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THERMAL AND ABLATIVE LAG 
INDUCED BY A PERIODIC HEAT INPUT* 

R. J. Nichols and M. Sichel 
The University of Michigan 

Ann Arbor,  Michigan 

Abstract B1 empirical  constant for vapor p re s su re  

The thermal and ablative lag induced by a per i -  
odic heat input to a n  oscillating flat plate i n  a high 
velocity flow is investigated. A perturbation ap- 
proach i s  employed reducing the energy equation 
f o r  a semi-infinite s lab with a moving boundary to 
a second order  l inear nonhomogeneous differential 
equation with linear boundary conditions. The an- 
alytic solution is obtained for a pure vaporizer in- 
cluding effects of surface recession and mass  
blockage. The importance of this solution is the 
revelation of a crossover f r o m  a dynamically sta- 
bilizing to a destabilizing condition (or vice ve r sa ,  
dependent upon the distribution of ablative surface 
relative to the plate center of gravity as the f r e -  
quency of oscillation increases.  The effect of ma- 
ter ia l  on this crossover frequency is also shown. 
In the limit as frequency tends toward infinity, ab- 
lation velocity negligible compared to propagation 
velocity, the temperature lag approaches n/4 and 
the ablative lag approaches ze ro  (the result  for 
z e r o  ablation velocity as derived by Carslaw and 
Jaeger ,  Conduction of Heat in Solids). 
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List  of Symbols 
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PV 
q 
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Y 
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A 

Y O  
A 
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specific heat of material (Btu.lbm-l.OR- 1 ) 

heat of vaporization (B tu lbm- l )  
enthalpy difference ac ross  boundary layer 
(Btu.1bm-l) 
thermal conductivity (Btu.ft'l.sec-l.oR-l) 
root of homogeneous solution 

root of homogeneous solution 

local p re s su re  (Ibf.ft-2) 

heat t ransfer  rate (Btu.ft-2.sec-1) 
t ime (sec) 
ablation velocity (ft.sec-l) 
coordinate measured perpendicularly f rom 
ablating surface (ft) 
initial material  thickness (ft) 

s e e  Equation (23) 
see  Equation (23) 

vapor p re s su re  of element E (1bf.ft' 2 ) 

B2 

c1 

C2 
D 
E 
F 
G 
H 

REw 

L 
M 

N 
Q 
Re 
S 
T 
W 
X 
P 

empirical  constant fo r  vapor p re s su re  (OR) 

constant of homogeneous solution 

constant of homogeneous solution 

s e e  Equation (20) 
s ee  Equation (20) 
see Equation (20) 
s ee  Equation (20) 
see Equation (20) 
mass  fraction of element E 

amplitude of thermal perturbation 
molecular weight ra t io  (air to material  
vapor) 
see Appendix I 
amplitude of ablative perturbation 
denotes real part  
see Appendix I 
material  temperature (OR) 

s e e  Appendix I 
an a rb i t r a ry  positive constant 
ablative t ime lag (radians) 
thermal thickness for the steady problem 

6T1 (ft) 
0 argument of homogeneous solution 
K thermal diffusivity (ft2,sec-1) 
P material density (1bm.ft- 3) 
T 
@ thermal  t ime lay (radians) 
!b 
w 

period of oscillatory heat input (sec) 

mass blockage parameter ;  s e e  Equation (6) 
frequency Of oscillatory heat input 
( r ad ianssec -  l) 

Subscripts 
1 steady part 
2 unsteady par t  
W wall conditions 

Superscripts 

A 

perturbation magnitude 
dummy variable (see Fig 2) 
dimensionless parameter  * 
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lative oscillations is obtained for a pure vaporizer; 
z :2 
w 

it includes effects of surface recession and mass  
blockage. The effects of frequency of oscillation 2 2  
and mater ia l  properties on the ablative lag and dy- ,' 

uamic stability of the plate are discussed. 

m 

g z  
0 0  c k 4  v 

11. Mathematical Formulation of Problem 

The problem is t h u s  to determine the thermal 
and ablative behavior of a semi-infinite s lab of a 
pure vaporizer exposed to a periodic heat input, 

4 
q(t) = q1 + c12(t) 

c 

w z  Z H  
= q + q ' c o s  wt $ 2  1 

The t i m i  lag through the boundary layer,  as has,  
for example, been discussed by Lighthill(l) and 
Rott,(2) is not considered in this simplified case.  
Further ,  the heat input to the plate is assumed 
quasi-uniform; i.e., t ransverse heat conduction is 
neglected. Flow properties at the external edge of 
the boundary layer are treated as constant, although 
variations of these properties with time can be 
handled by the method outlined here.  Finally, the 
mater ia l  is a pure vaporizer,  introducing no addi- 
tional complications due to a liquid boundary layer.  

