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Abstract

The Middeck Active Control Experiment
(MACE) is being reflown as MACE II. Its purpose
is to gain on-orbit experience with a variety of adap-
tive controllers. The University of Michigan con-
tribution to the effort is Fixed-Structure Adaptive-
Improvement (FSAI) control. FSAI is a framework for
online control optimization which is designed to aug-
ment a baseline, low-gain robust controller so as to im-
prove its performance: FSAI is adaptive control aimed
at stable plants. To obtain Bounded-Input Bounded-
State (BIBS) stability, FSAI proceeds by generating
controllers via an optimization algorithm, selectively
implementing them using an optional, online Nyquist
check, evaluating the performance online, opening the
loop if at any time the performance exceeds the open
loop (plant-hbaseline) performance, and then allowing
the stable plant to settle so as to return the plant state
to the same neighborhood of the origin (thus ensur-
ing switched system stability). Implemented on the
MACE II hardware on the ground, in 6 separate runs
FSAI control generated over 32,000 controllers in 3.4
hours with average improvements of the baseline de-
signs of 37% and without the output saturating. A
straightforward, automatic, online frequency-domain
identification algorithm was also developed as part of
the online Nyquist check.

Introduction
An inherent problem in spacecraft control de-

sign is that development and testing occurs in a 1-g
environment whereas the spacecraft operates in 0-g.
Even with gravity offload systems gravity still: loads
the structure causing changes in the structure's stiff-
ness; loads joints, thereby reducing their nonlinear
behavior; and deforms the structure, resulting in the
structure's dynamics being measured with respect to
a non-0-g equilibrium.4 In addition, the dynamics of
the offload system must now be considered. For one
flight experiment the frequencies of the first 10 modes
shifted in going from 1-g to 0-g from 0.4 to 12% with
5 of the modes shifting more than 3%.3

In other cases, it is not possible to test the
spacecraft as a whole. Finite element method (FEM)
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models are developed for spacecraft components based
on technical specifications and material properties,
and when possible, the models are refined using test
data. The separate models are then combined to form
a FEM model for the entire spacecraft. A drawback
to this procedure is that the overall FEM model may
be too inaccurate for use in high-performance con-
trol design. For NASA's Galileo spacecraft, 1-g data
only gave the modal frequencies to within 20% and
the mode shapes to within 50%.*

Performance requirements often dictate ac-
tively controlling flexible modes of a spacecraft as op-
posed to limiting control bandwidth to avoid control-
structure interaction. In trying to control these un-
certain, flexible modes two approaches have been con-
sidered: robust control and adaptive control. In the
first case, a bound on the uncertainty of the structural
dynamics is developed and the control is forced to be
stable over the entire range of possible dynamics. By
their nature robust controllers sacrifice performance
for a greater tolerance to mis-modeled/unknown dy-
namics.

Adaptive controllers have been examined in the
hopes that this performance may be recovered. As the
adaptive controller is "tuning" itself to the actual, 0-
g dynamics, robustness is no longer required; in some
sense the adaptive controller learns the actual dynam-
ics and, therefore, is not required to be stable over a
possibly conservatively wide range of dynamics.

The Middeck Active Control Experiment
(MACE), which flew on STS-67 in 1995, developed
and validated tools for predicting 0-g dynamics and
control performance from 1-g data. Specifically,
MACE considered the pointing of a payload at the
end of a flexible appendage subjected to stochastic
disturbances. The approach taken3 was to construct
an accurate FEM model from 1-g data and deter-
mine the range of parametric uncertainty in the 1-g
model. Next the gravity offload system and gravity
itself were "turned off" in the model producing a 0-
g FEM model. Finally, the 1-g uncertainty estimates
were projected into estimates of the 0-g parametric un-
certainty. Using a variety of robust control synthesis
techniques, controllers were designed based on the 0-g
FEM model incorporating the 0-g uncertainty predic-
tions.8 MACE also performed on-orbit identification
with the results being sent to the ground where con-
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trollers were redesigned. The redesigned controllers
were uploaded and also run.

