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Adiiiissible Large Perturbations in Structural Redesign

Michael M. Bernitsas* and Byungsik Kangt
University of Michigan, Ann Arbor, Michigan 48109

A new algorithm for structural redesign by perturbation is developed. It allows for large changes between
baseline and objective structures and can satisfy both modal and static displacement objectives. It is faster and
more accurate than previously developed perturbation resizing methods because it advances incrementally to the
objective structure using large admissible perturbations. The computer code developed is used as postprocessor
to general or special purpose finite element codes, to improve upon the design of structures with unacceptable
modal and/or static displacement response. Depending on the relation between the number of redesign goals,
allowable structural changes, and admissibility constraints, the desired redesign may be feasible—either locally
optimal or unique—or may not exist. In the latter case, a minimum-error inadmissible design is produced.
Several numerical examples are used to study the effects of definition and relaxation of the redesign admissible
domain and demonstrate the accuracy of the new redesign algorithm. An offshore tower with repeated eigen-
values and 192 degrees of freedom is also redesigned subject to frequency, static displacement goals, and
admissibility constraints.

Nomenclature
GIJ = admixture coefficient for participation of the

y th mode to changes in the /th mode
E = Young's modulus
(f],fj — nodal force vector and itsyth component
[ke] = stiffness matrix of element or group of

elements related to property e
[k],[^K^] = global and generalized stiffness matrices
KI = /th component of \^KX]
£ = increment number
[me] = mass matrix of element or group of elements

related to property e
[m],[xMx] = global and generalized mass matrices
MI = /th component of [XMX]
n = number of degrees of freedom of structural

model
TV = number of increments in predictor-corrector

algorithm
n-r = number of baseline structural modes used in

redesign
p = number of redesign variables
q = previous increments in increment £;

q = 1,2, , ( £ — 1)
RESTRUCT = program for REdesign of STRUCTures
S,Sa,Se,Sj = number of redesign, admissibility, equality,

and inequality redesign constraints,
respectively

Sb = number of upper and lower bound inequality
constraints imposed on ae

SW,5W,50 = number of displacement, frequency, and
modal node redesign constraints, respectively

( u } = nodal static displacement vector

Indices and Special Symbols
t = index denoting quantity in increment £;

e=i,2,...,N

[x
 x] = diagonal matrix notation

( )' = symbol denoting objective structural
property
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Greek Symbols
= fractional change to element or group

property e
= prefix denoting incremental change to

structural quantities
= prefix denoting total change to structural

quantities
= matrix of mode shape vectors
= /th mode shape
= A:th degree of freedom of /th mode shape
= /th natural frequency

I. Introduction

S TRUCTURAL design of large-scale structures usually
cannot be achieved in one step. A design spiral process

may be necessary to satisfy all design goals and produce a
structure with satisfactory response. In case the shape of a
structure has been defined to satisfy functional and opera-
tional requirements, the structural design process is schemati-
cally shown in Fig. 1. This involves finite element (FE) model-
ing, FE analysis by general or special purpose codes, and
redesign, which in this paper has the meaning of resizing.1
Resizing is defined as the process of altering cross-sectional
properties of elements in a FE model where grid points are
fixed. Reshaping - not considered in this work - would involve
alteration of grid topology. Redesign by trial and error is time
consuming, expensive, and occasionally inconclusive. Sensitiv-
ity and perturbation methods have been developed in order to
automate the redesign process.

Sensitivity methods that have been extensively studied by
Haug et al.2'3 are appropriate for small structural changes, and
are especially efficient when analytical sensitivity expressions
are available. Perturbation-based redesign methods have been
developed in the past fifteen years and presently can solve
large-scale redesign problems allowing for large structural
changes. Linear perturbation methods, allowing for small
structural changes, were introduced by Stetson et al.4"7 and
later improved by Sandstrom et al.8'9 Recently, two different
approaches to nonlinear perturbation allowing for large struc-
tural and response changes have been developed. The first
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Fig. 1 Procedure for structural design, modeling, analysis, and redesign.

