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Numerical simulations of flows involving moving boundaries are challenging as they need 

to address the location and the conditions of the interface that interacts with the flow field. 

We have developed a unified, marker-based approach, which can treat moving solid and 

multiphase fluid dynamics using adaptively refined Cartesian grids. The interfaces 

separating the fluid phases are modeled using a continuous interface method, while the no-

slip condition on solid interfaces is imposed by a sharp interface method. A smoothly varying 

Heaviside-like function is used for handling discontinuous material properties between fluids 

and for identifying the solid-fluid interface location. Furthermore, a distance-based 

formulation is adopted to treat solid-fluid interface intersections. A domain decomposition 

method via Hilbert space filling curves and preconditioned multigrid solvers are 

incorporated into the staggered grid arrangement for scalar and velocity variables. To 

highlight the performance of the present approach, case studies are conducted for (i) 

interface shapes, residual volumes, formation of sloshes and corresponding wave periods in 

draining tank with different control parameters and flow regimes, (ii) fluid dynamics around 

a flapping airfoil, and (iii) fluid flow around complex solid geometries.  

I. Introduction 

ultiphase flow problems involve interfaces, that may move and/or deform in response to flow dynamics. 

Numerical simulations of such flows involve an interface tracking algorithm to obtain the geometric 

information as well as an interfacial flow modeling to apply the conditions described by the surface tension forces.  

Methods for interface tracking can be grouped in three main categories;
1
 Lagrangian, Eulerian, and mixed 

Eulerian-Lagrangian methods. In Lagrangian methods, the interface location is tracked explicitly by advecting and 

deforming the computational grid with the moving interface.
2,3

 On the other hand, Eulerian methods employ a scalar 

function, based on distance in level-set methods
4,5

 or volume fraction in volume-of-fluids method,
6,7

 to extract the 

interface location on stationary grids. Mixed Eulerian-Lagrangian methods track the interface using markers moving 

on an Eulerian computational grid.
8-11

 Among these methods, this study employs a mixed Eulerian-Lagrangian 

method, which employs marker points to track the representative interface independently on a stationary Cartesian 

grid. While maintaining an accurate representation of the interface, marker based interface tracking carries the 

advantage of being able to utilize Cartesian grids especially when adaptive refinement capability is enabled to 
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effectively resolve the characteristics of multiphase flow problems that usually involve multiple length scales. Such 

an approach has been employed for computationally expensive large-scale problems, such as off-axis binary drop 

collision
10

 and liquid plug problem at low Capillary numbers.
12

  

One of the primary characteristics of multiphase flows is that pressure and viscous stresses are discontinuous 

across the interface as a result of the surface tension forces. These jump conditions are incorporated with flow 

computations via models which can be grouped into two distinguished methods
1,13

; sharp interface methods (SIM), 

and continuous interface methods (CIM). SIM maintains the jump condition across interface whereas CIM smoothes 

the fluid properties and surface tension forces across interface. In opposed to SIM, CIM solves only a single set of 

equations for the entire domain, which makes CIM more attractive over SIM. The popular examples of sharp 

interface methods with marker based interface tracking include the cut-cell,
14

 the immersed interface,
15,16

 and the 

ghost fluid
17-19

 methods. When used with marker based interface tracking, continuous interface method is referred to 

as the immersed boundary method (IBM).
11,12,20,21

 In the present study, both approaches are utilized in accordance 

with their region of applicability and their efficiency. CIM is employed for fluid interfaces separating the fluid 

phases and SIM is used for resolving the conditions on solid interfaces. Both phases are tracked using a marker 

based interface data structure, which brings the possibilities of numerical simulations beyond geometries other than 

rectangular boxes.
1,12,22

  

The overall algorithm is developed to examine the flow dynamics of a fuel delivery system operating under 

micro-gravity conditions. Motivated by spacecraft applications, numerical study needs to consider additional 

algorithms to capture the flow dynamics. Firstly, the problem involves a free surface, in which the conditions at the 

wall attachment point, where all liquid-gas-solid phases meet, are described by Youngs equation. This condition 

needs to be modeled at the continuum level and we employ a static contact angle model using the available 

empirical data. For the fuel system considered, the prior experimental guidance
23

 indicates a contact angle around 0
o
. 

Among many challenges that such an angle would bring to the computations, one of them is related to the 

construction of an indicator function to represent the discontinuous material properties with a smooth variation 

across the interface. Two popular approaches include (i) a one-dimensional distance based approximate Heaviside 

function,
21,24,25

 and (ii) the solution of a Poisson equation with a Dirac delta based source term.
10,12

 Both approaches 

are compared in terms of their capability to capture the interface location on the Cartesian grid and their 

computational overhead. In addition, the interplay between surface-tension, applied pressure, fluid properties such as 

viscosity and density, as well as the container size and geometry determine the residual fuel at the time of vapor 

ingestion are considered to be able to understand the flow dynamics for the fuel delivery system under micro-gravity 

conditions. The tank geometry, including a hemispherical bottom, is considered with the help of stationary solid 

interfaces. Interface shapes of two cases at Weber number 1.06 and 28.3 were studied using Poisson solver-based 

indicator function.
12

 In the current study, the flow characteristics in the previously observed regimes are captured 

with indicator function based on the Heaviside function by varying Weber number from 0.1 to 80.0. We conclude 

that both approaches can yield satisfactory results. The deformation of the interface shape with draining is 

investigated and compared with previous experimental results for verification. Furthermore, the liquid residual at 

vapor ingestion and the slosh wave period are studied for predicting the features of the draining process. To validate 

the performance of current approaches related to solid interface including moving boundary, the fluid flow around a 

2D flapping airfoil and complex 2D/3D solid geometry are simulated.  