MACE was a successful mission demonstrating
the accuracy and efficacy of the 0-g modeling and ro-
bust control techniques used. A lesson learned from
MACE was that, while the on-orbit performance of
low-to-medium and even some higher gain controllers
could be reliably predicted, the highest gain designs
required on-orbit data and redesign to be stably imple-
mented (an unexpectedly high frequency tether mode
destabilized the ground-designed controllers). Also
noted was that larger, more complex spacecraft struc-
tures may not be amenable to the extensive preflight
testing used to develop the accurate FEM model nec-
essary for successful 0-g predictions. In these cases,
coarser models could be used to obtain a modest
improvement in pointing performance and on-orbit
identification coupled with ground-based controller re-
design would be used to obtain the performance re-
quirements.15

MACE II is a flight experiment using a re-
furbished MACE test article to examine the capa-
bilities of adaptive controllers for pointing control
and line-of-sight (LOS) jitter reduction. One of
the goals of MACE II is to develop adaptive algo-
rithms that greatly reduce the extensive modeling,
noted previously, and on-orbit testing necessary to
successfully implement robust controllers for high-
performance missions.16 The Air Force Research Lab-
oratory (AFRL), which is responsible for MACE II,
has invited teams from industry and academia to pro-
vide adaptive controllers. Reported herein is the adap-
tive controller developed by the University of Michi-
gan (UM) team and the experimental results of this
controller in preflight, ground tests.

The MACE II test article will be briefly de-
scribed, followed by a statement of the control prob-
lem addressed by the UM team. The adaptive
controller developed, referred to as Fixed-Structure
Adaptive-Improvement (FSAI) control, will be out-
lined and some theoretical properties discussed. Fi-
nally, experimental results will be presented.

MACE II Hardware Description

The MACE configuration was designed to
represent an actively controlled, high-payload-mass-
fraction spacecraft. The test article consists of a flex-
ible bus to which two payloads, a reaction wheel as-
sembly (RWA) and other actuators and sensors are
mounted (see Figure 1). Each pay load is mounted to
the structure using a two-axis gimbal that provides
pointing capability. Instrumentation includes angle
encoders on each gimbal axis, a three-axis rate gyro
platform under the RWA and a two axis rate gyro

platform mounted in the primary payload. The bus
is composed of circular cross-section struts connected
by aluminum nodes. The structure is supported for
ground tests by a pneumatic/electric suspension sys-
tem.

Because the suspension cables, the bus and
gravity vectors are all in the same plane, the structural
dynamics decouple into vertical (about the Z-axis) and
horizontal (about the X and Y axes) dynamics. The
control is implemented using a 33 MHz processor op-
erating at a 500 Hz sampling rate. Approximately 0.8
megabytes are available for the controller executable
file and any adaptive controller memory requirements.

The UM team considered a SISO vibration
control problem where an unmeasurable, broadband
(white noise filtered through a Butterworth filter with
a corner at 50 Hz) disturbance is injected into the sec-
ondary payload's Z torque actuator (SGZt), the pri-
mary payload's torque actuator (PGZt) is used for
control and the primary payload's Z gimbal rate gyro
(PGRGZ) is the output measurement. The PGZt
and PGRGZ are colocated, but anti-aliasing filters
and computational delay introduce an approximately
5 time step delay rendering the PGZt-to-PGRGZ loop
non-minimum phase.

The performance metric for the MACE II flight
experiment is the square root of the integral from 0.5
to 50 Hz of the power spectral density (PSD) of the
integrated PGRGZ signal (the output). This metric
is the bandlimited RMS of the Z-axis angle of the
primary payload (the integration to obtain angle from
rate is done in the frequency domain).

A modified metric was used for the UM team's
controller development. Evaluating the performance
metric described above takes 114 seconds, and obtain-
ing a good approximation takes around 20 seconds.
FSAI control, as will be described, is essentially an
online optimization framework—the more controllers
that can be tried during the experimental run, the
more improvement will be observed. Using the above
metric allows approximately 300 controllers to be eval-
uated during an experimental run. Instead, if the
bandlimited RMS of the Z-axis angle rate is used, up-
wards of 5000 controllers can be evaluated. Integrat-
ing the angle rate weights the lower frequencies with
respect to the higher frequencies, resulting in the need
to take longer data streams to capture performance
relevant information. Using the rate instead allows
performance relevant information to be obtained in
less than a few seconds.