approach, developed by Kim and Anderson,10 used a penalty
method to satisfy modal dynamic objectives. It is theoretically
exact but its applicability is limited to small-scale structures
due to the high cost and limited accuracy of the adopted non-
linear search technique. Dynamic condensation was applied to
reduce the high cost of the penalty method for large-scale
structures.11 The second approach treats larger changes in the
redesign goals incrementally. In each increment, a predictor-
corrector scheme is employed, where in the predictor phase
Stetson's linear method is used. Hoff et al.12 and Hoff and
Bernitsas13'14 introduced modal objectives (both frequency and
mode) in the redesign process; Bernitsas et al.15 included vari-
able tension geometric stiffness matrices in dynamic redesign
of marine risers; Gans and Anderson16 incorporated centrifu-
gal and Coriolis effects; Hoff and Bernitsas17 redesigned for
static objectives; Kim and Bernitsas18'19 developed an inte-
grated method to redesign for both modal and static displace-
ment objectives simultaneously. It should be emphasized that
the second approach can be used to redesign a structure to
change its natural frequencies and modify its mode shapes,17

and change its static response18'19 as well. Furthermore, rede-
sign techniques must not be confused with reanalysis
method.1'20

The incremental predictor-corrector approach is more pow-
erful, accurate, and capable of solving larger scale redesign

problems allowing at the same time for larger changes to re-
sponse particulars. Recently, the trend in research has been to
include new finite elements and stiffness matrices15'16 and rede-
sign for more diverse objectives.18 Presently, an effort is being
made to improve the accuracy of incremental predictor-correc-
tor schemes for strongly nonlinear problems. This would allow
for solution of larger scale problems, larger changes in the
redesign objectives, and possibly use of larger steps in the
process of advancing incrementally from baseline to objective
structure. Thus, Gans and Anderson16 introduced a FE re-
analysis by MSC/NASTRAN at the end of both predictor and
corrector phases in each increment. This approach, however,
violates one of the fundamental principles of redesign by per-
turbation which is to find the objective structure using results
of a single FE analysis, namely that of the baseline structure.
In this paper, a new incremental predictor-corrector algorithm
is developed, which allows for large structural changes, can
satisfy both modal and static displacement redesign goals,
and requires only one FE analysis—that of the baseline struc-
ture. This is achieved by ascertaining that at the end of each
increment, the design obtained satisfies modal orthogonality
conditions and therefore represents a real structure. In terms
of structural perturbations, it implies that perturbations are
admissible.

The problem of redesign by perturbation to meet modal and
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static displacement constraints is briefly presented in Sec. II.
The new algorithm that identifies an objective design by large
admissible perturbations is developed in Sec. III. Numerical
implementation of the new algorithm in code RESTRUCT
(REdesign of STRUCTures) is also discussed. Finally, numer-
ical applications are used in order to compare the new algo-
rithm to previous ones and investigate the significance of the
number of admissibility constraints and the accuracy to which
they are satisfied by the objective structure.

II. Structural Redesign by Perturbation
The structural design/modeling/analysis/redesign process

depicted in Fig. 1 shows that redesign is performed if the
results of static and/or modal dynamic FE analyses are not
satisfactory. The equations of static and free vibration equi-
librium of the descritized baseline structure are

[ * L , x i . { « ) i , x l = lf)nxl (1)

( [ k ] - < * j [ m ] ) i i l , } j = (0 ) for ./ = 1,2,...,11 (2)

where the n eigenvalues co/, j = 1,2,. . . ,«, satisfy Eq. (3);

det([£]-o>2[m]) =0 (3)

In Eq. (2), damping can be included only in Rayleigh's form.
In matrix form, the n free vibration equilibrium Eq. (2) can be
written as

[*][*] = Vj (4)

where [<£] = [{0h,Wh,. . . ,W,, l , and [Vx] is the diagonal
matrix of the eigenvalues. Premultiplying Eq. (4) by [<£]r, we
obtain the uncoupled modal equations in the following matrix
form:

where and [XMX] are the generalized stiffness and mass
matrices. Equations (1-5) also hold for the objective structure.
All quantities related to the latter are hereafter primed. The
following perturbation relations between baseline and objec-
tive structures are introduced:

Ik'] = [k] + [A*]

l u ' } = [ u } + [Au]

[mf] = [m] + [Am]

(6)

(7)

(8)

(9)

(10)

where prefix A indicates change to a baseline quantity. Fur-
thermore, assume that p properties of elements or groups of
elements are allowed to change and let a.e be the fractional
change in property e. More than one property may be allowed
to change in each element or group of elements. Expressing
change in a global matrix as sum of all changes, we derive