Figure 1 indicates the heat input q(t) and the sur-  
face receding with t ime. The governing equation i s  
the energy equation in the solid (Fourier ' s  heat con- 
duction equation), 

3 Steady-State Ablation 

- Lag - 
/, 

-I-- _ _ -  _ _ -  --- 

Steady-State Heat I n p u t  
m 

where T is temperature and K is thermal diffusivity. 
Transforming to a coordinate system fixed with re- 
spect to the ablating surface, 

A t = t  

ii 

Figure 1. Semi-Infinite Slab with Periodic Heat 
Input and Ablation 

where v is the ablation velocity in the positive y di- 
rection. Then since 

a a  
a Y  - a; 

and 
a - _ -  a - a + v(t) - a? at a Y  

(3) 

the energy conduction equation in the moving y co- 
ordinate system becomes 

a T  a2T + v(t)- = K T  a Y  ay 
a t  

The boundary conditions follow. 

1. Temperature bounded as y - -m 

T < X f o r y < O  ( 5) 

where X is some positive constant. 'U 
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2. The heat t ransfer  at the wall, neglecting ra- 
diative emission, is the oscillatory heat in- 
put q(t) reduced by the effect of vaporization 
or mass  blockage in the boundary layer and 
the latent heat of vaporization. 

= q(t) - 0.68 Mo'26 Ahpv(t) - pv(t)hv 

Mass Blockage Heat of 

= iLq(t) - pv(t)hv ( 6 )  

where J. is the m a s s  blockage parameter given by 
the empirical  relation 

-- 
Vaporization 

+b = 1 - 0.68M 0 . 2 6 [ 3 )  

Ah is the enthalpy difference across  the boundary 

M is the molecular weight ra t io  (air to mater ia l  

k is the thermal  conductivity 
p is mater ia l  density 

layer 

vapor) 

v(t) is the ablation velocity 
h is the heat of vaporization 

su lscr ip t  w denotes wall conditions 
u 

111. Solution 

In order to determine what the nondimension- 
alized energy equation reveals about a solution, 
wri te  equation (4) in nondimensionalized form.  In- 
troducing the dimensionless parameters  denoted 
by *, 

where 7 is the period of the oscillatory heat input, 

T T* = 

Tw exp (y) 
1 

where Tw exp (v Y/K) is the steady-state temper- 

a ture .  For q' << q1 it will be subsequently shown 
that T '  << T1, T = Tw exp (v Y / K ) ,  and T* is of 

order  one. 

1 1 

1 1 

where 6 is the thermal thickness for  the steady- 

state problem, i.e., the distance y required for the 
temperature to  decrease by l/e. 

T1 

where VI is the steady-state ablation velocity. For 
q' << q l ,  it will be shown that v' << vl, v(t) = vl, 
and v* is of order  one. 

energy equation (4) may be written 
Employing these dimensionless parameters ,  the 

Equation (7) now indicates that the problem may be 
considered quasi-steady if 

2 
v1 - >> 1 
W K  

since then the unsteady t e r m  is small  compared to  
the steady-state t e r m s ,  assuming of course that the 
dimensionless quantities a r e  of order  one. This 
corresponds to w << 1 cps f o r  typical materials.  

To determine the actual solution, the ablation ve- 
locity and surface temperature are written in t e r m s  
of their  steady and unsteady components: 

v(t) = v1 + v,(t) ( 8) 

T(Y, t) = T1(y) + T2(y, t) 

= T1(y) + Re [T'(y) eiwt] (9) 

where T'(y) is the complex amplitude of Tz(y, t). 
Since the governing equations will be linearized, 
T2(y, t) wi l l  have the same  frequency as q(t) but 
will in general  have a t ime lag 4. For the perturba- 
tion q '  << q l ,  it is assumed that the ablation velocity 
depends on q and T as in the steady case derived by 
Lees(4);  that i s ,  

where for no chemical reaction, the mass  fraction 
of element E is 
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or  where the second-order t e r m  has been dropped. 
Relations (4), (5), (6), and (14) se t  the problem. 