Simulations were run with the actual MACE II
metric (the bandlimited Z-axis angle RMS), but due
to programming delays, ground data was not collected
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Figure 1: MACE II Test Article Schematic
using the angle metric. The ground results to be pre-
sented are for the rate metric.
Control Problem

The control problem considered for MACE II
may then be stated as follows: develop an adaptive
algorithm to regulate a non-minimum phase, asymp-
totically stable, unknown, LTI plant subjected to an
unmeasurable, broadband disturbance. While a struc-
ture on orbit is not open loop asymptotically stable
due to rigid body modes (RBMs), it is assumed a
low-bandwidth controller stabilizes these modes. This
is equivalent to assuming a baseline, stabilizing ro-
bust controller is running which provides some per-
formance, but, as mentioned in the MACE lessons
learned, it is of low-to-medium gain. The open loop
is then redefined to be the open loop plant plus base-
line controller in feedback. The goal is to augment
the baseline, robust controller, recovering the perfor-
mance traded for robust stability guarantees.

Review of Adaptive Vibration Control

As the disturbance is broadband and unmea-
surable schemes aimed at tonal cancellations and feed-
forward controllers are not considered. Robust Adap-
tive Control (RAG) is the field of adaptive control
which treats disturbances and/or unmodelled dynam-
ics. Direct RAC schemes, for example, modified
Model Reference Adaptive Control (MRAC), require
the plant to be minimum phase.11 Indirect RAC
schemes, such as the Adaptive Pole Placement algo-
rithms collected in loannou and Sun,11 are applicable.
A drawback is that bounds on performance are not
practically computable. For instance, it can be shown
(loannou and Sun, Theorem 9.5.2) that the output
is bounded as J0 y2(r) dr < c(d^ + /o) + c where /o
is a constant depending on the method by which the
adaptive controller is made robust (e. g. dead zone),
e/o is a bound on the disturbance and c is a constant
which can be shown to exist, but as far as the authors

are aware, cannot be computed.
However, RAC addresses a different problem:

the plant is assumed to be open loop unstable. As-
suming that the plant is open loop asymptotically sta-
ble (possibly due to a baseline, robust controller in
feedback) should allow more to be said about perfor-
mance.

If the plant is open loop stable, the purpose
of adaptive control changes from stabilization to per-
formance enhancement. This emphasis is discussed in
Wang, Mareels and Moore22 and Tay and Moore.19

Adaptive control aimed at performance enhancement
will be referred to as Performance Adaptive Control
(PAC). Wang et al., Tay and Moore and others (Venu-
gopal and Bernstein, Trulsson and Ljung) propose and
analyze what may be called direct PAC schemes: a
performance criterion is minimized online through di-
rect modification of the control parameters. These
schemes generally require the assumption of bounded
signals to show convergence of the performance metric
to the minimum or are of a local nature—if the "true"
plant is sufficiently close to the "nominal" plant, the
metric will converge (not necessarily to the optimum).

Indirect PAC schemes, as exemplified by Ba-
yard, Yam and Mettler,2 iterate and generally couple,
identification and control design. While referred to
as "adaptive," these methods embody the principle
of successive controller refinement. The final design
of the iteration, however, remains a robust design by
necessity (part of the identification process provides
error bounds for robust design).

For direct PAC schemes, a method for ensuring
the boundedness of signals is needed, and for indirect
PAC schemes, there is still the possibility of recovering
the performance lost in robust designs.

FSAI Algorithm

Building upon the idea of successive controller
refinement, Fixed-Structure Adaptive-Improvement
(FSAI) control separates performance optimization
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and stability concerns, providing a framework for
online controller improvement. It at best improves
the baseline controller performance because the per-
formance metric problem may be multimodal (con-
tain multiple local minima) and be high-dimensional
(many controller parameters) and such optimization
problems are presently an open problem.10 Stochastic
algorithms do guarantee convergence with probability
one, but can take a great deal of time to converge.

FSAI control has two parts. The Optimization
Module (OM) implements an optimization routine of
the designers choice—there are no restrictions. Fur-
ther, the parameterization of the controller can also be
chosen freely. Bounded-Input Bounded-State (BIBS)
stability is ensured by the Stability Evaluation Mod-
ule (SEM).

The FSAI control algorithm is now described
and then its BIBS stability is discussed.

The assumptions on the plant are as follows:
Al) The plant model is linear, time-invariant (LTI)

and characterized by an unknown parameter vec-
tor 0 e fRn*.