[A*] = [A*e] = £ [*.K
e=\ e=l

P P
[Am] = £ [Ame] = £ [me]ae

(n)
(12)

where several ae may refer to the same element but different
properties like bending, torsion, stretching etc., and some ae
may not represent fractional change of only [ke] or [me].
Assuming that {/} = {/'), i.e., that the nodal static force vec-
tor is the same for the baseline and objective structures, and

inserting perturbation Eqs. (6) and (7) and Eqs. (11) and (12)
in Eq. (1), we derive the general static perturbation Eq. (13)18:

ke}{u}ae (13)

Similarly, inserting perturbation Eqs. (6), (8), (9), (10), and
Eqs. (11) and (12) into the counterpart of Eq. (5) for the
objective structure, we derive the general modal perturbation
equations in scalar formlg:

(14)

for / J = 1 ,2, . . . , « . In addition, the objective structure modes
[^ }J9 j = 1,2, . . . , « , must be orthogonal with respect to [k']
and [m']. Theoretically, orthogonality of modes with respect
to one of [k'] or [m '] implies orthogonality with respect to the
other. Numerically, however, both conditions must be forced
if W }y» 7 = 1 »2, . . . , « , are to represent modes of a real struc-
ture. Thus, the n2 scalar Eqs. (14) become

i = 1,2,..., H
(15a)

<?=!

P

e=\ J

for / = 1,2,..., n and j = i + 1, / + 2, . . . , n.

(15C)

Structural Perturbations and Redesign Variables
The purpose of redesign is to produce structural perturba-

tion quantities [Ak] and [Am] as defined in Eqs. (6) and (8).
Those are in general large and cannot be computed using sen-
sitivity methods. The designer can run code RESTRUCT,
which implements the algorithm developed in the next section,
to compute perturbations [Ak] and [Am] in order to satisfy
certain modal dynamic and static displacement goals. The de-
sired perturbations are expressed in terms of fractional
changes of sectional linear dimensions (width, height) or pro-
perties (area, moment of inertia) by Eqs. (11) and (12). The
designer has to decide which of those sectional properties of
elements or groups of elements he/she would allow to change.
Those fractional changes become redesign variables ae,
e = l, 2, . . . , /?, which are the unknown quantities in the rede-
sign process. The latter must be computed to satisfy the fol-
lowing design goals.

Design Goals and Response Constraints
In terms of the p,ae the perturbations in the structural

response are expressed by Eq. (13) for { A u } , Eq. (15a)
for (A(o>2)), and Eqs. (15b) and (15c) for [A0] = [{A0h,
{ A0}2, . . . , { A(j)}n]. Design goals may result in response con-
straints as follows. In the algorithm developed in this paper,
the design goals below can be satisfied:

= <t>ki +

/ - 1,2, ... ,SU

number of

(16)

(17)

(18)

where the right-hand sides bu.9 ba., b^ki are the design goals to
be specified by the designer; and Su , S09 and 50 are the number
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of design goals imposed on the objective structure's response
{ u ' } , [\o2\], and [</>']. Since the response of the baseline struc-
ture has been computed—by the one and only FE analysis per-
formed in the redesign process—quantities { u }, [\o\] and [<£]
are known. Thus, the design goals specified by Eqs. (16-18)
result in constraints imposed on the desired response of the
objective structure. Those constraints along with general per-
turbation Eqs. (13) and (15a-15c) produce constraints on rede-
sign variables ae.

Orthogonality Conditions and Admissibility Constraints
The response constraints specified above—if satisfied in the

solution process—will not necessarily guarantee that the struc-
ture corresponding to the computed ae is real. To accomplish
this, we have to make sure that not only the energy balance
Eqs. (15a), which are related to the Sw response constraints of
Eq. (17), are satisfied, but that the (n — 1) orthogonality condi-
tions corresponding to each of Sw constraints are satisfied as
well. This will ensure that the eigenpairs

(w/ ,W) i )» i = 1,2,. . . ,SW (19)

can represent properties of a real structure. Since the objective
structure, or any approximation to it, computed in the rede-
sign process is not reanalyzed by a FE code, it is necessary to
enforce the aforementioned orthogonality conditions on the
modal perturbations [A</>]. Combining Eqs. (19), (15b), and
(15c), we derive the following admissibility conditions for the
objective structure:

(20)

III. Solution by Large Admissible Perturbations
The problem of redesign by perturbation, as defined in the

previous section, requires that an objective structure be identi-
fied in the feasible domain defined by S equality and inequality
constraints, where

5 = Su + Sw + 8$ + Sa (22a)

Sa is the number of admissibility constraints

5fl=5 t t[(2/i-l)-5j (22b)

by p lower bound inequality constraints on the ae

-\<ae, e = l,2,...,p- (23a)

which are necessary to ensure that no negative property ele-
ments are generated; and by 2p practical upper and lower
bounds

— 1 <a~ > —^ <-*e , e = 1,2,..., p (23b)

The redesign problem has p variables ae. The feasible domain
1) may be null, in which case no solution exists; 2) may have
finite number of solutions, which is unlikely to occur in prac-
tical problems; and 3) or may be continuous in which case
infinite acceptable redesigns exist. In the first case, RE-
STRUCT will produce a minimum-error solution in satisfac-
tion of the S + 2p constraints that define the feasible domain
and will inform the user accordingly. In the other two cases,
and especially in the last one, an optimization criterion is
required to select the best of all possible redesigns. The crite-
rion of minimum change between baseline and objective struc-
tures, used in this paper is

for / = 1,2,... ,SW andy = / + 1, / + 2 , . . . , n. Equations (20) and
(21) represent admissibility constraints on the redesign vari-
ables ae.

Problem Definition
The problem of redesign by perturbation can now be de-

fined as follows: Calculate the values of redesign variables ae,
e = l,2t...,p, subject to Su static displacement constraints of
Eq. (16), 5W natural frequency constraints of Eq. (17), 8$
modal node constraints of Eq. (18), and

min (24)

admissibility constraints of Eqs. (20) and (21).
The redesign problem is called static, dynamic, or integrated

static/dynamic if only static, only dynamic, or both static and
dynamic constraints are imposed on the redesign variables ae.
In the last two versions of the design problem, admissibility
constraints must be imposed on the redesign variables. For
static redesign, a different algorithm has been developed.17

Even though the designer can specify only modal and static
displacement goals for his/her objective structure, he/she can
solve a plethora of redesign problems such as. 1) changing the
natural frequencies of a structure to shift them out of the range
of frequencies of excitation, 2) changing the predominant re-
sponse normal mode to reduce excitation in a fluid-structure
interaction problem, 3) improving fatigue particulars of a
structure, and 4) reducing static stresses by controlling static
displacements. Further improvements of the solution algo-
rithm may solve directly the problem of redesigning for static
stresses. Of higher priority, however, as considered by the
authors are the problems of model correlation, redundancy
analysis, and failure-mode identification that can be solved by
RESTRUCT18 and will be studied in the near future.

Another criterion often used in redesign is that of minimum
weight for the objective structure.14'15'17'18 Selection of opti-
mality criterion depends on the specific redesign application
considered. For example, in the design process where a feasible
design is sought, it is reasonable to use a minimum-weight
criterion. For an existing structure, where improvement in
performance is sought in a redesign process, it is preferable to
use a minimum change criterion. In correlation between a real
structure and its FE model—which can also be performed by
perturbation—it is practical to select a minimum change crite-
rion and impose additional constraints on the objective struc-
ture; e.g., a constant mass if the designer has confidence in the
measurement of structural mass.

The difficulty of the problem can be recognized by looking
at the complexity of the general static and dynamic pertur-
bation Eqs. (13) and (15a), and the admissibility constraints
of Eqs. (20) and (21) which along with inequalities of Eqs.
(16-18) define the boundaries of feasible domain in implicit
form in ote. Those boundaries depend on the modes of the
objective structure, which depend implicitly on the unknown
ae. The problem is resolved using an incremental predictor-
corrector scheme that was developed in Refs. 18 and 19 for the
integrated static/dynamic redesign problem and is modified
below to ensure that incremental perturbations are admissible.
The algorithm described below is summarized in Fig. 2.