 

II. Numerical Methods  

The marker based method employs Eulerian and Lagrangian variables in order to perform the interfacial flow 

computations.  Eulerian quantities are solved on the stationary background grid, whereas Lagrangian quantities arise 

due to the marker points defined on the interface which can move freely.  A single fluid formulation for all fluid 

phases is made possible by smearing the properties across the interface.  Incompressible Navier-Stokes equations for 

mass and momentum conservation are given in Eqs. (1) and (2) respectively, which accounts for the interfacial 

dynamics.  The source term in the momentum equation, 𝐹𝑠, represents the conditions of interfaces for solid and fluid 

interfaces.   

𝛻 ∙ 𝑢 = 0 (1) 
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𝜕𝜌𝑢

𝜕𝑡
+ 𝛻 ∙  𝜌𝑢𝑢 =  −𝛻𝑝 + 𝛻 ∙  𝜇𝛻𝑢 + 𝜇𝛻𝑇𝑢 + 𝐹𝑠 + 𝜌𝑔 (2) 

In general, the pressure and viscous stresses show discontinuities across a fluid interface related to the surface 

tension force and fluid property jumps. Equation (3) relates the jump in flow properties (pressure, 𝑝, and normal 

stress components, 𝑛 ∙ 𝜏 ∙ 𝑛)  with the surface tension force, 𝜍𝜅.  

 𝑝2 − 𝑝1 − 𝑛 ∙  𝜏2 − 𝜏1 ∙ 𝑛 = 𝜍𝜅 (3) 

On the other hand, solid interfaces match no-slip wall condition with a prescribed velocity field defining the 

motion of the solid boundaries via the force field created around the solid phases.  

Equations (1) and (2) are solved adopting a projection method using staggered grid finite volume formulation as 

described in prior studies.
26,27

 The pressure and fluid properties are stored at the cell center and the face-normal 

velocity is stored on Cartesian cell faces. The flow computation follows the following sequence of steps:  

Step 1: Predictor-step 

Solve the momentum equation for an intermediate velocity field 𝑈∗ using Eq. (4) where all the known 

values such as surface tension source, gravitation, convection and old time-step viscous term due to 

Crank-Nicholson method are lumped into 𝑆𝑛 . The term, 𝑎𝑣 , corresponds to the other half of Crank-

Nicholson method. Temporal discretization of the convection term uses 2
nd

 order Runge-Kutta 

integration. The pressure term is approximated using the old time pressure field. Subsequently, remove 

the effect of pressure term by shifting the velocity field back to obtain another intermediate velocity field 

𝑈∗∗ using Eq. (5). 

 𝛥𝑉
𝜌

𝛥𝑡
− 𝑎𝑣 𝑈

∗ = − 𝛻𝑃𝑛 ∙ 𝑑𝐴
𝑑𝐴

+ 𝑓𝑣𝑖𝑠𝑐
∗ + 𝑆𝑛   (4) 

𝑈∗∗ = 𝑈∗ +
𝛥𝑡𝛻𝑃𝑛

𝜌𝑛+1
 (5) 

Step 2: Corrector-step 

Correct the predicted velocity field (𝑈∗∗) using Eq. (6). The pressure field for this correction is computed 

by enforcing the velocity-divergence condition and solving the Poisson equation (Eq. (7)). The 

divergence of the new velocity field 𝑈𝑛+1 is zero due to incompressible flow. 

𝑈𝑛+1 = 𝑈∗∗ −
𝛥𝑡𝛻𝑃𝑛+1

𝜌𝑛+1
 (6) 

  
𝛻𝑃𝑛+1

𝜌𝑛+1
 ∙ 𝑛𝑑𝐴

𝑓𝑎𝑐𝑒

=
1

𝛥𝑡
 𝑈∗∗ ∙ 𝑛𝑑𝐴 

𝑓𝑎𝑐𝑒

 (7) 

A. Marker Based Interface Tracking 

The interface is represented by line-segments in 

two-dimensional computations and triangulated surface 

grids in three-dimensional computations, as 

represented in Fig. 1(a)-(b). Both 2D and 3D interfaces 

are stored using the same data structure, which is given 

in Fig. 2.  The nodes within an element are arranged in 

a way that the yielding normal vector computation 

points outward direction from the element.  

            
(a)                                (b) 

Figure 1. Interface representation by marker points. 

(a) Line segments in 2D. (b) Triangular elements in 

3D. 
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The connectivity information is 

established through elements. Each node 

tracks the unknown number of elements 

that it is involved while the elements keep 

information of the neighboring triangles 

based on the node across from the edge 

that they share. Figure 3 illustrates that 

the number of neighboring elements for 

closed surface or inner elements is equal 

to the number of edges that the element 

has (two for 2D and three for 3D). When 

the elements edge is placed at a surface 

boundary, the information relevant to the 

neighboring element is replaced with the 

information of the boundary that it is 

attached to. In order to prevent a possible 

mix-up of  the indices, these boundary 

information is stored as negative values, 

having the numbers, 1-6, reserved for the 

east, west, north, south, front and back 

faces of the domain boundary, while the 

larger numbers representing the elements 

belonging to a possible solid interface. 

The nodes on those boundary edges are 

marked to indicate that they are limited to 

a movement on the boundary surface and 

the adjustment plane is set to the elements 

that contains only one boundary node.  

The required interface resolution 

(spacing between markers) is estimated 

from the background grid. To maintain 

the resolution, markers are continuously 

added and deleted based on the following 

criteria: 

𝛥𝑆 > 𝛼𝑕 → 𝐵𝑟𝑒𝑎𝑘 𝑒𝑑𝑔𝑒  𝑀𝑎𝑟𝑘𝑒𝑟 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛  (8) 

𝛥𝑆 < 𝛽𝑕 → 𝐷𝑒𝑙𝑒𝑡𝑒 𝑒𝑑𝑔𝑒 (𝑀𝑎𝑟𝑘𝑒𝑟 𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛) (9) 

The parameters, 𝛼 and 𝛽, are chosen to be 1 and 0.3, respectively, for fluid interfaces whereas they are taken as 3 

and 1, respectively, for solid interfaces. This is mainly because of the computational efficiency as the treatment of 

solid interfaces support coarser interface representation.  