A2) 0 G 0, where 0 is known and compact.
A3) For all 0 G 0 the plant model is asymptotically

stable.
A4) The plant model is strictly proper.
A5) The plant model is subjected to a bounded input

disturbance and the bound is known.
Note that the plant is assumed to be parametrically
uncertain, and the true parameter vector belongs to a
known, compact set. There are a number of identifi-
cation algorithms which provide such a compact set,
for example, the ellipsoidal sets of Kosut, Lau and
Boyd.13

A controller parameterization is assumed to ex-
ist so that the controller transfer function may be writ-
ten as C(s,p), where p is the controller parameter
vector. Figure 2 shows the FSAI controller is a block
diagram. A plant is subjected to an input disturbance
d and sensor noise v with the FSAI controller in feed-
back, u is the control input and y the plant output.

The performance metric is J = J(p). In anal-
ogy to the output constraint set of Gilbert and Tan,7
which is a set Y such that if the output remained in
the set, then the state and control are considered ac-
ceptable (i. .e. the system under consideration was in a
safe operating condition), we will enforce the principle
that the closed loop performance should not be worse
than the open loop performance. It is assumed that
the performance metric is monotonic non-decreasing
in time, becomes unbounded as the output becomes
unbounded and only requires a finite time, Tj, to eval-
uate from output measurements. For example, the

performance metric used in the MACE II experimen-
tal runs to be presented was J = X}fc=i2/I> where
TV = 600 time steps and y^ is the measurement at
time step k.

The FSAI algorithm is as follows (refer to Fig-
ure 2):

1. The OM evaluates the open loop performance,
J0i, and passes it to the Performance Enforce-
ment Block (not shown in figure).

2. The OM generates a controller p.
3. p is passed to an optional, online Nyquist check.
4. If p passes the check, it is implemented.
5. The controller runs until the performance is eval-

uated or J(p) > J0i-
6. If the controller's performance is fully evaluated,

it is passed to the OM, goto step 2.
7. If the controller's performance becomes greater

than J0/, the feedback loop is opened (via the
switch in the figure controlled by the Performance
Enforcement Block), and the plant is allowed to
settle a predetermined amount of time. After set-
tling, goto step 2.

This process continues until either the performance
metric has been calculated a prespecified number of
times or satisfactory performance is achieved.

Though it is not theoretically necessary for
BIBS stability, an online Nyquist check makes the
FSAI controller much more efficient in terms of perfor-
mance improvement versus time, and greatly improves
the time history of the output as fewer destabilizing
controllers are implemented. The Nyquist check uses
a frequency response function (FRF) of the plant that
is identified online automatically (the ID algorithm is
discussed in the MACE II Ground Results section).
Since C(s, p) is known, it and the plant FRF are used
to generate an estimate of the loop gain in the fre-
quency domain. A simplified Nyquist check is used:
the loop gain is not allowed to enter a "lock-out" re-
gion about the -1 point. This type of check simplifies
the logic and eliminates conditionally stable and un-
stable controllers.

Figure 3: Lock-out Region for Nyquist Criterion

We note that it is theoretically possible to de-
termine stability from a finite number of points in the
frequency domain,12 but now the frequency response
of the characteristic polynomial must be considered
(this would require fitting a transfer function to the
plant FRF to obtain the numerator and denominator
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Figure 2: FSAI
polynomials). More importantly, when a disturbance
and noise are present, the identified model would re-
quire error bounds to ensure stability, and thus the
finite information test becomes a robust stability test,
which, in turn, removes the possibility of recovering
performance.
BIBS Stability

The FSAI algorithm just presented is the algo-
rithm as it was implemented on MACE II. It does not
have the theoretical guarantee of BIBS stability. To
obtain this guarantee without adding more assump-
tions, the plant must be allowed to settle after each
and every controller implementation whether or not
the performance evaluation ran to completion or was
terminated early due to J(p) > J0i- The reason is
that the FSAI algorithm is a switched system.

From Liberzon and Morse,14 a switched sys-
tem is a family of state matrices {Aq : q € Q}, a rule
v(t) : [0, oo) -> Q that is piecewise constant in time
and the state equation x — Aa(t)X. Even if all the Aa

(referred to as subsystems) are asymptotically stable,
it is possible for the system to have an unbounded
response. That is, even if FSAI control only imple-
ments stabilizing controllers, it is still possible that
the state could grow without bound. As no assump-
tions of observability have been made, it is possible
for the performance to remain bounded even as the
state becomes unbounded.

