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  Local preconditioning for the Navier-Stokes equations may be called optimal if it equalizes all 

propagation and dissipation time-scales, for all combinations of Mach number and Reynolds number. 
Previously designed preconditioners are ineffective for certain combinations of  low Reynolds number 
and low Mach number; in addition some of these create a growing mode, making the PDE-system 
unstable. (Users may regain stability through an implicit discretization.) 
 In this paper we first review the forms and properties of all previously published N-S preconditioners 
on the basis of the 1-D N-S equations, then derive an optimal preconditioning matrix for these equations. 
We find again that it creates an unstable mode; a sensitivity analysis shows that optimal preconditioning 
and stability are mutually exclusive. Two possible remedies are suggested and briefly investigated:  (1) 
to redefine the complex condition number in a way more appropriate for explicit discretizations;  (2) to 
reformulate the N-S equations as a larger first-order system of hyperbolic-relaxation equations and base 
the preconditioner on this system.  The latter approach appears most promising. 

 

 
 

Introduction 
 Local preconditioning of evolutionary PDE's aims 
at equalizing, or at least reducing the spread among, 
local time-scales of physical processes [1]. The 
resulting equations, while no longer time-accurate, are 
better suited for marching toward a steady solution.  
 In the past two decades, three sets of PDE's 
fundamental to CFD have been considered for 
preconditioning: the Euler equations [1-3], the Navier-
Stokes equations [4, 5], and, more recently, the 
equations of ideal magneto-hydrodynamics [6].  
Regarding the Euler equations, our knowledge of local 
preconditioning is close to complete [7-9], and 
includes a technique for finding the most efficient 
preconditioner that can be applied to any hyperbolic 
system in 2 space dimensions [6, 10]. Application of 
this design technique to the MHD equations has 
recently begun [11] and is now in the phase of 
exploratory 2-D numerical experiments. Because of 
the complexity of the MHD wave system, no 3-D 
preconditioner has yet been obtained for these 
equations. For the Navier-Stokes equations only 
partially satisfactory preconditioners have been 
published [4, 12]. All N-S preconditioners lose their 
efficiency for certain combinations of low Reynolds  

 numbers and low Mach numbers; in addition some of
them create a growing mode [4, 5, 12], making the 
PDE-system unstable. Users may regain 
computational stability by the grace of an implicit 
discretization [4], but this negates an important goal of 
local preconditioning achieved already for the Euler 
equations: convergence to a steady solution in O(N) 
operations with a fully explicit  method [8, 13]. 
 This paper describes our search for an optimal 
local N-S preconditioner, that is, one that minimizes 
the local condition number for all combinations of 
Mach and Reynolds numbers. All analysis is based on 
the 1-D N-S equations, for which the fundamental 
difficulties already are evident.  In the process we will 
review 1-D versions of all published N-S 
preconditioners and their properties, using a uniform 
notation and choice of state variables. The results are 
four-fold: 

1. It is possible to put together a local N-S 
preconditioner that achieves a condition 
number equal to or close to one in the entire 
(M,Re)-plane (except for high-Re sonic flow, 
which is a genuine physical singularity); 

2. For low Re there are three asymptotic regimes 
of preconditioning, rather than two, as 
previously assumed; 
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3. This preconditioner again creates a growing 

mode; 
4. Optimal preconditioning and stability of the 

preconditioned PDE-system appear to be 
mutually exclusive;          

The persistence of the growing mode in the perfect 
preconditioner is disappointing and disquieting.  In 
any case it means the search is not over. We end the 
paper discussing two possible remedies: 

1. to redefine the complex condition number in 
a way more appropriate for explicit 
discretizations; 

2. to reformulate the N-S equations as a larger 
first-order system of hyperbolic-relaxation 
equations and base the preconditioner on this 
system [14]. 

The latter approach appears most promising. 
 