Incremental Perturbations
All redesign objectives that are defined by the right-hand

sides of inequalities of Eqs. (16-18) are achieved in an incre-
mental approach, where in each increment no more than a 7%
change in the objective is allowed. Let prefix 5 denote changes
within each increment £, £= 1,2,..., N. Then, the fully nonlin-
ear incremental redesign problem is defined in the most general
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Fig. 2 Structural redesign by RESTRUCT.

case of nonempty continuous feasible domain as

subject to

fied since

(25)

(26)

(27)

(28)

(29)

where n^l^l+^ag) is known from all previous increments
and is by definition one for £= 1; the optimization criterion of
Eq. (25) is selected so that at the end of the incremental proce-
dure and completion of the solution process, Eq. (24) is satis-

N

D
f = l

satisfy the general perturbation equations:

0< ——
1 + c

= gbu., / = 1,2,...,SM

•0^,., number of (k , /) =

1+cC

(30)

ZJ f^'}/»-i

i = l ,2, . . . ,n r (31)

\i (32)

for / = 1,2,. . . ,5W , j = 2, . . . , / i r (33)
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nr is the number of extracted modes used in the actual redesign
computations instead of the total number n of available modes
from the baseline eigenanalysis; and primed quantities (objec-
tive values) in increment £ are equal to unprimed quantities
(baseline values) in increment (£ + 1).

In each increment, a predictor phase, which is linear in the
sense that structural perturbations and allowable changes are
small, is first used. Then, a corrector phase is employed to cor-
rect those predictions nonlinearly.

Predictor Phase
This follows the linearization, small-perturbation method

proposed by Stetson2~5 and extended by Sandstrom.6'7 In that
method, the general modal perturbation Eq. (14) is linearized
assuming that

where ([c] is matrix of admixture coefficients with (Cu=0 and
gCjj, ij = 1,2,... ,nr are small. Thus, diagonal and off-diagonal
terms in Eq. (14) are decoupled. It should be pointed out,
however, that in this step the off-diagonal energy balance
terms in Eq. (14) are satisfied while admissibility conditions of
Eqs. (32) and (33) are violated. Therefore, the conditions satis-
fied are necessary but not sufficient. In the general case of
nonempty continuous feasible domain, the predictor phase
redesign problem becomes minimization of Eq. (25) subject to

(35)

number of (A:,/) = 50 (36)

-0.1<,a*<0.1, 1= 1,2,..., AT, e = l,2,.. . ,p (37)

and the inequalities of Eq. (29), where lower and upper bounds
are imposed on the cte by Eq. (37), as an additional precaution
to ensure small perturbations, and

i

(38)

At the end of the predictor phase, the objective design ex-
tracted modes are computed using Eq. (34). Of course this
refers only to degrees of freedom of modes not defined by
equality constraint of Eq. (36).

Corrector Phase
In this phase, the predicted eigenmodes are used to correct

the values of predicted ote. The redesign problem becomes the
minimization of Eq. (25) subject to Eqs. (26), (27), (29), and
(37); the nonlinear perturbation modal Eq. (31) for / =j; the
admissibility Eqs. (32) and (33) for /;*/; and the following
linear approximation to the static perturbation Eq. (30)18;

,
tUl=

where

t<t>jmfj,

\~* I \~*
Ll L

< ? = l \ / w = l
eCmet<Xe (39)

(40)

Solvers
In both predictor and corrector phases, the redesign prob-

lem results in an optimization problem with quadratic crite-
rion and linear constraints, which is solved using quadratic
programming21 and QPSOL.22 If the problem has no feasible
solution, a generalized inverse algorithm14 is used to produce
a minimum error solution. RESTRUCT informs the designer
accordingly but proceeds with the computations since in sub-
sequent increments feasible solutions may exist.

Computer Implementation
The redesign process using RESTRUCT is summarized in

Fig. 2. The algorithm described in this section is summarized
in Fig. 3 and implemented in code RESTRUCT. Several nu-
merical examples are used in the next section to study the
efficiency of the new algorithm and its accuracy with respect to
previous algorithm that employed inadmissible perturbations.
The effect of the number of admissibility constraints and their
relaxation on redesign accuracy is also studied by reanalyzing
redesigns produced by RESTRUCT using MSC/NASTRAN.

IV. Redesigning in Admissible Domain
The new algorithm is put into a test by comparing it numer-

ically to a previously developed nonlinear perturbation algo-
rithm that does not force orthogonality conditions on the
eigenvectors of the objective structure or any of the interme-
diate redesigns in the incremental procedure. Accuracy and
limitation of the algorithm are assessed by systematic numer-
ical applications using a simple clamped-hinged beam and a
192 DOF offshore tower. Redesigns with as much as 200%
change in response particulars are performed successfully,
while emphasis is given to definition and relaxation of admis-
sible domain.