Results ensuring BIBS stability for switched
systems are generally of the form: if one switches in-

Architecture
frequently enough and if the ratio of stable subsystem
activation to unstable subsystem activation is large
enough, then switched system is exponentially sta-
ble.25 However, the "enough" quantities depend on
a Jordan-form-based bound of the matrix exponential
of the subsystems and the ratio of the spectral ab-
scissa of the most unstable subsystem to that of the
least stable subsystem, respectively, both of which can
be quite conservative. Further, as J(p) < J0i implies
nothing about the location of the eigenvalues of the
closed loop state matrix (unstable systems can have
arbitrarily good performance over finite time scales)
and the Nyquist check cannot guarantee stability (due
to identification error and/or finite information), each
controller implemented must be assumed to be desta-
bilizing, and hence the ratio of stable subsystem acti-
vation to unstable subsystem activation must be taken
as the ratio of time the plant is allowed to settle to the
time a controller is implemented. All of these factors
lead to excessively long settling times.

A different approach is taken for FSAI. Instead
of trying to obtain exponentially stability, BIBS sta-
bility is obtained by returning the plant state to the
same neighborhood of the origin (in phase space) be-
tween each controller implementation. This is done
by using a bound on the matrix exponential on a set
of matrices.

Recall 9 G 0, where Q is compact. The state
of all plants in the uncertainty set can be bounded if
a bound on \\eAt\\ can be found for all state matri-
ces A resulting from 0 £ 0. It is possible to extend
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current bounds on the matrix exponential to sets of
matrices in many cases. However, when considering a
set of matrices which contain defective matrices (ma-
trices with at least one Jordan block of order greater
than one), only the Schur Decomposition-based bound
can be extended, and it can be quite conservative.21

A new bound based on a combination of the Jordan-
and Schur-based bounds has been developed which is
less conservative in many cases and it is referred to as
the Hybrid bound. Using the Hybrid bound and the
history of the control used during a controller perfor-
mance evaluation, it is possible to calculate a bound
on the settling time to return the plant state to a
neighborhood of the origin. The algorithm only in-
volves bisection of (n — l)th order polynomial, and so
can be done relatively inexpensively online.

The derivation of the Hybrid bound and the
settling algorithm is involved and is not reproduced
here. Details can be found in Scharf.18

With the bound on settling time, each con-
troller is implemented when the plant state is in
the same, known neighborhood of the origin. Using
the controller saturation value and Tj, the maximum
length of time any controller is implemented, the max-
imum magnitude of the plant state of any plant in the
uncertainty set can be calculated. Then, using the Hy-
brid bound, the maximum transient in settling from
this maximum state magnitude can also be found.
And so, the FSAI control algorithm is BIBS stable.

However, the settling times are still found to
be too conservative for practical implementation. One
area for further inquiry is what can be said if observ-
ability is assumed for all plants in the uncertainty set.
For MACE II, the pragmatic approach of finding a
suitably long settling time through experiment was
taken (a settling time of 0.2 seconds was selected).
Further, the plant was allowed to settle only if J > J0/,
otherwise the next controller generated by the OM was
implemented without pause. This modified algorithm
was the one enumerated earlier.

Optimization Module

The OM generates the controllers for online im-
provement. With BIBS stability provided (assuming
that variant of the algorithm is used) by the Stabil-
ity Evaluation Module (SEM), any optimization algo-
rithm and controller parameterization can be used to
attempt to optimize, online, the performance metric.

The performance metric, as discussed in the
MACE II Hardware section, is the PGRGZ RMS
from 0.5 to 50 Hz. This metric is not monotonic
non-decreasing in time, so for online optimization
a metric which approximates the bandlimited RMS,
J(P) — Sl^i2/fc(p)j 'IS uged. In the ground results

to be presented, y^ is not bandpass filtered, so the
online metric is truly only an approximation, but it is
easy to calculate and is shown in the next section that
improvement can be achieved with it.

The parameterization C(s,p) used by the UM
team is based upon classical design concepts and is
referred to as General Modal Control (GMC): a num-
ber of basic filter blocks are combined to form a "gen-
eral" form to control one mode, and successive general
forms are connected in parallel to control successive
lightly damped modes. This approach is similar to
the generalized structural filtering concept of Wie and
Byun.23 In the form chosen p has dimension 23, that
is, there are 23 controller parameters to be selected,
and C(s,p) is 13th order.

