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solved simultaneously and thus reduce the processing time for
the optimal control and filtering problems of weakly coupled
linear systems.

Appendix: Invertibility Proofs
According to Eqs. (21) and (25), it can be seen that

n = 0(6)
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Therefore,

(A3)

(A4)

There exists ei>0 such that for every e < ei the required ma-
trices are invertible.
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Introduction

T HE small gain theorem is one of the principal tools for
modeling plant uncertainty. A standard representation1

of an uncertain plant under feedback is shown in Fig. 1. The
plant P and the compensator G are assumed to be known,
while the plant uncertainty A has been "pulled out" into a
fictitious feedback loop. In general, A may have a block-diag-
onal structure composed of scalar and/or matrix blocks. In
this Note, we assume A is composed of a single matrix block.
Figure 2 shows an equivalent representation with P denoting
the nominal closed-loop system. Note that r represents a ficti-
tious input that is used as a means of representing the nominal
closed loop in feedback with the uncertainty. From the small
gain theorem2 it follows that if P and A are stable bounded-
gain transfer functions such that IIAIIJIPII00< 1 for all uncer-
tainties A, then the closed-loop system is robustly stable.

Now suppose that the previous uncertainty model is used to
represent constant real parameter uncertainty. The inherent
conservatism of such a model can be demonstrated in two
different ways. From a time-domain point of view, it is shown
in Theorem 2.7 of Ref. 3 that the existence of an H^ norm
bound is equivalent to the existence of a quadratic Lyapunov
function that guarantees robust stability with respect to time-
varying parameter variations. It is well known from the classi-
cal analysis of Hill's equation (e.g., the Mathieu equation)
that time-varying parameter variations can destabilize a sys-
tem even when the parameter variations are confined to a
region in which constant variations are nondestabilizing.

From a frequency-domain point of view, the uncertainty
block A satisfying an //<» norm bound can represent an arbi-
trary linear time-invariant transfer function possessing arbi-
trary frequency-dependent phase characteristics. A constant
real parameter variation, however, at least in the scalar case,
can be viewed as a transfer function that possesses a constant
phase of 0 deg (if positive) or 180 deg (if negative). Thus, //„,
modeling of real parameter uncertainty permits much larger
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Fig. 1 Standard representation of an uncertain plant under feed-
back.

Fig. 2 Nominal closed-loop with feedback uncertainty.

phase variation than actually occurs in constant real parame-
ter variations.

In this Note, we investigate an alternative model for con-
stant real parameter uncertainty proposed in Ref . 4 and show
by example that this model can be significantly less conserva-
tive than the //a, small gain model. The basis for this approach
is the well-known fact that a loop consisting of a positive real
transfer function and a strictly positive real transfer function
is guaranteed to be stable.2 By applying this principle to Fig. 2
in the case that A and P are square, it follows that if
A(y co) + A*(yco) > 0, utIR , for all uncertainties A and if P is a
strictly positive real transfer function, then the system is ro-
bustly stable. From a frequency-domain point of view this
approach to robust stability may be less conservative for con-
stant real parameter uncertainty than a small-gain characteri-
zation since (at least in the scalar case) the phase of A is now
confined to be between -90 and +90 deg. This observation
thus reinforces the view that real parameter uncertainty can be
viewed as a special case of phase information.5

The example we consider in this Note involves a lightly
damped oscillator with uncertain stiffness. This example was
chosen to highlight inherent drawbacks of small-gain princi-
ples applied to the analysis of robust controllers for lightly
damped flexible structures. If, for this class of problems,
uncertainty in the stiffness operator, which may be relatively
large, is modeled as a small gain H^ block, then the arbitrary
phase characteristics of the uncertainty block can contribute
to a significant perturbation of the damping operator, which
may be relatively small. The following example is intended to
illustrate the ramifications of this point. Finally, no claim is
made as to the generality of this technique for reducing con-
servatism in robust analysis for arbitrary systems.

Spring-Mass Example
Consider the spring-mass system shown in Fig. 3 with con-

stant positive velocity feedback gain G and uncertain stiffness
K + A, where the uncertainty A is a real constant satisfying
l A l < 6. The closed-loop system

Mx(t) + Gx(t) + (K = 0, I A I < 6

can be represented by the nominal transfer function

1P =
Ms2 + Gs + K

(1)

(2)

with an uncertainty A in the feedback configuration as shown
in Fig. 2. Note that Eq. (1) can also be interpreted as a
spring-mass damper system where G represents viscous damp-
ing. However, our main goal is to demonstrate the relation-
ship between the feedback gain G and the parameter uncer-

tainty model. From Fig. 2 it follows that the perturbed
transfer function is given by

