that the DSMC results are also available in
an [P simulation. A flowchart of the DSMC-IP method is shown in
Fig. 1.

The IP method has been applied to simulate many challenging
problems,'¢~!® and very good results have been obtained. In general,
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Fig. 1 DSMC-IP flowchart.
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Table 1 Statistical scatter associated with the IP and DSMC
methods obtained when simulating Couette flows

Statistical scatter, m/s

Flow condition Sample size,

(Kn=0.01) particles/cell IP method DSMC method
VL ==+100 m/s 1,000 0.6631 11.74
10,000 0.5864 6.284
100,000 0.2572 3.075
Vi=41m/s 1,000 0.006448 11.35
10,000 0.006916 5.820
100,000 0.002422 3.750
Vi =40.01 m/s 1,000 0.000046 10.33
10,000 0.000065 6.208
100,000 0.000023 3.433

the validity of the IP method depends on whether the shear stress and
the heat transfer are correctly simulated for a flow. For low-speed
gas flows, it seems that the phenomenological collision and energy
flux models'> work very well. However, for high-speed flows, a new
energy flux model' is required. It is also necessary to preserve tem-
peratures in different modes (translational components, rotational
and vibrational) for strongly nonequilibrium flows.

The main benefit of the IP method is its relatively small statistical
scatter compared with the DSMC method for modeling low-speed
flows, which can greatly reduce the computational cost for these
flows. This is because the statistical scatter of the DSMC method
arises directly from the thermal movement of particles whereas the
thermal movement of particles causes scatter for the preserved in-
formation only at the macroscopic level. The statistical scatter asso-
ciated with the IP and DSMC methods can be illustrated by Couette
flows. The Couette flows have opposite velocities (V) for the paral-
lel plates, and argon gas is used. The velocity scatter obtained in the
middle of the flows is listed in Table 1, where the data are obtained
by averaging 100 samples. The results show that the scatter asso-
ciated with the DSMC method is independent of the flow velocity
whereas the scatter associated with the IP method decreases when
the flow velocity drops. Hence, the IP method is good to simulate
low-speed flows for which the DSMC method is numerically too
expensive to control the statistical scatter.

Another benefit of the IP method is to implement effective bound-
ary conditions for particle methods. Because the IP method has flow
information preserved in computational cells with small statistical
scatter, traditional boundary treatments used in computational fluid
dynamics, (e.g., the characteristic boundary condition) can be used
for the IP method. The DSMC method, embedded in the IP method,
can therefore use the same boundary condition, which circum-
vents some difficulties in implementing boundary conditions for the
DSMC method.?® The preserved cell information in the IP method
can also help develop hybrid continuum/particle approaches.”!

Therefore, to predict drag on a flat plate in low-Reynolds-number
gas flows, the DSMC and IP methods are applied to simulate the
flow using characteristic boundary conditions.

III. Numerical Procedure

The DSMC method and the IP method are applied to study flow
over a flat plate at several flow Mach number and Reynolds number
conditions. The flat plate has a finite length of 30 wm. The tempera-
ture of the plate is fixed at 295 K during simulation and full momen-
tum and thermal accommodation is assumed. The freestream is air
with a temperature of 295 K, while the Mach number varies from
0.2 to 0.8 and the plate Reynolds number is between 0.2 and 100.
Because it is not necessary to mention all numerical specifications
for all cases, we describe the general procedure for the simulations.

The freestream condition is specified by the Mach number and the
Reynolds number. Namely, the streamline velocity is determined as

Uoo = M - \/yRT+ 3)

The freestream density can be expressed as

Poo = (Re - too) /Uo L “4)

where [t is the viscosity coefficient of air at the freestream temper-
ature, which is calculated using a simple temperature-law model:

Moo = to(Too/To)” (5)

Here, 1o = 1.716 x 107> N - s/m?, the reference viscosity coefficient
at Tp =273 K; and w =0.77, the viscosity temperature exponent.
The global Knudsen number based on the plate length can also be
obtained as

Kn=a/L=1/[V2ndn(To/T)*"? - L] ©6)
or approximately as
Kn=1.19(M/Re) (7

The computational domain is finite because it has to be for the
simulation. Hence, appropriate boundary conditions are required.
Far-field boundary conditions, however, cannot be directly applied
on the boundaries, and so characteristic boundary conditions?? are
used. It is assumed that the gradients of pressure and velocity along
the flow boundary are negligible. For subsonic flow, the stagnation
pressure and temperature are specified for the inflow boundary and
the exit pressure is given for the outflow boundary. The size of the
computational domain is tested and determined so that the simu-
lated drag on the plate is independent of the domain size using the
characteristic boundary condition. The domain has a radius of 3.5—
15.5 plates in length for all cases considered. Although the smallest
domain may seem rather small, it is found that the predicted drag
on the plate agrees well with results using a larger domain and with
the experimental data.

