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Shock Waves in Transonic Channel Flows
at Moderate Reynolds Numbers

J. L. Mace*
Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio

and
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University of Michigan, Ann Arbor, Michigan

The behavior of shock waves in transonic channel flows with varying Reynolds and Prandtl numbers is
examined using analytical and numerical methods. It is shown that the location of the sonic line within the struc-
ture of a shock wave is independent of the Reynolds number and is coincident with the location of the corre-
sponding discontinuous wave in the limit as the Reynolds number tends to infinity. Also, in a numerical solu-
tion, truncation errors and artificial viscosity produce a smeared shock wave similar to that found in a flow at a
moderate Reynolds number. Thus, these results lend support to the commonly accepted supposition that the
position of the sonic line within the structure of a numerical shock wave can be adopted as the location of the
corresponding shock wave in inviscid flow.

Nomenclature
a = speed of sound, = d/d*
Cp = specific heat at constant pressure
h = enthalpy, =fi/d*2

H = total enthalpy, = h + l/i(u2 + v2)
L = characteristic length, channel half-width
p = pressure, =p/p*
Pr = Prandtl number, =CpjJL^/\
Re = Reynolds number, =p*d*L/fJi^
T = temperature, =f/T*
u = velocity component in x direction, = u/a*
v = velocity component in y direction, = v/d*
x = Cartesian coordinate along centerline, = x/L
xs = location of shock wave
Xg = location of sonic line within shock wave
y = Cartesian coordinate normal to centerline, =y/L
ds = thickness of physical shock wave, = §S_/L _
A5 = thickness of captured shock wave, = A5/L
e = ratio of channel half-width to radius of curvature
X = coefficient of thermal conductivity
JLI = coefficient of viscosity, = A/Al
IJLB = coefficient of bulk viscosity, = A#/AJ?
HR = longitudinal viscosity coefficient, = (4/3)jn + \LB

Super- and Subscripts
( ) = dimensional quantity
( )* = critical sound speed value
( ) = adjustment region quantity
( )+ = shock structure region quantity
£ = evaluated at the sonic line
s = evaluated at the shock wave
w = evaluated at the wall
u,d ~ evaluated upstream or downstream of the shock wave,

respectively
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I. Introduction

THE numerical simulation of transonic flows involving
shock waves is largely accomplished using shock-

capturing finite difference or finite volume methods. Such
methods are advantageous for simulating compressible flows
since they allow a shock wave, whose location and strength
are unknown in advance, to evolve as part of an initial value
problem. However, these methods give rise to solutions ex-
hibiting oscillations in the neighborhood of a captured shock
wave and the thickness of the captured wave is significantly
larger than that of the physical shock wave at a high
Reynolds number. The ability to determine the location of a
discontinuous shock wave within a numerical solution is im-
portant in obtaining acceptable aerodynamic simulations.
For example, this information is crucial in determining the
aerodynamic forces and moments on wings and cascade
blades, especially in unsteady flows. Unfortunately, because
of the finite thickness of a captured wave, it is difficult, at
this time, to determine the location of the shock wave with
the desired measure of simplicity and accuracy.

The smearing of a captured shock wave is the result of
dissipative phenomena arising from both the truncation error
in the numerical scheme and the diffusive terms (referred to
as the "artificial viscosity") explicitly included in the dif-
ference equations. As a result of truncation errors and ar-
tificial viscosity, the actual differential equations simulated
by the difference equations are no longer the original govern-
ing equations but, instead, are a set of modified equations.
These modified equations contain higher-order spatial
derivatives that introduce dissipative and dispersive
phenomena into the solution.1 A common practice is to
diminish the oscillatory behavior of the solution by increas-
ing the magnitude of the artificial viscosity in the
neighborhood of the shock wave, thereby producing a nearly
monotonic transition of the flow properties through the
shock structure. Evidently, under these conditions, the
dissipative terms in the modified governing equations are
large in magnitude compared to the dispersive terms. In
general, the thickness of a captured shock wave may be
characterized as occurring over 3-10 grid points of a
numerical solution containing 30-100 streamwise grid points
defining a characteristic body length L. Hence, as an upper
bound, a numerical estimate for the thickness A5 of a cap-
tured shock wave, normalized by L, is 0.1.
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In a flow described by a preshock Mach number Mu and a
Reynolds number Re based_ on L, a shock wave has
thickness2 ds normalized by L, of 0[Re~l(Mu-l)-1]; for
typical transonic flows at high Reynolds number, the
thickness of a shock is characterized by the mean free path
of the gas molecules. Obviously, the thickness of a captured
shock wave is much larger than that of a corresponding wave
at high Reynolds number. That is, shock-capturing methods
model the structure of a shock wave corresponding to a flow
at a much lower Reynolds number, say

WALL

INNER ADJUSTMENT

•+* x,u
Fig. 1 Geometry and inviscid flow characteristics.