Basics of Local Preconditioning 
 If we write the Euler or Navier-Stokes equations in 
the form 

( )= Res U
t∂

∂U , (1) 

where Res, the residual, is a spatial differential 
operator, the preconditioned equations can be written 
as 

, (2) 

or 

, (3) 

where P(U) is the locally evaluated preconditioning 
matrix. The goal of including P is to equalize the 
time-scales of the different physical processes 
described by the system of PDE's, without affecting 
the steady solutions admitted by the system. In 
particular, P should not reverse the propagation 
direction of the transient waves, as this would bring 
along a change in the boundary conditions and 
therefore change the problem. For this reason P is 
constrained to be positive definite [1, 9];  otherwise 
the choice is not a priori limited. 
 With all physical time-scales very nearly 
equalized, the numerical process of marching toward a 
steady solution becomes significantly more efficient: 
there are no slow processes dragging behind [1]. In 
mathematical language: local stiffness has been 
removed from the equations.  It should in principle be 
possible to convergence to a steady solution in O(N) 
operations with an explicit preconditioned marching 
scheme embedded in a multigrid-relaxation strategy 
[15].   

 This has indeed been accomplished for discrete Euler  
solutions [8, 13, 16]; for Navier-Stokes solutions the 
goal is not yet in sight, as will become evident below. 
 In designing efficient preconditioners, our 
foremost tool is a dispersion analysis [4].  When 
applying such analysis to the Euler equations, it 
reveals  different modes of undamped propagation, 
some acoustic, some advective. Equalizing the travel-
times for these waves, e. g., the time to cross a 
computational cell, is equivalent to equalizing the 
propagation speeds, known as the characteristic 
speeds [1]. This can be very nearly achieved for Mach 
numbers not close to unity; for 1M =  the steady flow 
equations change type, from mixed elliptic-hyperbolic 
to purely hyperbolic, and preconditioning can weaken 
but not avoid this singularity [1].  
  When including the viscous and conductive terms, 
the modes revealed by a dispersion analysis of the 
unpreconditioned PDE's can be anything from damped 
non-propagating to undamped propagating [3, 4, 12].  
The demands on P are now raised significantly: the 
whole pool of propagation and damping time-scales 
must be equalized [5, 12]. Moreover, in addition to 
respecting propagation directions, P should also 
respect the direction of dissipation, i. e., not create any 
growing mode. There is no ad hoc criterion to 
guarantee this; requiring P to be positive definite does 
not suffice.  
 It turns out that the most powerful N-S 
preconditioners currently in use create one growing 
mode [4, 5].  The growth may destabilize flow 
simulations with an explicit scheme, but can be 
suppressed by the strong numerical damping present 
in an implicit scheme for large time-steps. This has 
been the  prevalent strategy. 
 This class of N-S preconditioners, due to Merkle 
and collaborators [4], starts from an efficient Euler 
preconditioning matrix, then modifies one or more 
elements in order to introduce Re-dependence. The 
crucial change is in the coefficient of p t∂∂  in the 
equation updating the pressure. For an Euler 
preconditioner to be effective, this coefficient must 
equal 21 M  at low Mach numbers [2]; with this 
choice the preconditioner will also be effective for 
viscous/conductive flow down to  [5]. For low 
Reynolds numbers two asymptotic regimes were 
previously identified [4], requiring different  
expressions for the coefficient. In this paper we show 
that there actually are three different asymptotic 
regimes, which explains why earlier preconditioners 
of this type could not achieve uniformly low condition 
numbers. In addition they suffer from the growing 
mode.    

1Re ≈

( ) ( )
t

∂
=

∂
U P U Res U

( ) ( )1

t
− ∂

=
∂
UP U Res U
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 A different strategy for N-S preconditioning, due 
to Godfrey [17-19] and further developed and 
analyzed by D. Lee, is to combine an effective Euler 
preconditioner with Jacobi relaxation for just the 
viscous/conductive terms.  This does not create a 
growing mode, and its preconditioning effect is 
uniformly excellent in three quadrants of the 
( 10 10log , log )M Re

( 1,  1M Re< <

-plane [5, 12]. Only in the region 

 the condition number remains 
unbounded.    