The computational cell size is required to be less than the mean
free path of air molecules for the DSMC and IP methods. However,
the cell size can be increased where the gradients of flow properties
are small. This argument is verified by comparing the DSMC-IP
results with the solution obtained using a hybrid continuum/particle
approach,?! where the size of the particle cells is always less than
the mean free path of molecules for a typical case. Hence, the cell
size is set to be less than the mean free path of air for computa-
tional cells near the plate, and it is much larger than the mean free
path of air molecules for cells far away from the plate to reduce the
computational cost. Half of a typical computational grid is shown
in Fig. 2 where the computational cells are clustered near the plate.
The effect of the cell size is tested using the subcell technique.'?
This technique restrains the collision partner for a particle in the
sense that a computational cell is divided into several subcells and
only particles in the same subcell can have collisions. For all cases,
3000-10,000 computational cells are used, and 4 or 9 subcells are
employed in each computational cell for cases where the cell size is
not small enough. To avoid having large cells with many particles
and small cells with few particles, a particle weighting scheme is
used, which means that particles in one cell may represent more
real gas molecules than other particles in another cell. The parti-
cle weight for a cell is generated based on the volume (or area) of
the cell. The use of the weighting scheme, however, will increase
the statistical scatter and the scatter can be decreased by increasing
the sample size. On average, about 30—150 particles are used for
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Fig. 2 Half of a typical computational grid for flows over a flat plate.
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Fig. 3 History of the drag coefficient on the plate obtained over 1000
time steps with a sampling size of about 100,000 particles per cell.

each computational cell. (The larger number is used when the sub-
cell technique is employed.) The time step is between 0.5 x 1071°
and 5 x 10710 s, which is less than the mean collision time of air
molecules, another requirement of the DSMC and IP methods.

Both DSMC and IP methods are approaches for solving unsteady
flow problems. Hence, steady results can only be obtained after the
flow reaches a steady state. Figure 3 shows the history of the drag
coefficient on the plate that is obtained using the IP method after
sampling over 1000 time steps with a sampling size of about 100,000
particles per cell. For the case shown in this figure, the flow reaches
a steady state after less than 20,000 time steps, while the fluctuation
of the drag coefficient is due to the statistical scatter associated
with the IP method. It is clear that good results can be obtained
with a large sampling size. However, it is difficult to determine the
statistical scatter associated with the DSMC and IP results because
the sampled particles are not statistically independent. In general,
a sample size of the order of 107 particles per cell is used for the
results given in the next section, and a simulation takes about 20
to 40 h on a Pentium 4 personal computer. It is estimated that the
numerical error for the drag coefficient is less than 0.1 for the DSMC
results and is less than 0.01 for the IP results.

IV. Numerical Results and Discussion

Many results can be obtained using the DSMC method and the IP
method when simulating flow over a flat plate, including flowfields
and surface properties. In this paper, the overall drag on the plate
is investigated under subsonic, low-Reynolds-number conditions.
First, the drag obtained using the DSMC and IP methods is compared
when the freestream Mach number is 0.2 and 0.8. Then the drag
is calculated under several Mach number and Reynolds number
conditions, which indicates that the drag coefficient depends on both
the Mach and Reynolds numbers. Finally, the simulated results are
compared with available experimental data, and a scaling law for
the drag coefficient under simulated flow conditions is proposed.

When a freestream flows over the flat plate, the flow is slowed
down due to collisions between gas molecules and the plate sur-
face, which generates the drag on the plate. On the other hand,
because the flow is slowed down, the gas is compressed as it faces
the plate and is expanded as it leaves the plate. Figures 4—6 show the
density and velocity contours under three flow conditions, which il-
lustrate the dependence of the flowfields on the Reynolds and Mach
numbers. [Knudsen number effects can be obtained from these ef-
fects because they are directly related; see Eq. (7).] In general, the
flow is more compressible when the Reynolds number is smaller or
the Mach number is larger. For example, in Fig. 4, there is only a

Ma=0.2,Re =50

0.99|

Ma =0.2, Re =50

Fig. 4 Density and velocity contours when M = 0.2 and Re = 50.

Ma =0.8, Re =50

Ma=0.8, Re=50

Fig. 5 Density and velocity contours when M = 0.8 and Re = 50.

3% variation in density, whereas Fig. 6 shows a density variation
of about 60%.

The drag coefficient on the flat plate is calculated by integrat-
ing the skin friction coefficient on both sides of the plate [Eq. (8)],
whereas the skin friction is obtained by sampling the rate of the mo-
mentum transferred from the gas molecules to the plate [Eq. (10)]:

1L
sz—/ (Cf1+Cf2)dl (8)
L L2
Cp=—2 ©)
T 05p.V2
> m(uf —uy)
- -—= (10)
At - AA

where the subscript in Eq. (8) refers to the side of the plate. The
DSMC skin friction is calculated based on the microscopic velocity
whereas the IP result is based on the preserved information. Dis-
tribution of the skin friction on one side of the plate is shown in
Fig. 7 when the Mach number is 0.2. The DSMC and IP results
are compared when the Reynolds number is 50 and 10. The agree-
ment between the IP and DSMC results is very good except that the
DSMC results exhibit obvious statistical scatter. However, careful
comparison near the leading and trailing edges shows that there is
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Fig. 6 Density and velocity contours when M = 0.8 and Re = 5.
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Fig. 7 Comparison of the skin friction coefficient among the IP,
DSMC, and NS results when the Mach number is 0.2.