Numerical solutions of shock waves in transonic flows ex-
hibit thicknesses corresponding to moderate Reynolds
numbers of 102-103. Thus, Re is small in comparison to the
desired high Reynolds number, yet large in comparison with
unity.

A shock wave at high Reynolds number, which appears as
a discontinuity, should evolve as the Reynolds number tends
toward infinity from a thick shock wave structure corre-
sponding to a moderate Reynolds number. It is clear that the
thickness varies inversely with Reynolds number, but there
seems to be no known experimental or analytical evidence in-
dicating the dependence upon Reynolds number of the posi-
tion of the sonic line within the shock wave structure.
Numerical results3'4 have indicated that, for a practical range
of computational parameters, the location of the sonic line
within a captured shock wave does not vary with the
magnitude of the artificial viscosity. It has been common
practice (e.g., Ref. 3) to identify the position of the sonic
line within the captured shock wave with that of the desired
discontinuity. In light of these observations, several
hypotheses are examined in this study: 1) to the accuracy
desired, the location of the sonic line within the structure of
a shock wave in transonic flow is independent of Reynolds
number and so coincident with the location of the corre-
sponding discontinuous wave in the limit as the Reynolds
number tends to infinity and 2) in a numerical solution,
truncation errors and added terms that introduce artificial
viscosity produce a smeared shock wave similar to that
found in a flow at moderate Reynolds numbers such that the
location of the sonic line corresponds to the position of the
desired shock wave at high Reynolds numbers.

The validation of these hypotheses is accomplished by
comparing analytical and numerical solutions for a transonic
flow in a symmetric channel. First, known solutions for in-
viscid flow are extended to include a relation for the position
of the shock wave to first order. Second, analytical solutions
for a viscous transonic flow in the channel are derived.
These solutions include the location of the sonic line within
the thick shock structure, which is compared with the loca-
tion of the shock wave when the flow is inviscid. Finally,
numerical solutions of an inviscid transonic flow in the chan-
nel are obtained and the location and structure of the cap-
tured shock wave are compared with the results found from
the analytical solutions.

II. Formulation of Problem
The model problem chosen is that of a steady, transonic

flow in a converging-diverging, symmetric channel as shown
in Fig. 1. Far upstream and downstream of the channel
throat, the walls are parallel and eventually connect to
plenum chambers. The flow far upstream is uniform and
subsonic; it accelerates through a sonic throat to supersonic
speeds. The supersonic flow is terminated by a shock wave
residing in the diverging portion of the channel. The sub-
sonic flow downstream of the shock wave decelerates into
that portion of the channel with parallel walls.

The coordinates x and y measured along and normal to
the channel centerline, with Jt = 0 at the point of minimal
width, are made dimensionless by half the minimum channel

width L. The effective shape of the channel walls, which
may include the boundary-layer displacement thickness, is
given by

yw (x) = ± [ 1 + e2f(x) ] (1)

where/(0)=/'(0) = 0 and e<^ 1. Here e2 is defined as the ratio
of the channel half-width to the product of the radius of cur-
vature at the channel throat and/"(0).

The gas is assumed to obey the perfect-gas law and have
constant specific heats. The density p, pressure /?, and
temperature T are made dimensionless with respect to their
undisturbed critical values. The enthalpy h and internal
energy e are normalized by a*2, while the entropy s is made
dimensionless with respect to the specific gas constant R.
The x and y velocity components u and v, respectively, are
made dimensionless by a*. Here an overbar denotes a dimen-
sional quantity.