Optimizing a 23rd dimensional performance
metric, possibly having local minima, is a diffi-
cult problem. Many deterministic optimization al-
gorithms become impractical for dimensions greater
than 10.10'20 Stochastic algorithms were used in the
OM as they can be applied to a wide number of prob-
lems with little modification and have been used on
problems with dimensions greater than 100.20 How-
ever, their convergence can be quite slow.

Instead of trying to solve the 23rd dimensional
optimization problem online, a solution of which is
not assured offline, the Super-Heuristic method of Ho9

was adopted with modification. Super-Heuristics (SH)
is based upon the simple idea that a control design
"...born out of human experience, insight, and ingenu-
ity can often be good enough but is seldom optimal...,"
and as such, there is a good chance that perturbing
the heuristic design will lead to a better design. Note
the lack of optimality may come from using classical
design techniques or even using optimal design meth-
ods with truncation or with an uncertain plant model.

Ho9 uses the following example as justification.
Given a design let e be the probability that perturbing
the design a small amount leads to a better design.
Then the probability of obtaining a better design in TV
perturbations is l-(l-e)7V. For e = 0.05 and N = 20,
the chance of getting a better design is greater than
50%.

We take the idea of Super-Heuristics one step
further—let the perturbations be based upon the con-
troller design methodology. The GMC controller con-
troller used on MACE II is essentially two individual
"mode controllers" in parallel, each mode controller
consisting of a bandpass filter and two notches (which
increase the classical stability margins). The design
proceeds by designing the bandpass filter of the first
mode controller to attenuate the response of the first
structural mode. The two notches are then designed
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to increase the classical stability margins and then
the bandpass filter is redesigned to take advantage of
the increased margins. The bandpass-notch-bandpass
process is repeated for the second mode controller ap-
plied to the second structural mode. Then the entire
process is repeated starting again with the first band-
pass filter. Refinement continues in this manner un-
til performance requirements are satisfied or stability
limitations prohibit increasing the gain further. Also,
a lead-lag filter is used to shape the overall phase and
a proportional feedback gain is included to improve
damping.

The GMC controller designed was compared
to a truncated linear quadratic Gaussian (TLQG) de-
sign on a 30th order auto-regressive, moving-average
(ARMA) model of the MACE II PGZt to PGRGZ
loop obtained from experimental data. The TLQG de-
sign was synthesized using the disturbance and noise
magnitudes of the MACE II experiment with the LQ
weights being chosen so that the TLQG design had
the same control RMS as the GMC design. That is,
both the GMC and TLQG designs use the same con-
trol effort. The TLQG design was obtained through a
balanced truncation of the LQG design to 13th order.
The performance metric for comparison is simply the
steady-state output variance. The value of the met-
rics, the classical stability margins and the value of
the metrics after Super-Heuristics (SH) and Modified
Super-Heuristics (MSH) have been applied to GMC
and TLQG designs are shown in Table 1. Note that
MSH cannot be applied to the TLQG design as no
rationale was apparent for choosing subvectors of p
to perturb. Also, 2cr error bounds are shown in the
table. The discrete Lyapunov equation for calculating
the steady-state output variances was ill-conditioned
and so the metrics were calculated through time av-
erages. While SH does better in this example then
MSH in improving the GMC design, MSH was found
be slightly more promising for implementation.

Table 1: Comparison of Initial and Improved GMC
and TLQG Designs

Property _____GMC TLQG
Initial Cost (2cr) 26.70(1.12) 24.24(1.17)

Initial Gain/Phase
Margins, dB/deg. 6.1/67 6.5/128

SH
Final Cost (2<j) 21.02(0.22) 24.19(0.31)

MSH
Final Cost (2cr) 21.38(0.36) N/A

While initially better, the TLQG design is very
near a local minimum of the performance metric. This
example shows that improvement obtained in the ex-

perimental results of the next section is not simply
due to having a very poor initial design; the GMC
controller compares well to a truncated LQG design.
It also compares favorably to an LQG design used on
the ground experiments for the first MACE mission.8

Grocott et al.8 do not state the order of this LQG
controller, but the original MACE software could run
an 80th order compensator.