)

 D. Lee [5] also mixed the above strategies by 
introducing Re-dependence in the entries of the van 
Leer-Lee-Roe Euler preconditioner while also 
applying Jacobi relaxation to the viscous/conductive 
terms. He indicates that this uniformly brings down 
the condition number to O(1) for all (M, Re)-
combinations without creating a growing mode.  
Unfortunately, we found a region not resolved by Lee, 
where the condition number increases beyond any 
bound for  sufficiently low M. 
 Below we shall use the mixed approach to develop 
the first N-S preconditioner that keeps the condition 
number bounded for , regardless of the value 
of M (An Optimal N-S Preconditioner). Before doing 
this we must discuss our chief tool, the dispersion 
analysis (Dispersion Analysis); to offer a perspective 
we also will review the properties of the most  
representative Euler and N-S preconditioners (Review 
of Euler Preconditioners and Review of N-S 
Preconditioners). For a review covering all previously 
published local preconditioners we refer to the 
extensive report [20] prepared by the first author. 

0Re →

 
Dispersion Analysis 

 A dispersion analysis tells us how Fourier modes 
propagate and change amplitude when subjected to the 
linearized evolutionary PDE. We will start from the 1-
D N-S equations, which in conservation form read 

, (4) 

where U is the vector of conserved state quantities, F 
is the corresponding flux vector, and C is the 
corresponding dissipation-coefficient matrix. While 
this form is preferred for numerical computations, 
there are forms better suited for analysis tasks.   In 
particular, there are two preferable forms of the 3-D 
equations [3, 5, 21] in which all coefficient matrices 
are symmetric. These are based on different choices of 
the state variables, known as the Euler-symmetrizing 
variables and the N-S-symmetrizing variables. They 
are defined differentially: 
 

 T

, (5) 

; (6) 

the notation is standard, with s and a representing 
entropy and sound speed, respectively. In the Euler 
set, ds is usually replaced by dp 2a dρ− . Note that the 
N-S symmetrization utilizes the perfect-gas law as 
equation of state. 
 When designing a N-S preconditioner it is 
advantageous to use the N-S symmetrizing variables, 
as this diagonalizes the main  dissipation-coefficient 
matrices. The Euler-symmetrizing variables, on the 
other hand, greatly simplify the inviscid flux 
Jacobians, although they don't symmetrize the 
dissipation-coefficient matrices. Since Euler 
preconditioners are routinely applied to the N-S 
equations in problems where the cell Reynolds 
number does not go below 1, we have  adopted the 
Euler-symmetrizing variables as the basis for  
analyzing all preconditioners in this paper; this 
facilitates comparisons.   
 Our 1-D dispersion analysis will henceforth be 
based on the constant-coefficient system 

Eu Eu E
t xU A U u Eu Eu

xx+ = C U , (7) 

with 

2

dp
a

d du
dp a d

ρ
Eu

ρ

 
 
 
  − 0 0

Eu

u a
a u=A=

 

U
0
0
u

 
 
 
 
 

( )

, ,  

4
3

0

0 0
Pr aPr

Eu

a
Pr Pr

γ ν ν

γ ρ ν ν

−

−


 
 
 
 
 

C
ρ

ν



=  

(8) 

where ν is the kinematic viscosity coefficient.  We 
now insert the trial solution 

( )
0

i t kxEu Eue ω −=U U , (9) 

where k is the spatial frequency and ω the complex 
temporal frequency.  The resulting dispersion equation 
is 

, (10) 

in which the complex wave speed kω  appears.  The 
real part of this quantity is the real wave speed; a 
positive imaginary part indicates the wave is damped. 
 Equation (10) is cubic in kω  and has no elegant 
solution, unless we introduce a slight simplification.  

, , , ,Eu dpd du dv dw ds
aρ

 
=  
 

U

( )
2, , , ,

1

T

NS ad dad du dv dwρ
ρ γ γ γ

 
 =
 − 

U

( )

1

1 0

( )t x x x
+ =U F CU

det 0Eu Euik
k
ω + − = 

 
A C I
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It is easily verified that one factor could be split off if 
only the matrix elements 22 4 3EuC ν=  and 33

EuC Pν= r  
were equal.  So, following Venkateswaran and Merkle 
[4], we change 4/3 into 1 and choose Pr = 1, assuming 
that this will not fundamentally change the character 
of the solution.  (This is numerically verified below.)  
 We then find: 

2k R
, (11) 

1u = + , (12) 

The Reynolds number in these roots is based on the 
flow velocity u and the length 1 : k

u . (13) 

A Reynolds number based on the acoustic velocity a 
may be called the acoustic Reynolds number: 

; (14) 

this combination appears in roots 1 and 3. 
 In the high-Re or Euler limit, Eqs. (11) and (12) 
yield the usual real characteristic speeds u a− , u and 

.  For lower Reynolds numbers, as observed by 
Venkateswaran and Merkle [4], a distinction needs to 
be made between the acoustics-dominated case, where 
Re

u a+

ac is still high, i. e. M Re� , and the viscosity-
dominated case, where even Reac is low, i. e. 