where p is local pressure  
p is vapor pressure  of element E 

V 

111.1. Solution with No Mass Blockage 

suming no mass  blockage (+ = l), the relations 
become more tractable.  From (10) and (ll), the 
ablation velocity 

Although no great simplification a r i s e s  by as 

v(t) = p A h M -  *) - 1 
(12) 

i s  a function of q(t) and wall temperature,  the latter 
through Ah and pv (Ah dependence weak). The va- 
por p re s su re  pv oi the ablating material  is a func- 
tion of both mater ia l  temperature and local pres-  
sure .  Neglecting the effect of pressure  p, an 
empirical  expression for the vapor pressure  pv is 

and 

1 v << v 2 

for 

may be verified. Equation ( 6 )  res t r ic t s  ablation ve- 
locity perturbation to a magnitude comparable to 
that of the heat input. Further ,  acknowledging that 
temperature perturbations at depth y a r e  less  or 
equal to surface temperature perturbations, 

5 T (t) 
w2 

an examination of equation (14) reveals that ablation 
velocity perturbations a r e  directly proportional to 

where t h e  following assumption has  been made Since the vapor pressure constant (BIBZ/Tw,) 
- .  7 

rn 
. 

is in general of order 10, temperature 

perturbation must then be of ordcr 1O-I or less  
than the order of the heat input. 

The differential equation (4) may now be reduced 
to a second-order linear nonhomogeneous differen- 
t ia l  equation by substituting (9) and (14) and neglect-. 
ing second-order te rms:  

Then f rom (12) and (13), ablation velocity may be 
written 

iwt "1 
v(t) = -- 

pAhM& - 1\ 

(14) 
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Therefore,  C2 = 0 for  boundedness as y - -m. The 
particular solution is 

dT' d2T' 
(1 5) 

For the vaporizing case,  the steady-state temper- 
ature is identically@) 

+ V  - = K -  
1 dy dy2 

so that the general  solution is 

T' = c emlY 1 

v l Y  T = T exp- 
1 K V 1 w  

or 

(19) 
or dT1 Tw v 

(16) 
1 1 v l y  exp - _ _ _ _  - 

dY K K 
T'  = C exp Dy (cos Ey + i s in  Ey) 1 and (15) becomes 

(20) + iF exp Gy + iHT'  exp Gy W 

where 

(17) 114 
While q '  is given, TI, is unknown and behaves E = 21 + (71 sin o somewhat like an eigenvalue of the problem. The 
roots of the homogeneous equation are 

2 
1 9( 

V 
F =  +- 

KW 41 TW1 

114 
i o  

m l , m 2 = ~ * ~ [ + ~ ~  exp 2 

1 V 

K 
G =  - where 

0 = tan-lc?) 

H=--- V12BlBZ P 

KW Twl (P - pvJ 
W' 

The homogeneous solution for T '  for al l  w is 

m y  Setting y = 0 in (20) and solving for T'(0) = T'  m y  T ' = C  e 1 + C Z e  2 1 

Since 

R e  (m,) > 0 always 

and - 
Re (m,) < 0 always 

C. + iF + iC.H - FH 

To determine the unknown constant C1, the remain- 
ing boundary condition, equation (6), for  the heat 
t ransfer  to the wall must be used. For + = 1 



+ s i n w t  H W  + -  H 2 F )  (25) (' l + H  2 

To determine t ime lag of the thermal  oscilla- u Using (14) and (l), 

tion relative to that of the heat input, note that equa- q' i w t  k -  = ( q  - p v h ) + - e  (q l -pv lhv)  tion (25) can also be written in the fo rm 
1 1 v  q1 

Since ( f rom Ref. 3)  q - pv h = p v  c T Thus, 
1 l v  l p w l  

H ~ F S  -N - FS - HW + - 2 

S (27) 
l + H  L s in  4 = 

H FS 

(1 + H2) 
w - n w -  

(28) S L cos  0 = 

W The ablation r a t e  is obtained by combining (14) 
(23) and the periodic part of (25). From (14), 