MACE II Ground Results
The final version of the code delivered to the

Air Force Research Laboratory (AFRL) for the flight
experiment was run on six cases. Five PGZt to
PGRGZ cases were run, four with the disturbance
injected into the SGZt and one with the distur-
bance injected into the PGZt. A case for the PGXt-
to-PGRGX loop was also run with the disturbance
injected into the SGXt. The Z loop GMC con-
trollers were not redesigned for the different distur-
bance sources, and for all loops the performance im-
provement was comparable. A disturbance injected
into the a primary gimbal will be referred to as Dl
and into a secondary gimbal as D2.

The experimental runs take approximately 55
minutes. The automatic online ID, discussed subse-
quently, takes 17 minutes, the control improvement
runs for 35 minutes on average, and initialization and
data collection requirements take 3 minutes. In the 35
minutes of control improvement, 5400 controllers are
generated by the Modified Super-Heuristics (MSH) al-
gorithm and are selectively implemented by the online
Nyquist check.
Online Identification

The frequency response function (FRF or
transfer function) of the plant is estimated using the
well known cross-spectral power method (Franklin et
al.,5 pg. 492). The algorithm for calculating the power
spectra is taken from Press et al.17 In addition, we
also 1) calculate the coherence online, and if it is not
acceptable the frequency range wherein the coherence
is sub-par is broken into two equal sub-regions and
the identification is repeated in successive sub-regions
until the coherence tolerance is met or the frequency
ranges become smaller than another tolerance, and 2)
perform a pre-ID scan to maximize the signal-to-noise
ratio (SNR) of the identification signal. This scan is
done by repeatedly increasing the magnitude of the ID
signal until either the input or output saturate. The
ID signal magnitude is then decreased by a safety fac-
tor to ensure saturation does not occur during data
collection for identification.

Coherence checks and frequency "zooming," as
the breaking down of the frequency range is sometimes
called, are tasks commonly carried out during an iter-
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ative, designer-in-the-loop modeling effort. We have
automated them in a simple manner.

Bayard et al.1 develop a comprehensive au-
tomatic, online ID algorithm aimed at the specific
problems of on-orbit, large space structure identifi-
cation. The identification inputs can be broadband or
narrowband stochastic, or sinusoidal. They also use
stochastic spectral estimation using Welch's Period-
gram Method. Bayard et al. also mention that if the
actuator power is constrained, the frequency range can
be broken into several, overlapping narrowband (via
their narrowband stochastic ID signals) ranges. The
estimates in each individual ranges can then be com-
bined into an FRF estimate over the entire frequency
range.

Yam, Bayard and Scheid24 use the Schroeder-
Phased Sinusoidal Input Design for their ID signal.
Discrete Fourier Transforms (DFTs, used in Welch's
Method) are not exact; the value at a certain bin fre-
quency is actually the average of not only that bin,
but also of the surrounding bins. This phenomenon is
known as leakage. One of the implications of the aver-
aging function is that if a signal only contains spectral
content at the bin frequencies of a DFT, then no leak-
age occurs. If there are no disturbances, or if the ID
signal is large compared to them, and if the ID sig-
nal is a sum of sinusoids at the bin frequencies, then
the DFT will be exact. That is, there is no discrep-
ancy between the continuous Fourier Transform and
the DFT.

One drawback to the "sum-of-bin-frequency-
sinusoids" (SBFS) approach is that the ID signal has
very large peaks in the time domain. The Schroeder
Design phases the bin-frequency sinusoids so that this
peaking is minimized. We do not Schroeder phase the
sinusoids in our SBFS ID signal as we were unaware
of this result until after the FSAI software had been
submitted to the AFRL. The FSAI identification al-
gorithm would almost certainly benefit from it.

The automated ID algorithm for MACE II
combines the frequency sub-range concept mentioned
in Bayard with the SBFS concept mentioned, among
other places, in Yam et al. and Press et al. The PSD
of a SBFS signal looks like a comb, and so we refer to
the frequency sub-ranges as combs. Given an initial
number of combs, Nc, the ID algorithm breaks the
entire frequency range into Nc equally sized combs.
The SBFS signals for each comb are generated using
nominal magnitude scalings. Then for each comb, the
ID signal is increased until saturation of the input or
output. This process is the pre-ID scan mentioned
earlier.

After the pre-ID scan, the ID signal for each

comb is repeatedly applied to the plant a user-
specified number of times and the output is averaged
in the time domain.