.  When acoustics dominate, roots 1 and 3 
still tend to the inviscid characteristic speeds 
Re� M

u a± , so 
the only damped mode is the one moving with the 
flow speed.  When viscosity dominates Eqn. (11) 
reduces to 

21 1 1
2

u i
k Re
ω γ

γ
≈ + ± −




, (15) 

or 

, (16) 

, (17) 

All modes propagate with the flow speed, but there 
still are two physically distinct cases:   and 

.  In the first case all modes are heavily 
damped, in the second case mode 3 is undamped. 

2Re M�
2Re M�

 It thus appears that for low Reynolds numbers, 
, we need to distinguish three different flow 

regimes, 
1Re <

, (18) 
 

 
, (19) 

, (20) 

with each regime requiring its own distinct 
preconditioner.  This will be confirmed below.  What 
is puzzling is that Venkateswaran and Merkle in their 
N-S preconditioners [4] switch formulas only 
according to the value of 2M Re , although they 
recognize the parameter M Re  that distinguishes 
between the acoustics- and viscosity-dominated 
regimes.  Surely, 2M R 1e�  is more restrictive 
than 1M Re� ; our guess is they did not realize that 

2 1M Re�  is less restrictive than 1M Re� , 
leaving room for combinations of M and Re that 
should have been given special attention. 
 For the preconditioned equations 

 (21) 

the dispersion relation becomes 

det 0Eu Euik
k
ω + − = 

 
PA PC I . (22) 

The task of finding an effective preconditioner means 
to solve the inverse problem of finding a P such that 
the roots of the dispersion equation are well-
conditioned, i. e.,  

. (23) 

Although from a linear-algebra viewpoint this 
requirement is standard, it needs further discussion 
from the viewpoint of physics. The above condition 
makes sense in the Euler limit, when all modes 
propagate undamped, and in the viscosity-dominated 
case 2M Re M≤ ≤ , when all modes are heavily 
damped while hardly  propagating, but what about the 
mixed cases? Should we weight the real and 
imaginary parts of kω equally, as in kω , or should 
these get different weights? Should the stability 
properties of explicit discretizations, which vastly 
differ between advection and diffusion schemes, be 
considered? We shall come back to these questions in 
Fighting the Growing Mode. 
 In the next two sections we shall visit a selection 
of Euler and Navier-Stokes preconditioners 
representing all classes of  preconditioners found in 
the literature. The matrices are presented in the form 
appropriate for preconditioning the 3-D equations in 
Euler-symmetrizing flow variables; for some matrices 
it is assumed that the flow is aligned with the x-axis.  

2

2 2
1,3

41 1 1 Reu i
e M

ω γ
γ

      = + ± −      

2

i
k Re
ω  
   
   

Re
kν

=

ac
a ReRe

k Mν
= =

2

2 2
1,3

Re
M

    
   

     

1

1u i
k Re
ω γ   ≈ +   
   

2
3

1 Reu i
k M
ω

γ
   ≈ +  

   

Re M>

2M Re M≤ ≤

2Re M<

1 Eu Eu Eu Eu Eu
t x xx

− + =P U A U C U

( )
max

1
min

j k j

j k j

K O
ω

ω
= =
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Results are displayed of a 1-D dispersion analysis 
carried out on a simple difference approximation 
(upwind inviscid flux, centrally differenced diffusion 
term); contour and carpet plots of the condition 
number are also provided. 
 

Review of Euler Preconditioners 
 The earliest published Euler preconditioners were 
designed for low-speed flow only, and were inspired 
by Chorin's [22] method of hyperbolizing the 
incompressible Euler equations, viz. the method of 
artificial compressibility. Here the time derivative of 
density in the continuity equation, which under the 
assumption of incompressibility equals zero, is 
replaced by , where β has the dimension of 
velocity. Fastest convergence to steady solutions is 
obtained when β is proportional to the flow speed. 