When an edge is marked for refinement, a new marker at the mid-point of the edge is added to ensure the desired 

accuracy to support the Cartesian grid computations.  Similarly the removal procedure collapses/deletes edges that 

are shorter than 𝛽𝑕. A typical edge deletion procedure collapses the edges at the midpoint resulting in a local phase-

volume (interface volume) error. Usually these errors are small but they can accumulate for long duration of 

computations and eventually become more substantial.
28

 A correction step to the edge deletion procedure is 

performed to locally preserve the phase-volumes.
29

 

    

 
 Figure 2. Data structure to represents the interface both in 2D and 

3D. 

 

   
 Figure 3. Connectivity information through element edges. (a) 

inner element with three neighbors, (b) boundary element with two 

neighbors. 
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B. Indicator Function 

Cells on the Cartesian grid are represented by a unique 

material index to identify the constituents separated by 

interfaces. This brings an algorithmic advantage to identify 

the interface location as well as to assign proper material 

properties, i.e. density and viscosity, for flow computations. 

However, the material properties are discontinuous across 

interfaces. In order to facilitate a single equation 

formulation for the whole domain in CIM, these property 

jumps are represented with a smooth variation. This is 

achieved with the help of a scalar function, varying from 

zero to one smoothly. Throughout this document, this 

function is referred to as the indicator function and denoted 

by I. Once the indicator function is obtained, the fluid 

properties such as density and viscosity, varying from 

values between 𝜑1 and 𝜑2, are computed using Eq. (10). 

𝜑 = 𝜑2 +  𝜑1 − 𝜑2 𝐼 (10) 

First, the material properties are assigned using a simple 

and efficient method based on the painter’s algorithm 

frequently employed in computer-graphics rendering. 

Unlike the ray-tracing algorithm, the painter’s algorithm 

does not require expensive computation of three-

dimensional line-surface intersection and it is sufficient as 

the material properties are then corrected with the help of 

the indicator function. The algorithm starts leaving marks 

of interface’s material property on the Cartesian grid as 

shown in Fig. 4(a). The colored locations correspond to a 

two-cell width region on each side of the interface, whereas 

the white color indicates cells that are untouched. Using a 

Monte-Carlo type of selection process for the painting 

algorithm, a seed-cell that has not been painted is picked 

randomly to obtain its closest distance to any of the 

interfaces present in the domain. Using the normal 

information, its region is colored with either fluid indices or 

a negative index indicating the solid phases to obtain Fig. 

4(b). The material properties close to the interface region 

will then be repainted with the help of the indicator function 

to obtain Fig. 4(c), as the interface is located at the contour 

level of 0.5, which enables handling the geometry related 

algorithms in a computationally efficient way.  

Observing its similarities with the Heaviside step function, indicator function can be constructed using a discrete 

version of the Heaviside step function or solving a Poisson equation that has a source term only at the interface 

location, represented by a discrete Dirac delta function. Approximations to the Dirac delta and Heaviside step 

functions introduce a region that represents the interface over a finite thickness. The properties of these 

approximations particularly focusing on Dirac delta function have been investigated in prior studies.
20,30,31

  

In the present study, the Dirac delta function approximation, that supports the conservation rules dictated by 

zeroth, first and second moments as described in Peskin,
20

 is employed as the base discrete form using the one-

dimensional representation given in Eq. (11).  

 
(a) 

 
(b) 

 
(c) 

 Figure 4. Identification of material indices on the 

Cartesian grid. 
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In Eq. (11), 𝑟 is the closest distance between the cell-center to the interface location, and is normalized by the 

cell spacing, 𝑕. Because, 𝜙 𝑟  becomes zero when the distance becomes larger than two cell width, the smearing 

region becomes limited to two-cell width on each side of the interface. Two and three dimensional quantities of 

Dirac delta approximation is obtained using a product rule, as shown in Eq. (12). 

One of ways to obtain the indicator function is to relate it to the constructed Dirac delta function using the 

Poisson equation as shown in Eq. (13).  

𝛻2𝐼 = 𝛻   𝛿 𝑥 − 𝑋 𝑛𝑑𝐴
𝐴

  (13) 

Obtaining a solution for Eq. (13) involves a region that has two-cell distance on each side of the interface. Other 

regions are not required since the fluid properties are constant far from the interface and the immediate neighboring 

cells to the interface region act as the Dirichlet boundary condition to the Poisson equation, represented in Equation 

(13). The source term to Eq. (13) is first computed on the face-centers to be transferred on the cell-center by 

averaging because of its additional smoothing feature that gives a better representation at interface regions of high 

curvature.  

One of the major disadvantages of using the Poisson equation to 

obtain the indicator function is that it requires the boundary 

conditions away from the interface. However, when the interfaces 

intersect with the domain boundary, boundary conditions are 

required to be supplied at the near interface locations. One possible 

condition is to assume zero variation in the indicator value at the 

normal direction to the boundary. However, this condition leads to 

an interface representation that makes 90𝑜  to the domain boundary, 

which can result in a different interface shape on the Cartesian than 

the actual interface at angles close to 0𝑜 . This issue can be handled 

using an alternative way to compute the indicator function, which 

utilizes the shortest distance value between the cell-center to the 

interface location by integrating the one-dimensional form of 

discrete Dirac function, 𝜙, yielding Eq. (14). 

𝐼 𝑟 =
1

8
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  (14) 

𝜙 𝑟 =
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     (11) 

𝛿 𝑟𝑥 , 𝑟𝑦 , 𝑟𝑧 =
1

𝑕𝑥𝑕𝑦𝑕𝑧
𝜙 𝑟𝑥 . 𝜙 𝑟𝑦 . 𝜙 𝑟𝑧  (12) 
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C. Adaptive Grid 

Multiphase flow problems involve multiple length scales. In order to effectively resolve the flow features in such 

cases, the present study considers adaptive grid refinement employed on Cartesian grids. The approach is based on 

isotropic refinement which splits the cells into four and eight equal sibling cells in two- and three-dimensions, 

respectively. The grid is represented using an unstructured data that connects cells through cell faces. The details of 

the algorithm can be found Singh and Shyy.
29,32

 Adaptation is performed based on the interface location and the 

flow solution quality.  