1 q'  = ATIW + B 
V 

+---T 
41 w1 

where 

VlBlB2 hv 

BlB2 p +-- - 

14' V 
B = - - T  

= v + Q cos  wt cos 0 + Q sin w t  sin P 91 w1 1 

Then, to  solve for  the complex constant C1, (21) i s  
substituted i n  (19) and (231, and the derivative of 
(19) evaluated a t  y = 0 is equated to (23). C1 is 
given in Appendix I. TIw may then be written 

(24) 
W + iN + iF ( l  + iH) - -  

2 
(1 + H )  

T'w - s 

where W, N, and S are defined in Appendix I. Tak- 
ing the real par t  of (T'eiwt), 

One must evaluate the individcal constants for 
T = T  + c o s w t  - - - -  - - specific materials in o rde r  to  further define the 

w1 thermal  and ablative lags. 



111.2. Solution with Mass Blockage 
The velocity function must be changed to in- 

clude mass  blockage, as must the heat-transfer 
boundary condition at  the surface. First (10) and 

-, (7) a r e  solved, yielding 

The only difference between this and the previous 
treatment (+ = 1) is  that a more complicated de- 
velopment is required to determine the effect  of 
temperature on vapor pressure  and subsequently 
v(t) and @(t). Substituting for vapor pressure 41 
f rom equation (13) 

1 v(t) = v 

The differential equation (4) i s  again reduced 
to a second-order l inear nonhomogeneous differ- 
ential equation by substituting (9) and (32) and 
neglecting second-order te rms:  

u 

pvlAh M BIBZ T ' j  1 Y  
K T w l  exp - 91 pvl w1 w1 T T  + 

The boundary condition (6) becomes 

qw(t) = h ( t )  - pv(t)hv 

2 
(PV,) Ah M E 

(0.68 Ah M0"' + hv) 

91 pV1 

Note that equations (20), ( Z l ) ,  and (24) through (29) 
for mater ia l  temperature are s t i l l  valid, A and H 
having changed. 

p v l A h M B  B p 

A = p T w l  - &][qlTwl ?--I w1 pvl 

The ablation velocity thus is obtained by combining 
(32) and the periodic par t  of (25) 

r 

v(t) = v1 + v - cos wt 
91 i q' 

= v + v (Q cos wt cos p t Q s in  ot sin 0) 1 1  

pvl Ah M B B 
Q c o s P = -  4' + J?-J-LL L cos 0 

91 91 PVITWl TWl 

4 1  pvl w1 w l .  

pvlAh M B B LUL, sin 0 
T T  Q s i n  p = 

IV. Results 

The effects of frequency of oscillation and ma- 
ter ia l  properties on the thermal and ablative oscil-  
lations can now be discussed in  the light of the 
above solution. These e f fec ts  are manifested in 
the amplitude of the thermal and ablative oscilla- 
tions, the lag of these oscillations relative to those 
of the heat input, and crossovers  of the ablative 
lag from a dynamically stabilizing to a destabiliz- 
ing condition with changing frequency. The la t ter  
effect ,  an  important dynamic stability considera- 
tion, is readily understood by examining ablative 
lags of 2 n  - E and 2 n  + E o r  0 - E and 0 + E ,  where 
E << n ,  Assuming the ablative surface rearward 
of the plate center of gravity, the ablative momen- 
tum flux for the lag 2n + E or 0 + E a s s i s t s  the 
plate inertial  force,  a dynamically destabilizing 
condition. The flux for the lag 2n - E o r  0 - E 
(actually an ablative lead) opposes the plate in-  
er t ia l  force ,  a dynamically stabilizing condition. 

thermal and ablative lag f o r  no mass blockage a r e  
The ef fec ts  of frequency of oscillation on the 
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noted in Fig 2 and 3 f o r  Teflon and quartz, respec-  
tively (material  properties used in these calcula- 
tions are  listed in Table 1). Both the thermal  and 
ablative lags approach zero  fo r  low frequency as 
expected. As  frequency increases,  the therma.1 lag 
rises rapidly, c ros ses  Zn, and asymptotically 
approaches 9n/4 as w - m. The ablative lag r i s e s  
slightly, decreases,  c r o s s e s  2n,  and asymptotically 7: ~ .. 2(,tp-= 
a s  GK/V~ - m (w - m) i s  the case  of no ablation 
or ablation velocity negligible compared to  the 

same as that for  no ablation as derived by Carslaw 

dimensionalized thermal  and ablative oscillation- 
amplitudes are indicated in Fig 4 and 5. The am-  
plitude and lag of the the, mal and ablative oscilla- 

and Jaeger.(5) 

tions relative to  the forcing heat input oscillation 
are indicated for frequencies w = 10- l  and l o3  
radians per  second in Fig 6 and I .  