Clamped-Hinged Beam
The five element, 9 DOF, clamped-hinged beam shown in

Fig. 4 was first analyzed statically and dynamically using
MSC/NASTRAN. First natural frequency and static displace-
ment of the fourth node were computed as/i = co1/27r = 29.14
Hz and w4 = 7.09 mm, respectively. Eight redesigns are per-
formed and results are summarized in Table 1. The columns
titled "Prediction" show the results computed by RE-
STRUCT. The columns titled "Reanalysis" show the results
computed by MSC/NASTRAN for the objective structure
provided by RESTRUCT. The relative percentage error is also
shown for each case. In all cases, the cross-sectional area and
moment of inertia of each one of the five beam elements are
allowed to change; that is, ten allowable changes (redesign
variables, p = 10) are used. Five modes are extracted and used
in the redesign process, nr = 5. In all applications, S w =l ,
S0 = o, Su = 1, Sa = Su[2(nr - 1)-SJ = 8. The numerical accu-
racy used in QPSOL is e^ = 10~12. The accuracy used in
RESTRUCT in satisfying static constraints—Eq. (26)—and
diagonal dynamic constraints—Eq. (27)—is ED = 10~6. Off-
diagonal terms, which are orthogonality constraints with re-
spect to [m] and [&], are satisfied to eA = 10~6. Thus, the
tolerance used in RESTRUCT in satisfying the admissibility
domain is set equal to that used by QPSOL which is equal to
^~q = 10~6. In the eight redesign applications summarized in
Table 1, changes of 6%, 30%, 100%, and 200% in equality or
inequality redesign goals are used and comparisons are made
between the new algorithm that finds an objective structure
with admissible modes, and the old algorithm18 that forces
necessary but not sufficient conditions on the objective struc-
ture's modes. For relatively small changes of 6% and 30%, the
two algorithms are about equivalent. For larger changes, the
old algorithm becomes less accurate while the new one contin-
ues to produce satisfactory results. The mainframe computer
of the UB system at The University of Michigan, an IBM 3090,
was used to run all cases and the CPU time in milliseconds is
also shown in Table 1.
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Fig. 3 Algorithm for structural redesign by large admissible perturbations.
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Fig. 4 Five element clamped-hinged beam.

Number of Admissibility Constraints
The feasibility domain, in which we are looking for the

objective structure, is defined by Sa + S^ + Su equality or in-
equality constraints that define the desired response properties
of the objective structure, Sa admissibility constraints, and 2p

upper and lower bounds imposed on redesign variables ae,
e = l,2,...9p. The former are imposed by the designer, and
the latter are necessary in order to ensure validity of the linear
prediction phase in the incremental algorithm. The admissibil-
ity constraints, on the other hand, define whether the eigen-
modes of the objective structure correspond to a real structure
or not. Their number Sa is related to the number of extracted
modes by Eq. (22b). The more extracted modes (nr) are used,
the more accurate is the representation of modal dynamics of
the baseline structure, the higher is the number of admissibility
constraints Sa, and the more realistic the predicted eigen-
modes. Then, the algorithm can be used to redesign structures
allowing for larger structural changes. This is demonstrated by
the six applications shown in Table 2. It may be expected that
the increased number of admissibility constraints may result in
numerical complications in the solvers. Our applications, how-
ever, do not exhibit such a tendency. In fact, even when the
number of equality constraints exceeds the number of un-
knowns, as in cases 3 and 6 in Table 2, the accuracy in redesign
keeps improving as Sa increases. Theoretically, this is expected
because once enough orthogonality constraints have been sat-
isfied to produce a unique set of cee, e = 1,2,... ,p, any addi-
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Table 1 Perturbation structural redesign with or without admissibility constraintsa

Case no.
1
2
3
4
5
6
7
8

Case no.
1
2
3
4
5
6
7
8

Redesign
coi'2

CO?

1.06
1.30
2.00
3.00

>1.06
>1.30
>2.00
>3.00

Redesign

ui2

CO?