The geometry-based adaptation near interface can handle the support for the delta function as well as a 

possibility for large deformation of interface. Hence, six layers around a fluid-interface are brought to the finest 

possible grid refinement level to capture the interfacial flow dynamics accurately. Figure 6 illustrates the process of 

geometry based adaptation starting from a uniform base grid and refining up to four levels. When the interface 

represents a solid boundary, the geometric adaptation criterion considers only a single layer of cells as the solid 

interface modeling is established through sharp interface method that doesn’t require any support for the smearing 

region. 

Cells away from the interface are adapted based on the flow solution. The present implementation uses a curl 

based adaptation criterion
33

 that computes a parameter 𝜉 for each cell as shown in Eq. (15). The length scale 𝑙 is 

estimated as the cubic root of cell-volume. The decision to refine or coarsen a cell is made by comparing 𝜉𝑐𝑒𝑙𝑙  to the 

standard deviation (Eq. (16)) using the criteria in Eqs. (17) and (18). 

𝜉𝑐𝑒𝑙𝑙 |~ 𝛻⨂𝑈 𝐼   (15) 

𝜍 ′ =
1

𝑁𝑐𝑒𝑙𝑙  𝜉𝑖
2

𝑖

 (16) 

𝜉𝑐𝑒𝑙𝑙 > 𝜍 ′ → 𝑅𝑒𝑓𝑖𝑛𝑒 𝑐𝑒𝑙𝑙 (17) 

𝜉𝑐𝑒𝑙𝑙 > 0.1𝜍 ′ → 𝑐𝑜𝑎𝑟𝑠𝑒𝑛 𝑡𝑕𝑒 𝑐𝑒𝑙𝑙 (18) 

During the adaptation procedure, the Cartesian cell center values such as pressure, temperature and face normal 

velocities need to be reconstructed for the newly created cells and faces. Flow variable reconstruction during cell 

and face coarsening is performed simply by averaging of the corresponding cell-centered or face-centered values. 

Because the adaptation algorithm is triggered during the predictor step, just before solving the pressure Poisson 

equation, the reconstruction algorithm is not required to satisfy the divergence free velocity condition for 𝑈∗∗. 

           
      (a) Initial grid (Level=0)                                (b) Level=2                                         (c) Level = 4 

 

Figure 6. Snapshots of geometry based adaptation for fluid interfaces. 
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D. Modeling Fluid Interfaces 

When interface separating fluid phases, the source term arises from the surface tension (𝜍) and the curvature (𝜅) 

as shown in Eq. (19). 

𝐹𝑠 =  𝜍𝜅𝑛𝛿 𝑥 − 𝑋 𝑑𝑆 
𝑆

 (19) 

The surface force is computed using the Lagrangian marker points, 𝑋, and is translated into an Eulerian quantity, 

𝑥, via the approximate discrete Dirac delta function,  𝛿(𝑥 − 𝑋).  After these equations are solved, approximate Dirac 

delta function is also used for obtaining the marker velocity field to move marker points for obtaining the new 

geometric surface representation.  

The surface tension force is computed on the interface triangles. The surface tension force on a discretized 

interface element (curves in 2D and triangles in 3D) can be evaluated in several ways: computation with Eq. (20) 

where unit normal vector and curvature can be computed using curve fitting for two-dimensional interfaces
14,21,24

 

and surface fitting for three-dimensional interfaces;
28

 computation using a line integral form shown in Eq. (21) and 

fitting curves/surfaces to obtain normal and tangent vectors.
11,34

 

𝛿𝑓 =  𝜍𝜅𝑛𝑑𝐴
𝛿𝐴

  (20) 

𝛿𝑓 =  𝜍 𝑛 × 𝛻 × 𝑛𝑑𝐴 =  𝜍𝑡 × 𝑛𝑑𝑠
𝑠𝛿𝐴

 (21) 

There are two important observations to be made 

here: the net surface tension force on a closed surface 

should be zero (conservation); curvature computation 

using interpolation based methods are numerically 

sensitive and often requires some form of data 

smoothing.
21,24,28,35

 The use of Eq. (20) does not 

enforce conservation whereas the line-integral form, 

Eq. (21), does not require explicit curvature 

computation and maintains the conservation.  

The approach developed by Singh
29

 uses the line 

integral form and computes the local normal and 

tangent vectors along the triangle edges using the 

simple approach of Al-Rawahi
34,35

 shown in Eq. (22) 

following Fig. 7. If required, the curvature can be 

computed using Eq. (23). Such a simple technique is 

seen to produce sufficient accuracy demonstrated by 

Fig. 7, comparing curvature of a unit circle using 

present method and a cubic-spline interpolation. The 

overall accuracy of this approach to compute surface 

tension force and its modeling have already been 

demonstrated for boiling flows
36

 and for dendritic 

solidification
35

.  

𝛿𝑓 =  𝜍 𝑡⨂𝑛 𝑒𝑑𝑔𝑒 𝛥𝑠

𝑒𝑑𝑔𝑒 =123

 (22) 

𝜅 =
𝛿𝑓 ∙ 𝑛

𝜍𝛥𝐴
 (23) 

 
Figure 7. Computation of the unit normal and tangent 

vectors on interface triangles. 
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E. Modeling Solid Interfaces 

Solid interfaces are modeled using a sharp interface method that imposes the prescribed conditions on an 

arbitrary interface by reconstructing a force field around a solid phase.  Considering Eq. (2), the forcing term, 𝐹𝑠 , due 

to a prescribed velocity of 𝑢𝑖𝑛𝑡  can be represented within the projection method as in Eq. (24). 