Parameters for the MACE II implementation
are 4 combs, 1024 point DFTs (0.49 Hz spacing) and
the final FRF is the result of the average of two FRFs,
each FRF based on data that has been averaged 50
times in the time domain. With these parameters the
ID data collection takes 13.7 minutes, the pre-scan
takes on average approximately 0.9 minutes and the
computation of the DFTs and periodgrams takes the
remaining 2.4 minutes.
FSAI Results

A time history of the PGRGZ signal for a FSAI
experimental run is shown in Figure 4. First, dur-
ing the "Init" stage, start-up transients are allowed to
die out and all memory allocation and initialization
takes place. Then, open loop (OL) performance data
(actual bandlimited RMS metric) is collected and J0i
(online optimization metric) is calculated. The short
burst which is next is the pre-ID scan to maximize
the ID SNR. It is followed by the four identification
combs. During the next, long stretch of time, the OM
is improving the controller, and finally, closed loop
performance (actual bandlimited RMS metric) data
is collected.

The FSAI code stores the first 60 controllers
that are terminated before their performance is fully
evaluated. The termination can be due to either con-
troller saturation or because J > J0/. In the run
shown in Figure 4, of the first 60 controllers termi-
nated, none were destabilizing when checked offline on
an accurate model of the PGZt to PGRGZ loop. How-
ever, for the X Loop run, 11 of the first 60 were desta-
bilizing. Considering the time history of the output
for this run, shown in Figure 5, a number of destabiliz-
ing controllers were implemented. The online ID was
not as accurate for this loop due to a smaller SNR dur-
ing identification. Even with destabilizing controllers
being implemented, a nearly 60% improvement was
obtained and the SEM maintained the output magni-
tude at an acceptable level (it never saturates during
controller improvement).

Table 2 shows the results (average for Z
Loop+Dl) for the different loops and disturbances.
The numbers reported are for the 0.5 to 50 Hz ban-
dlimited RMS, not the online performance metric of
lL,k=i y\- ft *s n°ted that the FSAI architecture did
not need to be changed for the different cases. All
that was changed in going between the different dis-
turbances and loops was that in going from the Z loop
to the X loop, a different GMC controller was used
to initialize the MSH algorithm. The improvements
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ranged from 23% to 58%.
Table 2: Summary of Results for X and Z Loops and
Disturbances Dl and D2

100-J(rads2/s2) for:a

Controller | Z Loop/Dl /D2 X Loop/D2
Open Loop

GMC
FSAI

% Improved

3.01
1.82
1.09
40.1

2.41
1.72
1.18
31.4

4.23
1.72
0.71
58.7

^Sensor noise constrains 100 • J > 0.15

The PSD for the Z loop run with disturbance
Dl is shown in Figure 6. The FSAI control algo-
rithm has found a controller with worse low frequency
performance, but this low frequency performance has
been traded for better high frequency performance
such that the overall performance is improved. This
trade-off is observed in each of the runs and is prob-
ably due to the integral performance constraints of
Freudenberg and Looze.6 Freudenberg and Looze de-
rive integral constraints for non-minimum phase sys-
tems which imply that if the performance is increased
in one frequency range, then it is necessarily decreased
in another, and further, that the performance will be
decreased by an amount which cannot be made arbi-
trarily small. _.

Conclusions
The FSAI approach provides a simple quasi-

adaptive framework for online control improvement; it
can be used to augment a low-to-medium gain, base-
line robust controller. Further, the optimization al-
gorithm and controller parameterization can be cho-
sen independent of stability concerns. The version of
FSAI for which theoretical guarantees have been de-
rived has conservatively long settling times (based on
a bound on the matrix exponential on a set of matri-
ces) , and ways for reducing this conservatism are cur-
rently under study (for instance, assuming the plant
is always observable on 0).

In practice, settling times were determined
through trial and error, and an online, frequency-
domain identification algorithm was developed to be
used with an online Nyquist check. The Nyquist check
provides a valuable pre-filter, but FSAI control can be
made to work without it.

The experimental runs presented, while they
do not characterize the performance of FSAI (this de-
pending to a large part on the performance metric,
optimization algorithm and controller parameteriza-
tion), validate the overall approach: over 32,000 con-
trollers were generated and selectively implemented
in 3.4 hours of online control improvement without
the output saturating. In fact, this behavior was
achieved even though destabilizing controllers were

implemented. And in these runs baseline controllers
were improved by 23 to 58%.
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