1.06
1.30
2.00
3.00

>1.06
>1.30
>2.00
>3.00

goals
ui
U4

1.06
1.30
2.00
3.00

>1.06
>1.30
>2.00
>3.00

goals
ui
U4

1.06
1.30
2.00
3.00

>1.06
>1.30
>2.00
>3.00

Without admissibility constraints (Old Algorithm)

Prediction
1.060
1.300
2.000
3.000
1.060
1.300
2.000
3.000

Prediction
1.060
1.300
2.000
3.000
1.060
1.300
2.000
3.000

coJ2/co?

Reanalysis
1.0600
.2995
.9922
.9468
.0604
.2951
.9592

2.8661

CO 1 2/CO?

Reanalysis
1.0600
1.2994
1.9940
2.9744
1.0600
1.2994
1.9940
2.9744

Error, %
0.001

-0.038
-0.392
-1.773

Satisfied
-0.374
-2.039
-4.463

With admissibility

Error, %
0.002

-0.046
-0.301
-0.853

Satisfied
-0.047
-0.301
-0.853

Prediction
1.064
1.305
2.007
3.011
1.064
1.305
2.008
3.012

constraints

Prediction
1.064
1.305
2.008
3.0120
1.064
1.305
2.008
3.0120

U4/U4

Reanalysis
1.0667
1.3156
2.0604
3.1820
1.0642
1.3071
2.0380
3.1206

(New Algorithm)

U4/U4

Reanalysis
1.0654
1.3078
2.0168
3.0400
1.0654
1.3078
2.0168
3.0400

Error, %
0.632
1.20
3.02
6.067

Satisfied
Satisfied
Satisfied
Satisfied

Error, %
0.508
0.600
0.840
1.333

Satisfied
Satisfied
Satisfied
Satisfied

CPU, ms
1600
4170

10050
15301
1617
4287

10095
16010

CPU, ms
1408
4305

10153
15796

1419
4132

10209
16751

Table 2 Effect of number of admissibility constraints on redesign a

Redesign
goals coi'Vco? U4/U4

u
Case no. CO? Prediction Reanalysis Error, Prediction Reanalysis Error, CPU, ms

1
2
3
4
5
6

3
5
8
3
5
8

4
8

14
4
8

14

1.30
1.30
1.30
2.00
2.00
2.00

1.30
1.30
1.30
2.00
2.00
2.00

1.300
1.300
1.300
2.000
2.000
2.000 :

.2923

.2994

.3000

.8860

.9937
Z.OOOO

-0.590
-0.043

3.16x10-4
-5.70
-0.314

2.535x10-4

1.305
1.305
1.305
2.008
2.008
2.008

1.3291
1.3078
1.3054
2.1904
2.0168
2.0075

2.240
0.600
0.412
9.521
0.842
0.375

2642
4208
7453
6802

11142
20153

tional orthogonality constraint should be automatically satis-
fied by that unique objective structure because it is admissible
and therefore real. Thus, in cases 3 and 6, even though the
number of admissibility constraints is greater than the number
of redesign variables (Sa = 14>\Q=p), and the generalized
inverse algorithm is used to produce a minimum-error solu-
tion, the solution is very accurate.

Looking at the above conclusion from another point of
view, namely that of relaxation of the admissibility domain,
we observe that relaxation results in less accurate answers.
Equivalently, fewer admissibility constraints result in less ac-
curate enforcement of orthogonality and limitation of effec-
tiveness of the algorithm to moderate structural changes. An
alternate form of relaxation of the admissibility domain is use
of greater tolerances—higher values of eD and eA . This has a
lesser impact on the accuracy and limitation of RESTRUCT.

Offshore Tower
The offshore tower shown in Fig. 5 is 69.95 m high and

operates in 45.72-m water depth. The tower at the base is
38.10 m square and tapers linearly to 22.86 m square at the
deck. The FE model of the tower is composed of 104 circular
tubular beam elements and has 192 degrees of freedom. Load-
ing on the tower is due to 1) 240 tonnes deck load that is
applied to the structure as uniformly distributed load at the
deck nodal points; 2) wave hydrodynamic forces calculated
for a design wave of 182.88 m length and 6.10 m height using
Morison's equation; the wave propagates in the x direction;
3) wind current in the x direction with linear velocity profile

of 1.03 m/s at the mean free surface waterline and zero at the
sea bed.