The equations governing the motion of the flow are the
continuity, the Navier-Stokes, and the energy equations,
written5 as

( p u ) x + ( p v ) = 0

puux + pvuy = -——

+ pvvy= -——

Re

1
~Re

1
~Re

(2)

(3)

(4)

(5)

where H is the total enthalpy and y the ratio of specific
heats. The momentum transport terms R(u) and R ( v ) are
defined as

R(u)= [fJLRux-

and

R ( v ) = [fji,(uy +

and the thermal transport term R(h) is

(6)

(7)

(8)

where the coefficient of viscosity //, and the bulk viscosity
coefficient \LB are used to define the longitudinal viscosity
coefficient HR.

The equation of state, in dimensionless form, is

p = pT (9)
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Finally, the above equations can be combined to form the
gasdynamic equation

and

pRe

(v2-a2)vy

+ vR(v)-(y-l)R(h)] (10)

which will be used extensively in the following sections.
To complete the problem formulation, boundary condi-

tions must be specified for the flow far upstream and
downstream of the channel throat as well as along the chan-
nel walls. Since it is only the details of the flowfield external
to the boundary layer that are desired, the boundary condi-
tion for v along the walls is written as

v(x,yw) = (U)

where yw is assumed to include the displacement thickness of
the boundary layer; i.e., the physical wall shape is such that,
after the displacement thickness has been accounted for, the
resulting effective shape is given by Eq. (1). As will be seen,
terms containing the viscosity, i.e., the Reynolds number,
occur as known forcing functions at each order of approx-
imation so that no boundary condition on u at the wall is
needed to the order retained. The pressure in the channel far
downstream of the shock wave is adjusted such that a shock
wave resides in the diverging portion of the channel. The
pressure in the channel far upstream of the throat is deter-
mined from the condition that the flow is sonic at the throat.

III. Inviscid, Transonic Flow with Shock Wave
Analytical solutions for a steady, inviscid, transonic flow

containing a shock wave in a two-dimensional channel have
been obtained by Messiter and Adamson.6 These solutions
are in the form of asymptotic expansions valid to second
order; the location of the shock wave is obtained to zeroth
order. Here, the solutions for the flow velocities are ex-
tended to third order, while the location of the discontinuous
shock wave, xs(y) =0(1), is found to first order.

The governing equations for this problem are those ob-
tained from Eqs. (2-5) in the limit as the Reynolds number
tends to infinity. With this assumption, the gasdynamic
equation (10) becomes

(v2-a2)vy=Q (12)

where the sound speed a is obtained from the energy
equation

7+1
7-1

(13)

For a shock wave in transonic flow, the velocity components
upstream and downstream of the wave are related by the
transonic approximation6 to the shock polar equation given
by

(14)

where the subscripts u and d refer to values immediately
upstream and downstream of the shock wave, respectively.

Composite asymptotic expansions for the velocity com-
ponents may be written7 as

u (x,y;e) - (x) + e2 [ u2 (x,y) + ̂  (x,y) ]

+ e5/2Px(x,y)+e3[u3(x,y)+iix(x,y)]+... (15)

v(x,y',e)~e2v2(x,y)+e5/2tf(x,y)

+ e3[v3(x,y)+P?(x,y)]+... (16)

where £, /3, and 17 are potential functions representing pertur-
bation potentials for an adjustment region with length
0(e 1 / 2 ) immediately downstream of the shock wave.
Upstream of the shock wave, these potentials are identically
zero. Suitable coordinates for the adjustment region are
found to be x = (x—xs)/e/2 and y—y. Asymptotic expan-
sions valid for the temperature, density, and pressure are
similar in form to that for the u velocity component. The ex-
pansion for the position of the shock wave is found to be6

xs (y) ~ (17)

indicative of a normal shock wave to 0(e) . Using these ex-
pansions, one can show the flow is irrotational to 0(e 3 ) ,
i.e., vx — uy = 0(e4). Substitution of these expansions into
the governing equations (12-14) results in a sequence of dif-
ferential equations that, together with the boundary condi-
tions, are solved to give the results

(18)

(19)

and

'-127 + 9 3-27

36

f ' 2

2u] (20)

for ul9 « 2> and W 3» respectively. Also, the transverse velocity
components are

v2(x,y)=f'(x)y (21)

(22)