some difference between the DSMC and IP results. This may show
that the models used in the IP method cannot capture all necessary
physics in these strong nonequilibium regions. For the purpose of
comparison, Fig. 7 also shows the numerical results of the NS equa-
tions using the Maxwell-type slip velocity boundary condition.'®
Clearly, there are noticeable differences between the NS results and
the other results, especially when the Reynolds number is small. The
overall drag coefficient on the plate is plotted in Fig. 8 for a range of
Reynolds numbers when the Mach number is 0.2 and 0.8. The com-
parison shows that the agreement between the IP and DSMC results
is good, and there is small difference when the Reynolds number
is small. Again, the difference here exists because the IP method
needs more physically accurate models for the strong nonequilib-
rium flows. However, the IP method is useful to investigate the
dependence of the drag on other parameters because the scatter as-
sociated with the IP method is much less than that associated with
the DSMC method.

The drag coefficient on the plate under different Mach and
Reynolds number conditions is plotted in Fig. 9 for the IP results.
In this figure, the solid line shows the drag coefficient obtained
by Dennis and Dunwoody® through solving the incompressible NS
equations, which corresponds to the results when the Mach num-
ber is approaching zero. The symbols show the IP results when the
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Fig. 8 Comparison of the drag coefficient between the IP and DSMC
results when the Mach number is 0.2 and 0.8.
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Fig. 9 Drag on the flat plate depends on Reynolds number and Mach
number as predicted by the IP method.

freestream Mach number varies from 0.2 to 0.8. It is clear that the
drag coefficient on the plate decreases when the flow Mach num-
ber increases. This may indicate a compressible effect on the drag
coefficient. However, the Mach number is directly related to the
Knudsen number through the Reynolds number. The rarefied ef-
fects (e.g., velocity slip) may play a more important role in the drag
coefficient because the compressible effect is very small at large-
Reynolds-number (or small-Knudsen-number) flows.

It is clear that the drag coefficient depends not only on the
Reynolds number but also on the Mach number. Hence, it is useful
to develop a scaling law for the drag coefficient, which will facilitate
comparisons between simulated results and experimental data and
be useful for engineering analysis. Schaaf? derived a relationship
[Eq. (11)] between the normalized drag coefficient (Cp - M) and a
nondimensional parameter [/(Re)/M] by transforming a Rayleigh
flow problem:

CoM = (2.67/2)[¢” erfe(z) — 1 +22 / /7]

z=+Re[1.5M (11)
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Later, Mirels>® extended the analysis to include the effects of com-
pressibility and introduced an empirical relation to match with the
Blasius solution:

CoM = (2.697/2%) ¢ erfe(z) — 1 + 2z //m — 00718}
z=1.146vVRe /M (12)

If the relationship obtained by Schaaf or Mirels is followed, both
the IP results and the experimental data obtained by Schaaf and
Sherman,? however, do not collapse well to a single curve (Fig. 10).
As the almost-free-molecular theory of Liu?* shows [Eq. (13)], the
normalized drag coefficient Cp - M depends on /(Re)/M and G
that is a complicated function of M and Re/M, the present results
suggest that Cp - M for the current range of /(Re)/M may not
depend only on /(Re)/M:

CoM = 135[1-0.188 - (VRe/M)'G(M, Re/M)] (13
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Fig. 10 Drag on the plate from the IP results and the experimental
data plotted as Cp - M vs +/(Re)/M.
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Fig. 11 Drag on the plate from the DSMC and IP results along with
the experimental data plotted as Cp - M vs \/(Re)/MO‘s.
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Careful examination of the drag in the Cp - M vs \/(Re)/M plot
shows that the profiles can be grouped with the flow Mach number.
Therefore, plotting Cp - M with a variable combining +/(Re)/M
and M is studied. It is found that the normalized drag coefficient
Cp - M profiles correlate very well with a parameter /(Re)/M%%
for both the simulated results and the experimental data as shown in
Fig. 11. Therefore, a data-fitted scaling law for the drag coefficient
on the plate is proposed as

t(Cp - M) = 0225 —0.333 x b’ (VRe / M)

+0.031 x b’ (VRe / M) (14)

when 1 < \/(Re)/M®® < 100, which is also plotted in Fig. 11.

V. Conclusions

Flow over a flat plate was investigated under subsonic, low-
Reynolds-number conditions. The compressible low-Reynolds-
number flows required a kinetic approach to capture the rarefied
effects. Two particle methods, namely the DSMC method and the
IP method, were used to simulate the flows using characteristic
boundary conditions. Good agreement was obtained between the
IP results and the DSMC results and between the IP results and
available experimental data. The numerical simulations predicted
that the drag coefficient on the flat plate depended not only on the
flow Reynolds number but also on the freestream Mach number,
and both the rarefied and compressible effects increased when the
flow Reynolds number decreased. Based on the simulated results
and experimental data, a scaling law was proposed for the drag on
the plate, which states that the normalized drag Cp, - M depends on
/Re/M"8 when this parameter varies between 1 and 100.
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