2
tpβ −

 This motivated Turkel [2] in 1984 to include the 
factor 2β −  in the pressure-evolution equation for low-
speed compressible flow, with 

2 2 2M u v w aβ + += =  as the nominal value.  
When the Euler equations are expressed in terms of 
the Euler-symmetrizing variables, the entropy 
equation is completely decoupled and needs no 
preconditioning; this affords the cleanest form of the 
Chorin-type preconditioner for low-speed 
compressible flow: 

2M
1 0 0 0 0 

1
67

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

CH
−

 
 
=

 
  
 

P 


1,  M <  (24) 

or 
2 0 0 0 0M 

67

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

CH

 
 
 =
 
 
 
 

P 1,   (25) 

Note that it connects continuously to P = I for 1M ≥ .  
Where the local Mach number gets to close to zero, 
especially near a stagnation point, the value used in 
element P11 must be limited from below by a threshold 
value, e. g., M min ε= , ε small.  Euler preconditioners  
often differ in the way this threshold is evaluated [16, 
23].     

  Another difference among preconditioners of this 
class arises from applying the above diagonal P to a 
different set of flow variables, such as the set 
( ), , , ,p u v w T , which we shall call the “primitive-
temperature” variables. When transformed back to the 
Euler-symmetrizing variables, the preconditioner is no 
longer diagonal; it has a nonzero element P15 
representing the coupling between the pressure and 
temperature equations.  This form consistently appears 
in the work of Merkle and collaborators [24] but is not 
easily recognized, as the matrices they present include 
as a factor the Jacobian of the transformation from 
conservative to primitive-temperature variables (cf. 
Review of N-S Preconditioners). 
 Regardless of the choice of the second 
thermodynamic variable, the above diagonal or “poor 
people’s” preconditioner does an excellent job of 
reducing the spread among the characteristic speeds 
for small M. An acoustic wave going with/against the 
flow moves at a speed (1

2 5 1 u± )  yielding a 

condition number of 2.62, down from 1/M before 
preconditioning.  See Figure 1. 
 The Chorin preconditioner, in various disguises, is 
used till this day, in particular by Merkle, 
Venkateswaran, Weiss and collaborators.  For 
example, the 1999 preconditioner of Weiss, 
Maruszewski and Smith [25], which has a switch 
parameter for selecting incompressible or 
compressible flow, is found, for compressible flow of 
a perfect gas, to be identical to the above diagonal 
form, complete with threshold value minM ε=  after 
transformation to the Euler-symmetrizing values. 
 Turkel [2, 26] improved on the diagonal 
preconditioner by introducing extra nonzero elements: 

2 0 0 0 0M 

84

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 0 1

u
a
v

TL a
w
a

 
− 

 = −
 
− 

 
 

P 1,   (26) 

the condition number now goes down to 1 for 
, indicating perfect preconditioning when 

approaching incompressible flow.  See Figure 2. 
0M →

 The final improvement is due to Van Leer, W.-T. 
Lee and Roe [1], who derived a preconditioner that 
achieves the lowest possible condition number for all 
values of M. The matrix is symmetric by design; for 
the sake of clarity it usually is given in a form valid 
for flow aligned with the x-axis: 

M <
M <
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Figure 1:  Plots of condition number yielded by 1967 
Chorin preconditioner applied to compressible flow.  
Top: for 1-D Euler equations; bottom: for 1-D N-S 
equations (carpet and contour plots) 

 
 

 

 

 

 
Figure 2:  Plots of condition number yielded by 
Turkel’s 1984 preconditioner.  Top: for 1-D Euler 
equations; bottom: for 1-D N-S equations (carpet and 
contour plots). 
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2 2
2M M

M

τ τ
β β

τ τ σ2 2

0 0 0

0 0 0
β β

91VLR 0 0 0 0
0 0 0 0
0 0 0 0

τ
τ

σ

 
 
 
 



−

− +
=P 
 
 
 
 

,  (27) 

with 
21 Mβ = − ,  (28) 

in 2D and 3D, 1 in 1D, (29) 

? for 3-D discretization.