The constant cw in Eq. (18) is set by the velocity at the chan-
nel throat: since the throat is choked for the problem being
considered, then u2(0) = cw=Q. The constants c2 and c3 in
Eqs. (19) and (20), respectively, are set by specifying the
channel inflow and outflow conditions. It should be noted
that for the present case, where ul(Q) = Q, c2u=0 and
c3u =/"2(0)/90. The upper and lower signs in Eq. (18) cor-
respond to locally supersonic and subsonic flow conditions,
respectively. The perturbation potential %(x,y) is given by

-1)"£ (x,y) = 4/0"V(7+l)M10 {-^T

x cosmry exp [ — nirx/^l (7+ l ) u l o ] | (23)

which is that given by Messiter and Adamson.6 The notation
M I O is defined here as ul (xs0).

The location of the shock wave can be determined by
equating the mass flow rates at locations upstream and
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downstream of the shock wave in a manner outlined by
Messiter and Adamson.6 A control volume bounded by sur-
faces at the channel throat, the channel wall and centerline
and convenient location far downstream of the shock wave,
where the flow is uniform, is considered; then, the require-
ment that mass be conserved gives an integral relation
relating flow properties upstream and downstream of the
shock wave. The thermodynamic property equation and the
energy equation may be used to relate p and u in this integral
relation, while the Rankine-Hugoniot relations are used to
determine the entropy increase across the shock wave.6 By
expanding each term in the resulting equation in a Taylor
series about xs~xs0 + exsl + ... and integrating, one finds, as
e—0, the results

~C2u ~~

and
2y2

(24)

(25)

The position of the shock wave to lowest order xsQ may be
determined from Eq. (24). The specification, for example, of
the pressure to second order at the downstream flow bound-
ary is equivalent to setting c2d. Hence, Eq. (24) can be used
to calculate u^x^) from which xs0 can be determined using
Eq. (18). In a similar manner, xsl can be calculated using
Eq. (25). The specification of the pressure to third order at
the downstream flow boundary determines the constant c3d.
Hence, the first-order shock wave position *5l can be
calculated explicitly from Eq. (25).

The results presented here are seen to be extensions of the
solutions obtained by Messiter and Adamson6 to higher-
order terms. Specifically, the outer velocity solutions have
been extended to include the third-order terms, «3 and v3
given by Eqs. (20) and (22), respectively. Also, the shock
wave location xs has been extended to include the first-order
term xsl given by Eq. (25). Finally, the solutions presented
here, i.e., Eqs. (15) and (16), may be used to validate
numerical methods since the solutions describe a demanding
nonlinear transonic flow.

IV. Viscous Transonic Flow with Shock Wave
The structure of a weak normal shock wave was described

by Taylor8 for a perfect gas with constant transport coeffi-
cients. Higher-order approximations, in which the Taylor
solution appeared as the first approximation, were presented
by Szaniawski.9 The structure of two-dimensional shock
waves was described by Sichel10 as a solution to the viscous
transonic equation. Similarity solutions for shock waves in a
transonic channel flow at moderate Reynolds number were
also presented by Sichel.11 These solutions, while clearly
showing the influence of Reynolds number on the structure,
lacked generality in that only special wall shapes could be
considered. These restrictions were removed by Adamson
and Messiter12 who obtained solutions, in the form of
asymptotic expansions, for a shock wave in a channel flow
at moderate Reynolds number and constant Prandtl number.
The work presented here extends that of Adamson and
Messiter12 to include third-order solutions with variable
Prandtl number, which are then used to find the location of
the sonic line within the viscous shock wave to first order.

The steady, transonic flow of a viscous and thermally con-
ducting perfect gas in a symmetric channel (Fig. 2) is de-
scribed by Eq. (10). For simplicity, the Stokes relation be-
tween the first and the second coefficients of viscosity is
assumed thus implying that the bulk viscosity is zero.13 The
viscosity coefficient /z is assumed to be described14 by the
power law relation jti = 7*y, where kv = 0(l). The problem to
be examined is one in which the Reynolds number is taken as
Re~l=kse2 where ks = Q(l). With this Reynolds number

scaling, it will be found that the flow to lowest order is
inviscid.

