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Introduction

T HE mission of an Earth observation satellite is closely linked
to its groundtrack, the projection of its orbit onto the surface

of the Earth. Previous work has evaluated examples of useful
groundtracks (Molniya, geosynchronous, repeating groundtracks,
etc.), their applications, and performing orbit maintenance to
sustain these orbits [1,2]. Although there are resources that explain
the general groundtrack variations that result from changing orbital
elements, there has been little systematic study of these variations
[3].

The research presented in this paper addresses this problem by
analyzing some simple properties of groundtrack geometry.
Specifically, solving for zero values in the speed of the groundtrack
in the longitude, or east–west direction, is examined. This analysis
is important because reversals in longitude help define the possible
shapes of a groundtrack over an orbit period. This paper will
outline the method used in solving this problem, including the
relevant two-body orbit groundtrack equations, the method used to
find the zero values, the method of analysis, and the results of the
analysis.

Theory

Orbit Equations

For the two-body problem, the orbital elements of a spacecraft can
be used to write the vector of the spacecraft’s position and velocity in
terms of a Cartesian XYZ frame fixed in the Earth. The XYZ frame
has its origin at theEarth’s center, where theX axis is in the equatorial
plane of the Earth and points toward the prime meridian, and the Z
axis goes through the true north pole of the Earth. The representation
of the position unit vector with respect to the orbital elements is given
as

r̂� �cos�w� v� cos�B � sin�w� v� sin�B cos i�x̂
� �cos�w� v� sin�B � sin�w� v� cos�B cos i�ŷ
� �sin�w� v� sin i�ẑ (1)

where

w� argument of perigee v� true anomaly

�B ��0 � _�E�t� t0� � Earth-fixed longitude of ascending node

�0 � longitude at t0 _�E � rotational rate of the Earth

i� inclination

To determine the angular velocity rates of the groundtrack, one
computes the time derivative of the position unit vector. This is
simple because the only time-varying terms of the expression are true
anomaly and the ascending node term, ignoring perturbations. The
time derivative of the longitude of the ascending node is simply the
negative of the rotation rate of the Earth. The time derivative of the
true anomaly equals

_v�
������
�

p3

r
�1� e cos v�2 (2)

where

�� gravitational parameter of the Earth

p� semilatus parameter e� eccentricity

The position unit vector two-body problem can also be written in
terms of latitude and longitude.

r̂� �cos � cosL�x̂� �cos � sinL�ŷ� �sin ��ẑ (3)

where

L� longitude �� latitude

The relationships for latitude and longitude with respect to the
orbital elements can be found by comparing Eqs. (1) and (3), and are

tanL� yB
xB
� tan�B � tan�w� v� cos i

1 � tan�w� v� tan�B cos i
(4)

sin �� sin i sin�w� v� (5)

The longitude relationship can be simplified to

tan�L ��B� � tan�w� v� cos i (6)

The rates of the longitude and latitude are

_L� _v cos i

cos2�
� _�E (7)

_�� _v cos�w� v� sin i
cos �

(8)

The latitude rate always has two zeros per orbit, except for two
special cases. The zeros occur when the latitude is equal to the
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inclination above and below the equator with exceptions for
inclinations of 0 and 90 deg.

In contrast, the zeros of the longitude rate are not intuitive. Zeros of
the longitude rate correspond to points in the orbit where the
spacecraft’s angular rate in longitude equals the Earth’s rotational
rate. The number of zero crossings in longitude can influence the
shape of the groundtrack and can be used as a design parameter. We
show that such crossings can occur up to four times per orbit and
describe the number of zero crossings as a function of orbital
elements. In the next section, the method of manipulating the
longitude-rate equation will be presented.

Longitude-Rate Equation

To find the zeros of the longitude rate, Eq. (7) is first written using
only orbital elements, resulting in

_L�
������
�

p3

r �1� e cos v�2 cos i
1 � sin2isin2�w� v� �

_�E (9)

Setting the longitude rate equal to zero, the following relationship
exists:

�1� e cos v�2 cos i
1 � sin2isin2�w� v�

� _�E

������
p3

�

s
� N (10)

whereN is constant in the unperturbed problem.Using trigonometric
identities and setting x� cos v, a second-order equation can be
derived in terms of x.