- = (1+PA)-'P =
1

(3)

Robust stability is guaranteed by the small gain theorem if

1
II All

•IJPl. (4)

where now A may denote a stable transfer function. A simple
calculation yields

IIP II oo = sup
1

(5)

where r A co/ojw denotes the frequency ratio, ojn A VA7M de-
notes the nominal undamped natural frequency, and f 4 G/
2\lMK denotes the nominal closed-loop damping ratio. Not-
ing that the maximum in Eq. (5) occurs at r - Vl - 2f2, it
follows that

IIP II 0 0 = "

1
(6)

It now follows from Eq. (4) that stability is guaranteed if

IIAII00<2^VT:T2 (7)

Since by assumption A satisfies HAlloo<6, the bound 6 must
satisfy

(8)

in order to enforce Eq. (7).
Using Eq. (8), we can assess for a given nominal closed-loop

damping ratio f the maximal allowable uncertainty level b/K
for which H^ analysis guarantees robust stability of the uncer-
tain closed-loop system with II AIL < 6. This result is shown in
Fig. 4. Note that under lightly damped conditions, for exam-
ple, f = 5%, //oo analysis allows 6 = AV10 stiffness uncertainty
for robust stability. In fact, the system is robustly stable for
5 = K (excluding A = -K).

Alternatively, using Eq. (8), we can obtain for a given
uncertainty level b/K the minimal closed-loop damping ratio f

Fig. 3 Spring-mass system with constant velocity feedback.
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(or gain G) required by //„ analysis for robust stability of the
uncertain closed-loop system with HAIL < 6. This follows
from Eq. (8) and is given by

(9)

It can be seen from Fig. 5 that as the uncertainty level d/K
increases, //« analysis requires a substantial increase in the
nominal closed-loop damping ratio (and thus gain G) to guar-
antee robust stability.

To illustrate the ramifications of this result, we can deter-
mine the minimal damping ratio f of the nominal closed-loop
system actually required to guarantee a worst-case closed-loop
damping ratio 60 with A assumed to be a constant real pertur-
bation satisfying l A l < d. To do this, rewrite Eq. (1) as

x(t) = 0

where the actual closed-loop damping ratio
frequency u>na satisfy

\j <% J\. "4~ ^*
» "a — M' "" ~ M

(10)

and natural

(11)

which imply that the actual closed-loop system damping ratio
fa is given by

G

Requiring fa > f0 for all I A I < 6, it follows from Eq. (12) with
A = 6 (worst-case damping) that

: ftVl + (d/K) (13)

The lower bound in Eq. (13) is plotted in Fig. 5 for two typical
cases of ft corresponding to 5 and 10%. Comparing these
curves with the small gain result clearly shows the conser-
vatism of Hm theory for constant real parameter uncertainty.

Positive Real Parameter Uncertainty Model
In this section we consider an alternative uncertainty model

for the uncertainty A. For this model we shift the nominal
value of AT so that K is positive but arbitrarily close to zero and
let the real constant perturbation of K be denoted by A where
now 0 < A < oo. Again Fig. 2 can be used to represent this
situation. Now, however, we replace A by A/s and P by sP in
Fig. 2. Next note that the effective uncertainty block A/5 is
positive real since A//CO + A/(-y'co) = 0, w€lR, and, further-
more, the effective plant sP is strictly positive real since

0.8
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Hence by the positivity theorem2 the system is robustly stable
for all A6 [0, oo). Consequently, the closed-loop system is
guaranteed to be unconditionally stable for all constant posi-
tive velocity feedback gains G. Thus the positive real uncer-
tainty model is, for this example, nonconservative with respect
to constant real parameter uncertainty.

Conclusion
We have shown by means of a lightly damped oscillator

example with uncertain stiffness that small gain modeling of
constant real parameter uncertainty can be extremely conser-
vative. An alternative uncertainty modeling approach involv-
ing positive real transfer functions and the positivity theorem
was shown to be significantly less conservative.
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Introduction

T HE dynamics of flexible space structures (FSS) are gener-
ally quite poorly known before launch. In particular,

most preflight dynamic analysis and controller design for
these vehicles is based on approximate finite-dimensional
models obtained by finite element methods. However, flexible
structures are distributed parameter systems, and so are essen-
tially infinite dimensional. Two implications of this are that
the choice of dimension for an approximate finite element
model of an FSS is somewhat arbitrary, and that only the
lower-frequency approximate modes will tend to be accurate
estimates for the corresponding true values.

Recently, it has been shown1 that the transmission zeros2 of
any finite-dimensional model for a flexible structure with

Fig. 5 Nominal closed-loop damping vs stiffness uncertainty.
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