Outer composite expansions for the velocity components
are given by7

and

(26)

... (27)

where £, /3, and rj are perturbation potentials arising in an
adjustment region of extent x = (x — x s ) / e l / 2 =0(1) and
y=y = 0(\) occurring immediately downstream of the shock
structure region; upstream of the structure region the pertur-
bation potentials are zero, as found by Messiter and Adam-
son.6 The thermodynamic variables have expansions similar
to the u velocity component.

In the outer composite regions, it is found that
R(u)=Q(e), R(v)=6(e2), and R(h)=Q(e) so that
/ /= 1 /2(7+l) / (7- l ) + 0(e 3) , but the term 0(e3) and its
counterpart in the expansion for the entropy are both func-
tions of x alone, so the flow is irrotational to 0(e4) .
Substitution of these relations into the gasdynamic equation
(10) and the vorticity relation vx-uy = G(e4) results in six
differential equations that, when combined with the wall
boundary conditions, allow the determination of the velocity
components. The velocity components ult V2, and v3 remain
unchanged from those found for the inviscid flow, Eqs. (18),
(21), and (22), respectively. Additionally, the perturbation
potential £ remains unchanged and is given by Eq. (23). It is
the higher-order velocity components u2 and u3 that are
modified by viscosity; these components are given by

(28)

and

3-27 i r f2 f2
 t r 2

 c i
°2 H! 1.2(7+1) 6(7+1) 90 C3J

1 I"/ ( 7 - l ) ( P r - l ) \ P * 2.— ly——i————— —— ] u\
ul LV Pr + 7-1 / J*/

(29)

WALL y,v

SHOCK STRUCTURE
REGION

INNER ADJUSTMENT
REGION

Fig. 2 Viscous flow regions for e2Re = 0(1).



APRIL 1986 SHOCK WAVES IN TRANSONIC CHANNEL FLOWS 595

respectively. Here m is defined as

3(7+1)
(30)

and is 0(1). The constant B arises from the evaluation of the
total enthalpy and is defined by B = ulx(Q). The lower limit
of integration Xj found in Eq. (29) must be consistent with
the integration constants c2 and c3.

Just as was found in the inviscid flow, an adjustment
region of 0(e' /2 ) in extent downstream of the shock structure
is required in order to match successfully the outer solutions
with the structure solutions. If one defines a perturbation
potential, </>(jt,j>), so that

(31)

(32)

then the gasdynamic equation becomes

f>o
where f=x/[ (7 + I ) M I O ] 1/2, y=y, and QF is composed of
known lower-order velocity components at each order of ap-
proximation.7 The wall and centerline boundary conditions
become $y(x,l) =$y(x,0) =0, respectively, while matching
to the outer downstream solutions requires

Application of the divergence theorem15 to Eq. (32) gives, as
e^O, the relations

• i
0 (33)

and

f ' — m t '
r,f(0,y)dy = - —— \ Pls(0,y)dyJo «10 Jo 7+ 1 Jo

(34)

(35)

which can be used to complete the specification of the
boundary value problem for $.

Since the problem chosen is that of a transonic flow in a
dissipative gas with a Reynolds number 0 ( e ~ 2 ) , it is ex-
pected that a shock wave will appear as a region, with
thickness 0(e) , in which the flow undergoes a rapid transi-
tion. The gas speed downstream of the shock wave is taken
as subsonic so that a sonic line, located at x f ( y ) , is within
the shock wave structure. The sonic line certainly remains
within the structure of the shock wave with increasing
Reynolds number, thus permitting xf(y) to represent the
location of the shock structure region. In the limit as
Reynolds number goes to infinity, xe(y) must be coincident
with the location of the discontinuous, inviscid flow shock
wave; i.e., x((y)^xs(y) as Re-+<x>. Evidently then, a
suitable expansion for xg is

(36)

The characteristic lengths associated with the shock structure
region are the shock wave thickness, ds = 0 (e) , in the stream-
wise direction and the channel width, y w ( x f ) = 6 ( l ) , in the
transverse direction. Hence, independent variables, x+ and
y+, suitable for this inner region are taken as

(37)

The forms of expansions for the velocity components in
the inner structure region are found by expanding Eqs. (26)
and (27) for the outer velocity components in Taylor series
about the sonic line x((y). It is found that proper expansions
for the velocity components in the inner shock structure
region are given by7

(38)

(39)v - e2 v? + e572 vf/2 + e3 vf + . . .