�1� ex�2 cos i � N � x2Nsin2isin2w� Nsin2icos2w�1 � x2�
� �2xNsin2i sinw cosw sin v (11)

At this point, the equation is second order in x but also contains a

term sin v��
�������������
1 � x2
p

. We note that the solutions to this equation
will have a definite sign for the term sin v, and that both values cannot
solve the system. However, to get a polynomial equation with only
cosines of the true anomaly, both sides of the equation are squared to
created a fourth-order equation.

��1� ex�2 cos i � N � x2Nsin2isin2w� Nsin2icos2w�1 � x2��2

� 4x2N2sin4isin2wcos2w�1 � x2� (12)

Although the cosine function is symmetric and has two solutions
for each value between �1 and 1, this is only an artifact of the
squaring step of the preceding derivation. Therefore, there is only
one true solution or longitude-rate zero for each root of the
polynomial [cf. Eq. (11)].

After simplification, the fourth-order polynomial can be written as

Ax4 � Bx3 � Cx2 �Dx� E� 0 (13)

where

A��sin4iN2 � 2e2 cos isin2i cos�2w�N � e4cos2i
B� 4e cos i�Nsin2i cos�2w� � e2 cos i�
C� 2sin2i�sin2w � cos2icos2w�N2 � 2 cos i�sin2i cos�2w�
� �1 � sin2icos2w�e2�N � 6e2cos2i

D� 4e cos i�N�1 � sin2icos2w� � cos i�
E���N�1 � sin2icos2w� � cos i�2

Wewill study the properties of the solutions to this polynomial using
the quartic equation techniques explained further in the next section.
We note that the coefficients of the polynomial are functions of only
four parameters (N, e, i, w).

Method of Analyzing the Fourth-Order Equation

Using Ferrari’s method, the discriminant of the equation� can be
computed [4].

���4P3 � 27Q2 (14)

where

P� BD � 4AE � C2=3

Q��B2E� BCD=3� �8=3�ACE � AD2 � �2=27�C3

Using the discriminant, one can make the following assessments:
1) For �< 0, there are two real and two imaginary roots.
2) For �� 0, there are at least two equal real roots.
For a discriminant greater than zero, further discrimination of the

roots can be made using Descartes’s solution of a quartic equation
[4]. Define the new quantities

�� 8AC � 3B2

�� 16A2�4AE � BD� C2� � B2�3B2 � 16AC�

With these new definitions, we can make the following assessments
for a discriminant greater than zero:

3) If � and� are both less than zero, then there are four distinct real
roots.

4) Otherwise, there are no real roots.
Using MATLAB, a code was generated to organize a graphical

presentation of these criteria showing the number of real solutions for
the four variables ofN, i, e, andw. These results are presented in the
next section.

Results

Beforewe discuss general cases, wewill explain some special case
solutions. For zero inclination, there is a transition from zero to two
solutions at a certain eccentricity that is defined as a function of N.
This relationship can be derived from Eq. (10) by inserting zero for
the inclination, resulting in the following relationship:

�1� e cos v�2 � N (15)

The relationship for e is then found by solving for e and setting
cos v��1 for N 	 1 and setting cos v� 1 equal to one for N > 1
greater than one.

e� 1 �
����
N
p

; N 	 1 e�
����
N
p
� 1; N > 1 (16)

For inclinations of 90 deg or higher, there are never any solutions.

Fig. 1 Real solutions plots for N � 0:4.
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The next special case involves zero eccentricity. At zero
eccentricity, there is a transition from zero to four solutions at a
certain inclination that is defined as a function ofN. This relationship
is also derived fromEq. (10), but zero eccentricity is inserted instead.

cos i

1 � sin2isin2�w� v� � N (17)

The relationship for i is then found by setting sin2�w� v� � 0 for
N 	 1 and setting sin2�w� v� � 1 for N > 1.

i� cos�1�N�; N 	 1 i� cos�1�1=N�; N > 1 (18)

The final special case discussed is for an N value of one. An orbit
with N � 1 can be described as geosynchronouslike because the
semilatus parameter for N � 1 is equal to the geosynchronous
distance. For this value of N, an orbit has two solutions if it has an
inclination of zero and a greater than zero eccentricity. Also, an orbit
has four solutions if it has zero eccentricity and a greater than zero
inclination.