𝐹𝑠 = 𝜌
𝜕𝑢𝑖𝑛𝑡
𝜕𝑡

+ 𝛻 ∙  𝜌𝑢𝑢 𝑖𝑛𝑡 − 𝛻 ∙  𝜇𝛻𝑢 + 𝜇𝛻𝑇𝑢 𝑖𝑛𝑡 − 𝜌𝑔 (24) 

The corresponding conditions can be obtained at locations close to 

the interface by reconstructing the predicted velocity field, 𝑢𝑏𝑛𝑑𝑟
∗ , to 

yield the forcing term in Eq. (24). Because the present study considers a 

staggered variable arrangement, in which the velocity components are 

defined at the face-centers, the forcing field is formed using the face-

centers of the cells surrounding the solid interfaces. The algorithm has 

three components, identification of the forcing faces, constructing 

interpolation weights, and computing the forcing term. 

Considering the pressure Poisson equation of the prediction step, the 

cells to be included on the fluid side is chosen purely based on the 

material indices at cell-centers. Any cell that has a negative index value 

is marked on the solid side and removed from the Poisson equation. The 

boundary conditions at the faces between any solid and fluid face-center 

is enforced via the constructed forcing velocity, 𝑢𝑏𝑛𝑑𝑟
∗ . Therefore, the 

identification of the forcing faces process first marks the faces that are 

placed between a fluid and a solid cell. When we consider the momentum 

equation, the viscous and advection terms require another set of faces 

that would yield a correct gradient for the boundary layer. This set of 

faces, similar to ghost cells, is chosen on the solid side. Figure 8 shows 

the forcing faces, identified based on the description. It should be also 

noted that, in some problems dealing with thin or zero-thickness solid 

interfaces, these faces can also be chosen from the fluid side.
22,37

 However, this approach would make the 

construction of the interpolation scheme difficult especially at the inner corner locations, where less than sufficient 

fluid faces exist.  

Once the forcing faces are set, the forcing terms on 

these faces are computed using linear interpolation 

between the prescribed velocity field on the interface, 

and the predicted velocity field at the fluid side. The 

first point on the interpolation scheme, the closest 

location on the interface from the forcing face, is found 

by comparing the distance normalized by the grid 

spacing for the elements in the vicinity of the forcing 

face. Once determined, interpolation weights based on 

inverse distance is computed using Eq. (25) as the 

shortest possible distance does not necessarily coincide 

with any of the markers (Fig. 9). Then the prescribed 

condition on the interface can be obtained for any 

function, Φ, using Eq. (26). 

𝑤𝑖𝑗 =
1 𝛥𝑖𝑗 

 (1 𝛥𝑖𝑗 )  𝑖=1,3

 (25) 

𝜙𝑗 = 𝜙1𝑤1𝑗 + 𝜙2𝑤2𝑗 + 𝜙3𝑤3𝑗  (26) 

 
Figure 8. Identification of forcing 

faces. Red faces and green faces 

belong to fluid and solid phases, 

respectively. Blue color indicates the 

forcing faces based on pressure 

Poisson and momentum equation of 

the prediction step.   

 Required by the 

momentum equation 

 
Figure 9. The closest interface element to a forcing 

face. 

 

  

 Closest distance 

to the forcing 

face. 

 

 

 

 
Face-center 
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Identification of the fluid faces is one of the most critical parts of the algorithm for the construction of the linear 

function. To satisfy the requirements for shortest distance and orthogonality between the face-centers included in the 

scheme, a short list of liquid faces is formed using the neighboring cells. This list is sorted using a merge-sort 

algorithm based on the distance values. The various combinations of faces are checked for their orthogonality 

starting from the best qualified distance values. This procedure results in an interpolation scheme in the shape of a 

triangle in 2D, and a tetrahedron in 3D as illustrated in Fig. 10.  

The interpolation procedure is performed assuming a linear variation of any variable 𝜙.  Equations (27) and (28)  

is the formulation of the procedure in 2D.  

𝜙 = 𝑏1 + 𝑏2𝑥 + 𝑏3𝑦 (27) 

 

𝑏1

𝑏2

𝑏3

 =  

1 𝑥1 𝑦1

1 𝑥2 𝑦2

1 𝑥3 𝑦3

 

−1

 

𝜙1

𝜙2

𝜙3

  (28) 

In Eqs. (27) and (28), xi, yi represents the corners of the triangle presented in Fig. 10. For stationary objects, the 

coefficients can be obtained once and then be used for reconstructing the velocity field at each time step. On the 

other hand, the system has to be solved at every time step for moving boundaries. 3D computations are achieved in a 

similar manner by adding an additional point to obtain the coefficient of the z-coordinate, b4.   

F. Marker Movement 

The marker locations for the surface grid are computed using the marker velocities as shown in Eq. (29). 

𝜕𝑋

𝜕𝑡
= 𝑢𝑛(𝑋) (29) 

Fluid interfaces use the solution field to compute the marker velocities. Similar to translating the surface forces 

into the volumetric form, the discrete Dirac delta function is employed for obtaining Lagrangian form of the 

Eulerian velocity field using Eq. (30). 

𝑢𝑛 𝑋 =  𝑢𝑛 𝑥 𝛿 𝑥 − 𝑋 𝑑𝑣
𝑣

 (30) 

The solid interfaces uses the prescribed velocity field to advance the marker points using Eq. (29).  

                  
                                        (a)                                                                                            (b)  

Figure 10. Definition of faces around the solid interface for u-velocity (a) in 2D (b) in 3D. 

Forcing Forcing 

FacesFaces

INTERFACE

INTERFACE
SOLIDSOLID
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G. Contact Line Treatment 

When we consider a fluid-fluid interface intersecting a solid surface, the treatment of the tri-junction locations 

needs to account for the presence and interactions of all three phases, fluid-fluid-solid, which can be challenging.  

For example, consider a liquid drop impingement on a solid surface. Upon the impact, the drop starts spreading on 

the surface forming a thin film and if it doesn’t break up, it would recover its thickness back, which is known as 

recoiling.  This behavior is found to be influenced by the following parameters. 