The pressure, density, and temperature expansions for this
inner region are similar in form to Eq. (38).

The transport terms appropriate for the structure region
are found by substituting the above expansions into Eqs.
(6-8) to give R(u)~0(e-1), # ( y ) ~ 0 ( l ) , and R(h)
~6(e~l). The expansion for the total enthalpy in the struc-
ture region is given by H~ !/2 (7 + 1)/ (7- 1) + 0 (e 2 ) , while
the entropy variation within the structure region is S~ 0 (e2) .
Finally, one finds the variation of vorticity in the region is
0(e5 /2). The governing equations for the velocity com-
ponents are found from the gasdynamic equation (10) and
the vorticity relation vx — uy~0(e5/2). Thus, one finds that
u\ is governed by

ufujx+=mujx+x+ (40)

which has a solution u\ =g\(y) tanh r+ where r+ =f2(y)
— l/2g{ (y)x+ /m. Using this solution in the vorticity relation,
one finds by matching to the outer flow that v2 (y+ ) =f^y +

and gl and /2 are constants, say cj1" and c2 , respectively.
Finally, matching the inner solution for u\ to the outer
composite solutions, both upstream (x+^ — oo) and
downstream (x+ — + 00), leads to the result that

where

2m

(41)

(42)

and ulQ = ul(xtQ).
Here c£, which determines the origin of the r+ coor-

dinate, may be found from higher-order relations that locate
the sonic line position to 0(e) . The solution for u\ given by
Eq. (41) is Taylor's solution for the structure of a weak
shock wave.

The governing equation for u} is written in terms of r+

and subsequently integrated to give7

( 7 + l ) M 1 0 L4cosh2r+

, I~tanh2r+
wio —————~———o—L 2 cosh2/*4

r + tanhr4

2

+ A?

1+tanh2 r4

8

coshV

[" r+

L2cosh2r+
tanhr+ "I /2+ (y)• ———— i + ——

2 J coslcosh2/*4 (43)

where ff and f£ are functions of integration and

f-\)-
7-1 Pr-\
7+1 2m2 \3Pr

Matching this result to the outer solutions allows one to
determine / jf , while f% must be determined by evaluating uf
at r+ =0. By matching both upstream and downstream
second-order terms of u one finds two equations for/i1" (y),
which are combined with Eq. (33) to yield

where x ( ( y ) is given by Eq. (36). ~T~ (44)
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Equation (44) provides a relationship between the constants
specified by the upstream and downstream boundary condi-
tions c2u and c2d, respectively, and the sonic line location xm
to 0(1). This equation for xm is seen to be identical to Eq.
(24) for determining the location of the discontinuous shock
wave xs0 to 0(1).

Integration of the governing equation for u^ gives7

2

«io

-Cfut -C} ( +C+

(45)

where #8
+ is a function of integration, and where C f , C2

+,
C3

+, C4
+, C5

+, C6
+, and C7

+ are given in Ref. 7. The asymp-
totic forms of u\ and u2 f°r r+ -* ±00> m conjunction with
the asymptotic forms of w3

+ in the same limits as given by
the outer composite solutions, can be used in Eq. (45) to ob-
tain two equations, one in each limit, of the form

w3
+ )u,d=AUtdx+2+BUtdx++CUid (46)

Hence, if coefficients of like powers of x+ are equated in
each equation, six equations are obtained, three for each
limit.

It is found7 that the coefficients of x+2 give equations that
are identities and the coefficients of x+ result in equations
for determining x'a. Finally, it is seen from Eq. (45) that at
each limit, r + ^ + oo or r+ ̂  — oo, the coefficients of *+0 in-
clude g $ ( y ) , the function of the integration. If one of these
equations is subtracted from the other, the resulting equa-
tion, containing both the upstream and downstream asymp-
totic forms of the solution for the flow through the thick
shock wave, embodies the jump conditions applicable to the
third-order terms in the velocity components. The desired ex-
pression for xtl is found by integration of the resultant equa-
tion over the interval 0<j^< 1, where integrals of the poten-
tial functions £, /?, and 17 are found using Eqs. (33-35). The
result is

(47)

Since r+ = —ulo[x—xto — e(xn + 2mc2
r/ulo) + ...]/2era, it is

seen from this result that the only location in the shock
structure which is independent of Reynolds number to 0(e)
occurs at the point where c2 =0, i.e., when x = xf + 6(e3/2).
Moreover, with c2 =0, it is seen that the equation here for
xn is identical to that found for the position of the inviscid
shock wave term xsl in Eq. (25). Hence, it has been found
that to 0(e) the location of the sonic line within the struc-
ture of a transonic shock wave at moderate Reynolds
number is independent of Reynolds number and is coincident
with the location of the corresponding discontinuous wave
found at high Reynolds number.