 (30) 

The dependence of σ on a cell's aspect ratio AR is due 
to D. Lee [5, 27] and shows that a preconditioner 
based on the continuum PDE's needs modification for 
best performance with the discretized PDE's. 
 The condition number achieved by this 
preconditioner depends on the dimensionality of the 
equations: 

 (31) 

Although the condition number still blows up near 
1M = , the growth is reduced from 11 M −−∼  to 

1 22 −
1 M−∼ .  See Figure 3. 

 By including β and τ in the entries of the Turkel 
matrix (26),  the latter can be made to achieve the 
same condition number as  for all M [3, 15].  91VLRP
  

Review of N-S Preconditioners 
 Much of the literature on Navier-Stokes 
preconditioning is due to C. L. Merkle and 
collaborators, whose papers date back as far as 1985 
[28].  Typical of their approach is to write the 
preconditioned equations in the form 

, (32) 

mixing the residuals of the conservative equations (3) 
with time derivatives of the primitive-temperature 
variables .  Comparing Eqn. (32) with Eqn. (3) we 
see that 

TU

 1
c T

d
d

−=
UΓ P

U
, (33) 

where Pc is the preconditioner for the conservative 
equations; hence, 

1
c T

d
d

−=
UP Γ

U
. (34) 

For example, in a 1991 paper by Choi and Merkle 
[29], we find 

2

2

1 0 0 0 0

1 0 0 0
M

u
M

β

β

 
 
 
 

Γ 12

2

2

91

1

0 1 0

0 0 1

1

v
MCM

w
M

E p R
M

u v w

β

β

ρ γρ
γρβ

ρ ρ ρ+
−

=

−

0

0

 
 
 
 
 
 

, M <  (35) 

where E denotes specific total energy and R is the gas 
constant; the parameter β equals .  After extracting 
the preconditioner and transforming it to the Euler-
symmetrizing variables, the result is 

2a

,  (36) 

This is basically the Chorin Euler preconditioner and 
has no special merit when applied to the N-S 
equations.  See Figure 4. 
 In other papers, earlier [30] as well as later [31], 
this group of authors includes in β some dependence 
on the cell-Reynolds number.  This dependence 
usually appears to be motivated by numerical 
experimentation, except in the paper by 
Venkateswaran and Merkle [4], where the 
modification of the entry 2M  is based on the 1-D 
dispersion analysis presented in Dispersion Analysis.  
This is by far the most important contribution by these 
authors, since it offers a tool for designing N-S 
preconditioners beyond the method of trial and error. 
 As explained in Dispersion Analysis, 
Venkateswaran and Merkle distinguish for small Re 
only two asymptotic regimes.  Correspondingly, they 
recommend the following dependence of P11 on the 
Reynolds number: 

, (37) 

These asymptotic cases are then incorporated in a 
continuous switch for computational practice: 

( )min , Mτ β β=

1 for PDE 1-D discretization,

1 for 2-D discretization,ARσ τ
β



 = +  
 
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Figure 3:  Plots of condition number yielded by 1991 
van Leer-Lee-Roe preconditioner.  Top: for 1-D Euler 
equations; bottom for 1-D N-S equations (carpet and 
contour plots). 

 

 

 

 
Figure 4:  Plots of condition number yielded by 1991 
Choi and Merkle preconditioner.  Carpet and contour 
plots for 1-D N-S equations. 

 

, <  (38) 

for  Eqn. (38) connects to the Euler 
choice . 

1Re ≥

11P M= 2

 Outside the incorrectly treated domain 
2M Re M≥ ≥ , this choice of P11 in the Chorin 

preconditioner brings the condition number down to 
O(1) for low Re.  Unfortunately, a dispersion analysis 
of the 1-D preconditioned equations shows that for 

2 1M Re�  the complex wave speed ( )3
kω  has a 

negative real part, i. e. the originally undamped wave 
becomes a growing wave. 
 A different low-Re technique, contributed by 
Godfrey [17-19], is motivated by the discretized N-S 
equations.  The idea is to combine an efficient Euler 
preconditioner, such as , with point-implicit or 
Jacobi relaxation.  This type of relaxation may be 
regarded as an exact implicit solver for data that only 
contain the “checkerboard mode” (odd-even 
decoupling): it damps this mode in one step.   