 Drop inertia at the time of impact influences the spread characteristics 

 Surface tension determines recoil frequency 

 Drop viscosity damps out the drop spreading and recoiling processes 

 Contact angle affects both drop spreading and recoiling processes 

Figure 11 illustrates the snapshot of a bubble after the impact. The contact line is illustrated along with the angle, 

𝜃.  

Further effort in interface reconstruction is needed for handling the interaction between the solid wall and the 

interface at the contact point. Interfaces use a probe to identify whether they are close to any of the computational 

boundaries.  In case any of its elements is in the vicinity of the boundary, it snaps itself to the computational 

boundary.  The connectivity information for the interface is edited to include a negative number when the element is 

connected to a computational domain boundary.  The negative number is chosen in a way to represent the east, west, 

north, south, front and back boundaries.  The proper model then can be applied if the computational boundary is 

defined as solid, symmetric, inflow or outflow.  

For simplicity, the wall condition utilizes a constant contact angle model, which lets the marker slip on the no-

slip surface on a predetermined contact angle.  

For symmetric boundary conditions, the marker on the computational domain sets its normal in the direction of 

the symmetry axis.  This is achieved by an imaginary element on the other side of the computational domain.  The 

inflow condition sets its contact angle according to the direction that the flow comes in. 

H. Domain Partitioning and Solution Techniques 

The linear system arising from the pressure Poisson Equation has slow convergence properties, especially for 

high density ratios.
25

 For efficient parallelism, the implementation accounts for a balanced load distribution, minimal 

communication between processors, and minimal number of iterations for convergence. As the present study 

employs adaptively refined Cartesian grids, achieving these requirements can be possible by employing domain 

decomposition method with a state-of-art partitioning algorithm. 

Multi-domain methods offer a way to cope with these tradeoffs in parallel algorithms for solving linear systems. 

Its essence is to divide a large problem into smaller pieces, each of which is then solved independently before being 

 
Figure11. Snapshot of the geometry of the interface at instance after the impact. 
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combined to obtain the global solution of the original problem. In the literature, domain decomposition methods are 

recognized in two different classes; namely, Schur complement methods and Schwarz methods.
38

 The present study 

employs Additive Schwarz method, which divides the computational domain into sub-regions, possibly overlapping. 

Each of these sub-regions forms subsystems of linear equations that are solved locally and they are then coupled 

with other sub-systems to obtain global solution. It couples sub-systems using successive exchange of boundary 

conditions in the overlap regions. 

In order to facilitate domain decomposition, namely, the partitioning, the Hilbert space filling curve-based 

ordering is used for mapping the physical space on a 1-D line, which is a special function with the property of 

locality.
39

 The multi-grid has been adopted as the linear solver. Detailed information of these techniques can be 

found in our previous works.
1,12

 

 

III. Computational Assessment 

To highlight the performance of the present approach, case studies have been conducted for (i) interface shapes, 

residual volumes, formation of sloshes and corresponding wave periods in draining tank with different control 

parameters and flow regimes, (ii) fluid dynamics around a flapping airfoil, and (iii) fluid flow around complex solid 

geometries.  These cases are presented in the following. 

A. Draining Tank Flow Simulations 

The dynamics of the fuel delivery at micro-gravity conditions are of interest for space shuttle applications. 

Contrary to the behavior of fluid in a normal gravity, the fuel draining process in a micro-gravity condition causes 

unexpected phenomena such as fast vapor ingestion, large liquid residual problem, interface distortion and sloshing 

waves. Some of the many parameters that influence the draining process include interfacial forces, mass flow rate, 

gravitational force, and tank’s geometry. According to previous researches, Froude number, the ratio of inertia 

forces to gravity forces, is used to classify the draining phenomena at normal gravity condition.
40

 However, it is 

found to have little influence at the micro-gravity condition since the gravitational forces become less significant. 

Rather, Weber number, the ratio of inertia forces to surface tension forces, is found to have a stronger influence on 

the draining procedure in weightlessness.
40,41

 The flow characteristics of the draining process can be classified into 

three main categories; inertia-dominated, transition, and capillary-dominated regimes.
23

 Symons defined a draining 

parameter to distinguish such phenomena from micro-gravity to normal gravity by grouping Weber number and 

Bond number, which is the ratio of Weber number to Froude number as given in Eqs. (31) to (33).
23

  

In these equations, 𝜌 is the density of the 

liquid, 𝑄  is the volume flow rate, 𝜍  is the 

surface tension of the interface between gas 

and liquid, 𝑔 is the gravitational acceleration, 

and 𝑅 is the characteristic length of the fuel 

tank, which is taken as the radius for 

cylindrical geometry in this study as 

presented in Fig. 12. Accordingly, non-

dimensional time is defined as 𝑡∗ = 𝑡𝑄/𝜋𝑅3. 

Weber Number,  𝑊𝑒 =
𝜌𝑄2

𝜋2𝜍𝑅3
 (31) 

Bond Number,  𝐵𝑜 =
𝑊𝑒

𝐹𝑟
=
𝜌𝑔𝑅2

𝜍
 (32) 

𝐷𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,   𝜆 =
𝑊𝑒

𝐵𝑜 + 1
 (33) 

    
(a)                                               (b) 

Figure 12. Geometry configuration, (a) geometry configuration, 
(b) computational configuration 
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In this study, we employ marker based immersed 

boundary algorithm on adaptively refined grids to 

investigate the time-dependent interfacial dynamics of 

fuel surface at a micro-gravity environment. Also, we 

consider the exact hemisphere bottom shape comparing 

the results with previous experiment. Different bottom 

shape including non-axisymmetric draining hole will 

be studied in the future. Trichlorotrifluoroehhane is utilized as a substitute of liquid fuel and air is employed as 

pressurizing gas as they are in the Symons’ experiments.
23

 The properties of trichlorotrifluoroehhane at 20°C are 

given in Table 1. 