V. Numerical Solutions of Inviscid Channel Flow
In the previous sections, analytical solutions describing the

behavior of both inviscid and viscous transonic flows in
channels have been presented. It was shown that to 0(e) the
position of the sonic line within the shock wave structure
coincides with the desired discontinuous shock wave in high

Reynolds number flow. In this section, numerical simula-
tions of inviscid transonic flows within the channel are
presented. The structure of the captured shock wave is com-
pared with the analytical structure solutions and the location
of the sonic line within the captured wave is also compared
with that from the analytical solutions.

The grid system used in the computation is composed of a
set of adjoining quadrilateral mesh cells that are of nearly
uniform spacing except for those cells near the channel wall.
The grid lines are body fitted and nearly orthogonal in all
regions of the solution domain. A numerical procedure, due
to Visbal and Knight,16 is used to generate the grid. In the
examples considered, the axial dimensionless cell length is
roughly 0.05 and the dimensionless transverse width varies
from a minimum of 0.02 near the wall to a maximum of
roughly 0.05 near the centerline. The mesh consists of 130
streamline cells and 24 transverse cells. The cross-sectional
flow areas associated with the entrance and exit of the chan-
nel are the same; the area ratio between either of these loca-
tions and the throat is 1.12, which corresponds to selecting
e = 0.2.

The explicit finite volume algorithm due to MacCormack
and Paullay17 is used to integrate the Euler equations in time
from an initial state until a steady-state solution is obtained.
The algorithm has been used extensively to obtain solutions
to compressible flow problems. The scheme is a second-order
accurate, shock-capturing method, in which the shock waves
are smeared. The dependent variables are integrated in time
by repeatedly applying the finite volume operator to the
dependent variables. The operator is a sequence of one-
dimensional, time-split finite-volume operators.

The inclusion of artificial viscosity in the finite volume
equations is of particular interest to this study. Artificial
viscosity is added in the form of a fourth-order pressure
damping term due to MacCormack.18 This particular form
of damping is widely used in shock-capturing numerical
schemes to ensure stability and diminish oscillations of the
solution in the neighborhood of shock waves and serves as a
suitable representative of the methods that implement ar-
tificial viscosity. The term added to the finite volume equa-
tions is of the form

( I w l + a )
4p

du
dx2 I a^

where a. is a constant used to vary the magnitude of this
term.

The initial conditions selected correspond to a uniform ax-
ial flow throughout the solution domain. The wall boundary
condition is the flow tangency condition given by Eq. (11).
On the channel centerline, the transverse velocity component
v is set equal to zero. The values of the pressure at the wall
and centerline are obtained from the equation19

dn

where n is the outward normal distance from the wall and K
the curvature of the wall or centerline. The stagnation
pressure and temperature are specified at the upstream in-
flow boundary, while static pressure is prescribed at the
downstream outflow boundary. One-dimensional, unsteady
characteristic equations20 are used to describe the inflow and
outflow wave phenomena. For all cases to be presented here,
the downstream static pressure is prescribed, according to
quasi-one-dimensional flow theory, at such a value so as to
place a normal shock wave at the location x = 0.8. The
numerical results are obtained using an integration time step,
which is 0.7 times the maximum-allowable time step given by
the linearized stability analysis. Integration is carried out for
a time period of roughly 20 times the characteristic time
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associated with convecting, at the critical sound speed, the
gas across the solution domain (a dimensionless distance of
approximately 6.5).

First, the numerical simulation is compared with the
viscous transonic flow theory (Sec. IV) in order to ascertain
the degree to which the captured shock wave structure cor-
responds to that given by the analytical solutions. Toward
that end, the composite analytical solution, valid to 0(e 2 ) ,
formulated in the previous section may be used to generate
solutions at various Reynolds numbers. The value of c2u is
taken as mu}x(Q) so that u remains finite at the channel
throat. The value of c2d is given by Eq. (44) with the sonic
line positioned at *f0 = 0.8. In the analytical solutions, the
Prandtl number, as well as the exponent kv in the viscosity
relation, is taken as unity.