Fig. 2 First transition and associated groundtracks.

Fig. 3 Third transition and associated groundtracks.

Fig. 4 Further growth of the dark region and associated groundtracks.
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All other transitions cannot be explained simply, and so the
general case will now be explored. In any case, there are only three
transitions: zero to or from two solutions, zero to or from four
solutions, and two to or from four solutions. The specific values of
elements at which the transitions occur shift with the parameters, but
the pattern of transitions remains the same. Note, we only consider
cases of N < 1 next. Some differences exist for N > 1 (mainly a
90 deg phase shift with respect to argument of perigee) but are not
considered here.

The first set of plots was created forw and e for a givenN and i. In
all of the following plots, a region of four real solutions is dark, a
region of two real solutions is light, and a region of no real solutions is
gray. The repeated roots case is not assigned a color because it is
merely the border of the light region. An example of one of these
plots is shown in Fig. 1. The graphs are symmetric in terms of
argument of perigee, and so w is shown only for 0–180 deg.

Next, the groundtrack transitions for these plots will be shown.
Thefirst transition is from a region of zero solutions to a region of two
solutions at zero inclination (Fig. 2). This transition occurs according
to Eq. (15).

As inclination is increased, the transition line distorts into a point.
The transition from zero to two solutions or vice versa with changing
w is a result of the skewing of the groundtrack. For the third
transition, an area of four solutions appears out of the gray point and
grows as the inclination increases further (Fig. 3).

This region of four solutions will grow and the area of no solutions
will shrink with increasing inclination until the gray region
disappears. The graph then only has dark and light regions. The dark
region will continue to grow with increasing inclination until the
whole graph becomes dark (Fig. 4).

Next, plots were created that placed argument of perigee and
inclination on the axes. Similarly, these plots were created for a given
value of N and e. The graphs of solutions for N � 0:5 is shown in
Fig. 5.

Similar to thew-e plots, thefirst transition of thew-i plots involves
a straight vertical line that varies its location with the value of N.
However, in the w-i plots, the transition is from a region of no
solutions to a region of four solutions. This transition is given by
Eq. (16). The second transition involves the growth of a two solutions
region between the gray and dark regions with the gray and dark
regions staying connected at w� 90 deg (Fig. 6).

As eccentricity increases, the gray region shrinks until the two
solutions region surrounds the zero solutions region (Fig. 7).

The gray region continues to shrink further with increasing
eccentricity until the gray region completely disappears (Fig. 8). The

Fig. 5 Real solution plots for N � 0:5.

Fig. 6 Second transition and associated groundtracks.

Fig. 7 Third transition and associated groundtracks.

J. GUIDANCE, VOL. 31, NO. 5: ENGINEERING NOTES 1519



last transition for increasing eccentricity involves changes in the dark
regions. The point of the dark region splits into two points that shift
farther apart and toward higher inclination simultaneously, as
eccentricity increases further.

To provide a further look at the transitions that occur, Fig. 9 is
provided to show the eccentricity vs inclination perspective. These
graphs can be compared and verifiedwith the transitions shown in the
w-e andw-i plots for the same value ofN. The transitions on the axes
are given by Eqs. (15) and (16). As w approaches 90=270 deg from
either direction, the gray to light to dark transition becomes a gray to
dark transition as the light region between them disappears.

Conclusions

In this research, the issue of groundtrack geometry is approached
by analyzing the zeros of longitude rate for Earth orbits. This was
accomplished by deriving a fourth-order equation from the
longitude-rate equation and examining the properties of the
coefficients. By examining the coefficient properties, graphs can be

createdwith respect toN, e, i, andw that contain regions of zero, two,
and four solutions. From these graphs, it is clear that the transitions
varywith parameter values but also have a consistent structure. From
these known transitions, one can choose a type of groundtrack
geometry and use the mathematical relationships provided in this
paper to locate regions where those types of groundtrack geometries
occur.
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Fig. 8 Fifth transition and associated groundtracks.

Fig. 9 Real solution plots for N � 0:4 (e vs i).
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