Various Weber numbers are chosen from 0.1 that corresponds to draining parameter 0.0167 to 80.0 which 

corresponds to draining parameter 13.333 in order to verify the flow characteristics for each regime in terms of the 

change in sloshing waves and residual volume. All simulations are conducted in a micro-gravitational environment 

with 1.5% of normal gravity. The ratio between the outlet radius, 𝑟, and the tank radius, 𝑅, is 1/10. The tank height 

is 4.5 times of tank radius. The air inlet baffle is simplified with mixed boundary condition with wall and outlet 

condition. Non-dimensional initial liquid height, based on tank radius, is set to 2𝑅 or 3𝑅. An ellipsoidal shape that 

corresponds to the initial fuel volume is used for the initial interface geometry. In the current study, the specified 

mass flow rate is used for draining except one case which is used for more exact comparison with previous 

experiment. 

The validation study using the time-dependent 

surface shape is carried using a transition regime case, 

corresponding draining parameter We/(Bo+1)=0.16 for 

which the experimental guidance is available.
23

 It 

should be noted that Symons quantifies the draining 

parameter based on the mass flow rate at normal 

gravity condition,
23

 which assumes the air pressure to 

be much higher than hydrostatic pressure of fluid. This 

is true usually in the inertia-dominated regime since the 

large flow rate results from high air pressurizing. 

However, this assumption can cause errors in capillary-

dominated or transition regime. In this comparison, the 

reported draining parameter, 0.18, in transition regime 

is represented by a 10% error, yielding 0.16 with the 

exact mass flow rate observed by the pressure 

difference. In order to establish an exact comparison 

basis, a similar procedure, which measures the air 

pressure for a given mass flow rate numerically at 

normal gravity conditions, is adopted for the 

computations at micro-gravity conditions.  Figure 13 

shows the non-dimensional height variation at the 

centerline and at the tank wall. The developed marker 

based method shows a reasonable agreement with 

Symons' experimental study
23

 as sloshing motion and 

sudden vapor ingestion phenomena are captured in 

detail, whereas the wall contact point location is 

slightly different in the beginning of draining process 

possibly as a result of differences in the initial 

conditions. 

In the normal gravity condition, the liquid fuel in a tank goes down maintaining flat interface shape during 

draining, and thus, fuel can be used efficiently. However, the liquid fuel interface shows very large distortion in a 

micro-gravity condition since the gravitational force doesn’t work to flat the liquid, and much of the fuel cannot be 

used. Residual volume is defined as the remaining liquid volume in a tank at vapor ingestion, and thus, it informs us 

 
 Figure 13. The comparison of current simulation 

results with experimental data by Symons. 

Density 1.58e+3 kg/m
3 

Viscosity 0.70e-3 kg/m.s 

Surface tension (air) 18.6e-3 N/m 

 Table 1. Properties of trichlorotrifluoroehhane at 

20°C. 
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how much fuel we can use at the given condition. 

Figure 14 shows the non-dimensional residual volume 

𝑉𝑟
∗ normalized by the hemispherical bottom volume for 

two different initial fill levels; 2 tank radii and 3 tank 

radii. It shows following important trends. First, the 

residual volume increases with the draining parameter 

until it reaches a certain value, when it becomes 

insensitive to any changes in the draining parameter. 

Second, the residual volume shows oscillations with 

the draining parameter due to the influence of sloshing 

waves. If the slosh wave is at its highest point at the 

incipience of vapor ingestion, the vapor ingestion is 

postponed resulting in a decreased residual volume. 

The phase of slosh waves decides the time of vapor 

ingestion determining the remaining liquid residual 

volume. Last, the same draining regime occurs with 

higher draining parameter for higher initial fill level. In 

summary, Fig. 14 shows the existence of three kinds of 

regimes; linear part with small draining parameter, 

oscillation part in the middle range, and the flat 

residual volume part with high draining parameter.  

The time history of the non-dimensional height at 

the centerline and at the wall attachment point is shown 

in Fig. 15 for the mentioned regime conditions. 

Capillary-dominated regime is characterized by many 

slosh waves with small magnitudes. In this regime, the 

fluid goes down with same velocity both on the 

centerline and wall while maintaining its initial 

interface shape due to dominating capillary forces. The 

transition regime shows a few slosh waves with large 

amplitude. The only sloshing wave observed in Fig. 15 

for the transition regime may not even be observed for 

smaller initial fill levels due to the short draining time. 

In the inertia-dominated regime, the wall attachment 

point rarely moves while the interface at centerline 

moves down with a constant velocity until vapor 

ingestion. This regime is observed for large draining 

parameters and causes a larger residual volume at the 

time of vapor ingestion because of the almost 

stationary wall attachment point. 

Detailed interface shapes at different time steps are 

presented in Fig. 16 for each regime. Figure 16(a) 

represents capillary-dominated regime for which the 

interface maintains its initial shape and moves with an 

almost-constant velocity until vapor ingestion occurs. The transition regime with large-amplitude slosh waves is 

shown in Fig. 16(b). The interface heights at the centerline and at the wall attachment point move at different speeds 

when compared with the capillary-dominated regime. Consequently, the interface tends to vary between curving up 

and flattening out as illustrated in Fig. 16(b). In an inertia-dominated regime, the draining happens significantly 

around the center of the tank yielding a constant velocity at the centerline as a result of weak capillary forces being 

not strong enough to pull up/down the other regions of the surface. As a result, an elongated interface shape with 

almost fixed wall attachment point is observed as shown in Fig. 16(c). In addition, the exact location of the wall 

attachment point is influenced by the given contact angle, which is assigned to be 10° here. With a different contact 

angle, the interface shape and location can behave differently in time.
42

 

 
 Figure 14: Non-dimensional residual volume in 

draining parameter. 