91VLRP

( )
( )

2 1
2

11 2 1

1
max ,

1 1
Re

Re

M
P M

Re M

 − =  
 + −   

1Re
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Jacobi relaxation has the effect of moving the matrix 
C to the left-hand side of the discretized Eqn. (21).  
This observation suggests the following way of 
enriching an Euler preconditioner with Re-
dependence: 

u tx
 + + 
 

C U AU x xx
− =

∆
P CU , (39) 

Evidently, the N-S preconditioner is defined by 

, (40) 

Note that C contains the factor ν, which we may take 
out; then the following ratio appears: 

x

, (41) 

In a dispersion analysis, x∆  may be replaced by 1 , 
and the Reynolds number becomes 

k
Re u kν=  as 

before. 
 While Godfrey [17-19] tested this approach in 
explicit and numerical calculations, most analysis is 
due to D. Lee [5, 12].  He found that the matrix (40), 
with  as the Euler preconditioner, does an 
excellent job in the domain 

91VLRP
1M ≥ , , the fourth 

quadrant of the log-log plane; in the third quadrant, 
though, the matrix is not effective.  See Figure 5.  

1Re <

 There is one great plus to this approach: it does not 
create any growing modes.  D. Lee [5] shows how the 
mode (M = 0.1, Re = 0.001), unstable with the use of 

, becomes stabilized, though not sufficiently 
damped to yield a low condition number. 

95VMP

 D. Lee then tried to get even more improvement 
by incorporating Re-dependence in the van Leer-Lee-
Roe preconditioner in the manner of Eqn. (37), while 
also adding the viscous Jacobian as in Eqn. (40).  This 
somewhat reduces the condition number in the third 
quadrant, but not down to O(1); meanwhile, unnoticed 
by D. Lee, a growing mode has been introduced in the 
acoustics-dominated regime . Re M>
 It is at this point that our search takes off. 
 

An Optimal N-S Preconditioner 
 We were certain that a 1-D N-S preconditioner 
yielding uniformly low condition number was within 
reach, but were not certain that it would leave the 
equations stable.  We adopted D. Lee’s latest 
technique of superimposing P , modified by Re-
dependence, and the viscous Jacobian; once the results 
for  began to take shape, the approach became 
blurred, eventually leading to a single Re-dependence 
matrix. 

1
91VLR

−

1Re <

 

 
Figure 5:  Plots of condition number yielded by 
Godfrey/Lee preconditioner.  Carpet and contour plots 
for 1-D N-S equations. 

 
 We started out by modifying the (1,1) element of 
the Euler preconditioner so as to get the lowest 
possible condition number for all combinations of M 
and Re in the elusive third quadrant.  This meant 
computing the variation of the condition number K 
with M and Re, and then compensating for it by a 
suitable functional dependence on M and Re in the 
element.  Not only was it possible to determine the 
correct power of M and Re to be used, but we could 
also determine the correct coefficients.  The constants 
appearing in the elements of A and C are γ, Pr and 
4/3; by determining the sensitivity of K to each of 
these quantities their place in the function became 
evident. 
 After exhausting the possibilities provided by 
varying the (1,1) element, other elements were 
considered.  Some made a clear difference, others 
hardly influenced the condition number.  It was at this 
stage that the third asymptotic region was numerically 
identified; its derivation from the dispersion analysis 
came after the fact. 

1 2
E

1 1 2
NS Eu x
− −= +

∆
CP P

u
x Re
ν

∆

=
∆
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 The results are summarized below.  Note that 
down to  the superposition approach of 
Godfrey/D. Lee is entirely satisfactory, while in the 4

1Re =

( 1,Re <

 1<

th 
quadrant it can be slightly improved.  
In the most problematic third quadrant, 

, including the Euler preconditioner is 
no longer useful; a single matrix with three branches 
is presented. 