Static and dynamic analyses by MSC/NASTRAN produced
1) maximum displacement in the x direction at node 11 (shown
in Fig. 5) equal to 0.0578 m, and 2) a repeated first natural
frequency o>i = co2 = 4.695 radian/s C/i=/2 = 0.7472 Hz). For
manufacturability reasons, in the redesign process the tower is
divided into six element groups described in Table 3. Each
group changes uniformly. The total number of design vari-
ables is p = 12, that is, two variables are allowed to change in
each group of elements. For mass and axial stiffness the area
is allowed to change, while for bending and torsional stiffness
the area moment of inertia is allowed to change.

Two redesign applications are considered and the results are
summarized in Table 4. In those applications, only three
modes were extracted in order to show the accuracy of the
redesign algorithm even for such a minimal number of ex-
tracted modes. Those modes, however, were selected judi-
ciously. Specifically, since one of the redesign goals is related
to coi, only modes 1,8, and 9 were extracted. Modes 8 and 9
are the second bending modes in the (*,z) and (y,z) plane,
respectively. Those have maximum relation to mode 1 as the
corresponding admixture coefficients show. Modes 1 and 2 are
highly related, but the latter is excluded because «i = co2 and
consequently the admixture coefficients cannot be defined by
Eq. (38). This problem of repeated eigenvalues is solved in
Ref. 18. Other modes have low relation to mode 1 and conse-
quently do not affect its change. For example, the first tor-
sional mode about the z axis has a low relation to mode 1,
which is the first bending mode in the (x,z) plane.
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# 33 (-11.430, -11.430, 69.952)

#37(11.430, 11.430,69.952)

#25 (-13.306,-13.306, 52.731)

#29(13.306,13.306,52.731)

# 17 (-15.182, -15.182, 35.510)

# 9 (-17.058, -17.058, 18.288)

# 1 (-19.050, -19.050, 0.000) / ^

#21(15.182,15.182,35.510)

# 13 (17.058, 17.058, 18.288)

^ ^ - "# 5 (19.050, 19.050, 0.000)

Fig. 5 Offshore tower model with 104 elements.

Table 3 Offshore tower substructures, redesign variables
and dimensions

Conclusions

Design
Substructure variable

number cte

1

2

3

4

5

6

0:1(0:7)
0:2(004)

0:3(07)
Oi^(oiA )

0:5(0:7)
o:6(ou )

0:7(07)
ots((XA )
0:9(0:7)
(XIQ((XA)
0:11(0:7)
o: I2(o:/i)

Substructure
description

Legs below first
bracing

Legs between first
and second
bracing

Legs above
second bracing

Horizontal
bracing

Horizontal cross
bracing

Vertical cross
bracing

Do,

m
0.762

0.610

0.610

0.483

0.508

0.610

Number
A, of
m elements

0.737

0.584

0.584

0.464

0.489

0.591

8

8

16

32

16

24

Nonlinear structural redesign methods that are based on
perturbation allow for large changes between baseline and
objective structures, produce the desired redesign without
trial and error, and require only one finite element analysis
that of the baseline structure. Redesign objectives may be any
combination of modal properties—natural frequencies and
modal shapes— and static displacements. The derived general
perturbation equations are implicit strongly nonlinear equa-
tion of the allowable structural changes. To solve them, an
incremental algorithm with prediction-correction is developed
which employs only admissible structural changes. Admissibil-
ity of structural changes is defined as the condition where at
each increment the modes computed by perturbation corre-
spond to a real structure; i.e., they satisfy the orthogonality
conditions with respect to the mass and stiffness matrices. This
implies that necessary and sufficient orthogonality conditions
are enforced numerically. The new algorithm successfully re-
designs structures that require very large changes in their

Table 4 Large perturbation admissible redesign of offshore towera

Redesign
goals coi'Vwf u(\/u\\

Case no.
1
2

i
1.50
2.00

u\\
un

1.50
2.00

Prediction
1.500
2.000

Reanalysis
1.4715
1.8916

Error, %
-1.426
-5.421

Prediction
1.507
2.008

Reanalysis
1.5379
2.1036

Error, %
2.526
5.18

CPU, ms
433487
784491
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modal dynamic and static displacement response. Systematic
numerical applications are used to study the accuracy and
limitations of RESTRUCT using a simple clamped-hinged
beam and an offshore tower. Successful redesigns that re-
quired as much as 200% changes in their response characteris-
tics were performed.
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