Figure 3 is a comparison of the axial velocity along the
centerline as determined from the theory for flows at
moderate Reynolds number with the numerical solution.
Analytical solutions for three values of the parameter m,
which is inversely proportional to Reynolds number, are
shown, namely, ra = 0.05, 0.1, and 0.2, corresponding to
Reynolds numbers of 389, 194, and 97, respectively. The
numerical solution shown is obtained using an artificial
viscosity coefficient a of 0.5. The analytical solutions are
seen to bracket the numerical solution within the shock
structure region; the numerical solution also passes through
sonic velocity at the location of the shock wave in inviscid
flow. Additionally, the overall shape of the curves found
analytically and numerically are qualitatively similar,

especially within the shock wave structure. A comparison be-
tween the analytical and numerical solutions for the axial
velocity component along the wall is found in Fig. 4. Again,
the overall character of the numerical solution is quite
similar to that displayed by the analytical solutions. In this
particular example, the numerical solution does not exhibit
the Zierep singularity,6 probably as a result of excessive
numerical damping. In light of these favorable comparisons,
it is evident that a numerical solution of the Euler equations,
including artificial viscosity and truncation error, for a tran-
sonic channel flow containing a shock wave is similar to the
analytical solution of the Navier-Stokes equations at
moderate Reynolds numbers.

The effects on the numerical solution of changes in the
magnitude of the artificial viscosity is shown in Fig. 5. Here
the axial velocity component u on the centerline is shown for
three values of the artificial viscosity coefficient a and com-
pared with the analytical solution for inviscid flow in the
channel (Sec. III). As the numerical damping increases, the
numerical shock wave is seen to increase in thickness in the
expected manner. Except for the largest damping solution
(a=l), the sonic points within the numerical shock wave
structures are observed to coincide with the location of the
discontinuous shock wave in the inviscid flow solution. The
numerical shock wave obtained with an artificial viscosity
coefficient of 1.0 is approximately 3e in thickness; it may be
an indication of the limit to which the amount of artificial
viscosity may be increased and still give results similar to
those obtained in the physical flow as Reynolds number
decreases.
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flow theory and numerical solutions.
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The effects of numerical damping on the axial velocity at
the wall are found in Fig. 6. Here, the presence of the Zierep
singularity in the numerical solution is observed for the case
with the smallest damping (a = 0.05). Again, the sonic points
within the numerical shock structures coincide with the loca-
tion of the shock wave discontinuity except for the solution
with high damping.

VI. Conclusions
The behavior of shock waves in transonic flows with vary-

ing Reynolds and Prandtl numbers has been examined using
analytical and numerical methods. The method of matched
asymptotic expansions has been used to provide analytical
solutions for both an inviscid and a viscous, thermally con-
ducting transonic flow in a symmetric channel. The exten-
sion of previous work on viscous transonic flows in a chan-
nel to include the effects of Reynolds and Prandtl numbers
upon the structure of a shock wave at moderate Reynolds
number has been presented. The position of the sonic line
within the structure of a shock wave has been found to first
order and is observed to be independent of Reynolds and
Prandtl numbers to this order. Further, one finds that it is
coincident with the position of the shock wave in the cor-
responding inviscid flow.

Numerical solutions for an inviscid, transonic flow in a
channel have been obtained using a second-order accurate,
finite volume method. The numerical solutions have been
observed to agree well with the composite analytical solu-
tions for the channel flow including the structure of the
shock wave. Additionally, the position of the sonic line
within the numerical shock structure agrees well with the
position of the shock wave in inviscid flow as determined
analytically. Although not presented here, similar results
were found to zeroth order in the problem of transonic flow
about an airfoil with a supercritical region terminated by a
weak shock wave.7

This research lends support to the commonly accepted
supposition that the position of the sonic line within the
structure of a numerical shock wave can be adopted as the
location of the corresponding shock wave in inviscid flow.
Finally, the analytical solutions presented here allow this
demanding model problem to be used in validating numerical
algorithms.
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