Although quartz is not a pure vaporizer and 
thus does not sat isfy the problem conditions, it 
does i l lustrate  the effect of material  properties. 
The effect of material  is on the ablative lag which 
is considerably higher for the Teflon material. 

Mass blockage appears  to cause little change 
in either the maxima of the ablative lag and lead 
or the crossover  frequency as indicated in Table 2.  

V. Conclusions 

approaches 2 n  as w - a. The asymptotic behavior - - _ - _ _  

velocity G. This resul t ,  as expected, i s  the m e  

c 
<lil 
4 'A 

3 2 
2 -1 

2 
2 
E 

5 i3 81 

The effect of frequeucy of oscillation onthe noli- 

LEI 

10-1 100 lo1 102 

-1 FREQUENCY (rad-sec  ) 

:I t. I I I -  

Figure 2.  Thermal  and Ablative Lag as a Function 
of Frequency for an Oscillating Flat Teflon Plate- 

No Mass Blockage 

An analytic solution has  been obtained for the 
thermal  and ablative lag  resulting from a periodic 
heat input to an ablating flat plate. The importance 
of this  solutionlies inthe revelation of a crossover 
f r o m  a dynamically stabilizing to  a destabilizing 
condition (or vice versa) as the frequency of oscil- 
lation increases.  

- 
.!1 
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Figure 4. Relative Amplitude of Thermal Perturba- Figure 6. Pictorial  Representations of Amplitude 
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Property 

Twl = steady-state wall temperature  

B = vapor p re s su re  constant 

B - vapor p re s su re  constant 

q'  = heat t ransfer  r a t e  perturbation 

q = steady-state heat t r ans fe r  rate 
v = steady-state ablation velocity 

1 

2 -  

1 

1 
K = t h e r m a l  diffusivity 

h = h e a t  of vaporization 

c = specific heat 

A h  = enthalpy difference ac ross  

V 

P 

boundary layer 

p = local p re s su re  

Units __ 
OR 

Teflon 

1648 

23.81 

1580.0 

27.0 

2700.0 

1.6 X 10- 
2 

3.41 x 

750.0 

0.30 

8470.0 

Q Q U  

5803 

21.615 

5688.0 

8 . 0  

800.0 

8.22 

9.35 x 10-6 

5500.0 

0.25 

7453 .o 

at m 3.963 3.963 

pvl = steady-state vapor p re s su re  a tm 2.65 1.72 

p = material  density l b r ~ . f t - ~  131.0 140.0 

M = molecular weight ra t io  0.29 0.72 
(air to material vapor) 

Table 1. Material Proper t ies  and Environmental Conditions fo r  Teflon and Quartz 

No Mass 
Blockage Blockage 

Crossover frequency ( rad .sec- l )  -15 
Maximum ablative Lag (rad) 0.140 0.139 
Maximum ablative lead (rad) 0.103 0.101 

Table 2.  Effects of Mass Blockage on the  Ablative Lag 

Appendix I 

The c6nstants C M, N,  S are defined 1' 

2 2 2 -AB - ADFH + BD(1 t H + DGHF - BGH + AFGH - FG H + AEF - FEG 
2 2 2  2 2  2 c =  

A2 + D2(1 + H ) + G H - 2AD - 2DGH + E (1  + H ) - 2AEH + 2EGH 

2 i[-A2F + ABH + AEFH - EB(1 + H ) - EGHF + AGF - BGH + ADF - FDG] 

A' + D (1 + H ) + G H - 2AD - 2DGH + E (1  + H2) - 2AEH + 2EGH 2 2 2 2  2 2  
+ 

2 2 2 W = -AB - ADFH + BD(1 + H ) .t DGHF - BGH 

2 2 

+ AFGH - FG H + AEF - FEG 

N = -A F + ABH + AEFH - EB(1 + H ) - EGHF + AGF - BGH + ADF - FDG 

S = A 2 + D ( 1 + H ) + G H  2 2 2 2  - 2 A D - 2 D G H  2 2  + E  ( I + H ) - Z A E H + Z E G H  2 
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