 
Figure 15. Non-dimensional height at the centerline 

and on the tank wall at capillary-dominated 

(We/(Bo+1)=0.03), transition (We/(Bo+1)=0.3), and 

inertia-dominated regime (We/(Bo+1)=13.3). Initial fill 

level is 3 tank radii. 
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The non-dimensional period of slosh waves, 𝑇∗, is 

investigated for various draining parameters in Fig. 17, 

which omits the inertia-dominated regime since waves 

don’t exist for that regime. Figure 17 shows that the 

wave period increases with draining parameter from 

capillary-dominated regime to transition regime. In a 

capillary-dominated regime, waves have small period 

and magnitude. The amplitude of waves becomes 

bigger as the draining parameter increase yielding 

large, noticeable waves with larger wave periods in the 

transition regime. As shown in Fig. 17, such a behavior 

is in agreement with the single data point obtained by 

the experimental study of Symons.
23

 No additional data 

relevant to the wave period is available for further 

comparison because of the limitations of the 

experimental facility. The present numerical approach 

is used for investigating the relation between the non-

dimensional wave period and the draining parameter varying from 0.0167 to 0.833, which is illustrated in Fig. 17.   

 

B. Flapping Airfoil Simulation 

To validate the ability of current approach for the moving solid interface, a flapping airfoil is simulated. A 

simple symmetric planar airfoil with circular leading and trailing edges is used with a chord Reynolds number of 

100 at a zero geometric angle of attack. The airfoil plunges with an amplitude of 1.4 times the chord length, 𝑐, at 

velocity 𝑢(𝑡) = cos(2𝜋𝑡/𝑇) corresponding to an 0.11 𝐻𝑧 frequency. The non-dimensional time 𝑡∗ is obtained by 

normalizing the time, 𝑡 , with the time period, 𝑇 . The moving airfoil is introduced as a solid interface. The 

computational domain is 20𝑐 × 20𝑐, which is large enough to remove the boundary effects. Constant pressure is 

imposed as the boundary conditions.  

 
Figure 17. Non-dimensional wave period in a fuel 

tank with draining parameter.  

                            
 (a)                                                (b)                                                 (c) 

Figure 16. Snapshots of interface shape during draining. (a) Capillary-dominated regime (We/(Bo+1)=0.03), 

(b) transition regime (We/(Bo+1)=0.33), (c) inertia-dominated regime (We/(Bo+1)=13.33) 
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Figure 18 shows snapshots of an airfoil in plunging motion at various instants during the initial cycle. The 

current solid interface techniques are shown working well even with moving conditions as Fig. 18 highlights the 

vortex field created by the plunging motion and the corresponding adaptive Cartesian grids. 

C. Test of Complex Solid Geometries 

Complex solid geometries are tested for verifying the performance of the current algorithm. Figure 19 shows the 

computational test domain. A 2D maze-like channel is applied using solid interface in a stationary rectangular 

computational domain with adaptive Cartesian grid. Steady state solution of a maze-like flow field in Fig. 20 

illustrates the geometry and/or solution adaptively refined grid and the streamlines in 2D. 

 

 

 

Figure 19. Geometry configuration for 2D maze-like 

channel flow test. 

Figure 20. Adaptively refined grid and streamlines at 

the steady state of a flow inside a maze-like channel. 

(Re=30) 

More complex cases in 3D are tested using solid interface. Figure 21 shows a sample 3D channel represented by 

solid interface, which is located in a Cartesian computational domain. For this 3D solid interface, both inside and 

outside flow is simulated in Fig. 22(a) and (b). The streamlines and pressure contour of inside flow are plotted in 

Fig. 21(a). The fluid flowing between channel and computational boundary is also simulated, and the representative 

three-dimensional flow field is presented for outside a complex geometry with the streamlines in Fig. 22(b). 

The current solid interface algorithm is working well even with complex 3D geometries and it will make us 

tackle more practical engineering problems. 

             
 (a) t*=0.000                       (b) t*=0.125                       (c) t*=0.250                       (d) t*=0.375 

             
(e) t*=0.500                       (f) t*=0.625                       (g) t*=0.750                       (h) t*=0.875 

 

Figure 18.  Snapshots of a wing in plunging motion at various instants, showing vortices induced by the 

motion of a solid boundary.  (Re=100, flapping frequency=0.11 Hz) 
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IV.Summary and Conclusions 

In this paper, we have developed a unified, marker-based approach, which can treat moving solid and multiphase 

fluid dynamics using adaptively refined Cartesian grid. The following key ingredients are developed and 

incorporated: 

1. The staggered, Cartesian grid with local adaptive grid refinement forms the basis of the overall framework.  

2. Interfaces separating the fluid phases are modeled using a continuous interface method, while the no-slip 

condition on solid interfaces is treated using a sharp interface method.  

3. The Heaviside-like function is used to handle discontinuous material properties between fluids and to identify 

the solid-fluid interface location. Furthermore, a distance-based formulation is adopted to treat solid-fluid 

interface intersections. 

4. The domain decomposition and Hilbert space filling curves, and preconditioned multigrid solvers are 

incorporated.  

To highlight the performance of the present approach, case studies are conducted for (i) interface shapes, 

residual volumes, formation of sloshes and corresponding wave periods in draining tank with different control 

 
 (a)                                                                                (b) 

 

Figure 22. Streamlines and pressure contour of a flow inside and outside a complex 3D geometry. (a) inside 

flow (Re=10), (b) outside flow (Re=50). 

 
Figure 21. The geometric configuration of 3D channel with soild interfaces. 
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parameters and flow regimes, (ii) fluid dynamics around a flapping airfoil, and (iii) fluid flow around complex solid 

geometries. In particular, for the draining tank flow problem, the following observations can be summarized: 

 Three draining regimes are observed under micro-gravity condition as Weber number increases; a capillary-

dominated, transition, and inertia-dominated regime. 

 The  interface deformation in the transition regime have been measured and compared with available 

experimental data; good agreement between computation and experiment is observed. 

 The liquid residual increases with oscillation as the draining parameter increases, and it remains almost constant 

at large draining parameter. 

 The inertia-dominated regime is shown at higher draining parameter with higher initial fill level. Furthermore, a 

higher initial fill level generally experiences a larger liquid residual. 

 The non-dimensional slosh wave period increases with draining parameter.  
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