) 1M ≥

)M( 1,Re <

First and second quadrant:   ( )0 ,  1M Re< < ∞ ≥

1 1 1
02 96 91DV DL VLR

2
x

− − −= = +
∆

P P P C , (42) 

Fourth quadrant:   ( )1,  1M Re≥ <

1 1
02 91

2
DV VLR x
− − ′

= +
∆
CP P  (43) 

with 

( )( ) ( )

31
813

8

4
3

0

0 0

Re
PrRe

Pr a

1 31 1
8 8

Re31 0Re
Pr P

−
r

γ
ρ

ν

−− +
 
 ′ =
 

+  

C

a γγ ρ− −

, (44) 

Third  quadrant:  ( )  1,  1M Re< <

1
02

2
DV x
− ′′

=
∆
CP , (45) 

where the formula for matrix  has three branches: ′′C
( )
( ) ( )

2 1
2 1 4 1

4
3

4

0

0 0
0 0

Pr aPr

I
a

Pr

γ γ γ
γ γ ρ

γρ

ν

−

− −
 
 
′′ =

 

C 


 

, 1<M
Re

 (46) 

,  (47) 

 

( ) ( )

( )( ) ( )

2 2 22 2 2

2 2 2 2

2 2 2 2 2 2

2 2 2 2

4 33 4 1

4 4

4
3

4 3 1 3 1 4

4 4

0
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0

M PrRePrRe M

M Pr M aPr

III

M PrRe a PrRe M

M Pr M Pr

γγ γ

γ γ

γ γ ρ γ γ

γ γ

ν

  −+ − 

 − − − + 



′′ = 



C
ρ








,
2

1and 1M M
Re Re

≥ <  (48) 

  Carpet and contour plots of the condition number 
are given in Figure 6.  It is seen that the condition 
number is essentially equal to 1 everywhere, except 
at the seams of the different sub domains, where it is 
elevated (though bounded).  In the future these 
ridges will be removed or smoothed by continuous 
blending of the formula branches. 
 

 

 

 
Figure 6:  Plots of the condition number yielded by 
Depcik and van Leer preconditioner.  Carpet and 
contour plots for 1-D N-S equations. 

 
Fighting the Growing Mode 

 Having found that the perfect 1-D N-S 
preconditioner creates a growing mode in the 
acoustics-dominated regime (see ), we 
investigated the sensitivity of the growth factor, i. e. 
the negative imaginary part of 

Figure 7

kω , to the value of 
the elements of the matrix in that regime.  Just as for 
the condition number, we found that some made a 
clear difference, others hardly influenced the growth 
rate.  Ultimately we had to conclude that getting rid of 
the negative imaginary part means giving up the O(1) 
value of the condition number. 
 We have tried to come up with remedies; so far we 
see two possibilities. 
1. To redefine the complex condition number in a 

way more appropriate for explicit discretizations. 
From the viewpoint of stability of explicit 
advection and diffusion schemes, it would be 
more appropriate to use the following weighted L1 
norm (rather than the Euclidian norm) for the 
complex wave number: 

( ) ( )

( )( ) ( )

1

4
3

11

0

0 0

0

PrRe PrRe
Pr aPr

II

PrRePrRe a
Pr Pr

γ γ γ
γ γρ

γ γγ γ ρ
γ γ

ν

+ −  − 

− + − −  

 
 
 ′′ =
 
  

C
2
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Re
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Figure 7:  The three roots of the dispersion equation 
for the 1-D N-S equations preconditioned by the new 
preconditioner, plotted in the complex plane for a 
range of Re-values.  The mode with the negative 
imaginary part is the growing mode. 
 

, (49) 

which in turn would change the value of the 
condition number and therefore the matrix-
optimization results. This remains to be 
investigated, but we doubt the effect would be 
strong enough to remove the growing mode. 

2. To reformulate the N-S equations as a larger first-
order system of  hyperbolic-relaxation equations 
[14, 32, 33] and design the preconditioner for this 
system. This is a much more drastic measure; it is 
part of a broader philosophy that recognizes there 
are a host of advantages,  both numerical and 
computer-science-based, to using the lowest 
possible order of PDE's when modeling physics 
[14],  i. e. the first order. A preliminary 
investigation suggests that with the first-order 
system we have ample control over damping rates 
after preconditioning, so it may be possible to 
prevent growing modes without compromising 
the condition number. 
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