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THERMAL AND ABLATIVE LAG
INDUCED BY A PERIODIC HEAT INPUT*

R. J. Nichols and M. Sichel
The University of Michigan
Ann Arbor, Michigan

Abstract

The thermal and ablative lag induced by a peri-
odic heat input to an oscillating flat plate in a high
velocity flow is investigated. A perturbation ap-
proach is employed reducing the energy equation
for a semi-infinite slab with a moving boundary to
a second order linear nonhomogeneous differential
equation with linear houndary conditions. The an-
alytic solution is obtained for a pure vaporizer in-
cluding effects of surface recession and mass
blockage. The importance of this scilution is the
revelation of a crossover from a dynamically sta-
bilizing to a destabilizing condition (or vice versa,
dependent upon the distribution of ablative surface
relative to the plate center of gravity as the fre-
quency of oscillation increases. The effect of ma-
terial on this crossover frequency is also shown.
In the limit as frequency tends toward infinity, ab-
lation velocity negligible compared to propagation
velocity, the temperature lag approaches 7/4 and
the ablative lag approaches zero (the result for
zero ablation velocity as derived by Carslaw and
Jaeger, Conduction of Heat in Solids).

List of Symbols

Cp specific heat of material (Btu-lbm“l-OR_I)

h, heat of vaporization (Btu-lbm™1)

Ah enthalpy difference across houndary layer
(Btu-lbm-1)

k thermal conductivity (Btu-ft'l-sec“l-OR‘l)

m, root of homogeneous solution

m, root of homogeneous solution

p local pressure (Ibf-ft=2)

P, vapor pressure of element E (Ibf-ft~ 2)

q heat transfer rate (Btu-ft‘z-sec' 1)

t time {(gec)

v ablation velocity {ft-sec” 1)

v coordinate measured perpendicularly from

N ablating surface (ft)

Yo initial material thickness (ft)

A see Equation (23)

B see Equation (23)

empirical constant for vapor pressure

empirical constant for vapor pressure (°R}

O W =

constant of homogeneous solution

9!
[ I O

constant of homogeneous solution

see Equation (20)
see Equation (20)
see Equation (20)
see Equation (20)
see Eguation (20)

mass fraction of element E

A G

=
3

amplitude of thermal perturbation
molecular weight ratio {air to material
vapor)

see Appendix I

amplitude of ablative perturbation
denotes real part

see Appendix I

material temperature (°R)

see Appendix I

an arbitrary positive constant

ablative time lag {radians)

thermal thickness for the steady problem
(ft)

argument of homogeneous sclution
thermal diffusivity {ft2-sec-1)

material density (lbm-ft-3)

period of oscillatory heat input (sec)
thermal time lag (radians)

mass blockage parameter; see Equation (6)
frequency of oscillatory heat input
(radians-sec- 1)

=

CmHEH RO

=3
-

€O aD r D

Subscripts

1 steady part

2 unsteady part
w wall conditions

Superscripts

! perturbation magnitude

A dummy variable (see Fig 2)
* dimensionless parameter

*This work was supported by the Advanced Research Projects Agency, under Contract SD-91 (ARPA

Order 236) as a part of Project DEFENDER.



I. Introduction

An oscillating plate in a high-velocity flow and
its resultant material temperature and ablation
rate oscillations are investigated as they relate to
the dynamic stability of the plate. This is accom-
plished through an investigation of the somewhat
simplified case of a periodic heat input to a sta-
tionary flat plate in a high-velocity flow, A per-
turbation approach is employed, reducing the en-
ergy equation for a semi-infinite slab with a moving
boundary to a second-order linear nonhomogeneous
differential eqguation with linear boundary condi-
tions. An analytic solution for the thermal and ab-
lative oscillations is obtained for a pure vaporizer;
it includes effects of surface recession and mass
blockage. The effects of frequency of oscillation
and material properties on the ablative lag and dy-
namic stability of the plate are discussed.

II. Mathematical Formulation of Problem

The problem is thus to determine the thermal
and ablative behavior of a semi-infinite slab of a
pure vaporizer exposed to a periodic heat input,

ait) = qy * qz(t)

=y +q" cos wt

iwt

=gy +q' Re (e (1}

{q' << g, and real where Re denotes real part).
The time lag through the boundary layer, as has,
for example, been discussed by Lighthill 1) and
Rott, 2) is not considered in this simplified case.
Further, the heat input to the plate is assumed
quasi-uniform; i.e., transverse heat conduction is
neglected. Flow properties at the external edge of
the boundary layer are treated as constant, although
variations of these properties with time can be
handled by the method outlined here, Finally, the
material is a pure vaporizer, introducing no addi-
tional complications due to a ligquid boundary layer,

Figure 1 indicates the heat input g{t) and the sur-
face receding with time. The governing equation is
the energy eguation in the solid (Fourier's heat con-
duction equation),

2T 3T
kTS (2)
ot ¥

where T is temperature and « is thermal diffusivity.

Transforming to a coordinate system fixed with re-
spect to the ablating surface,
t=1
A A t
y=(y-ygh+ | vithat
0

COORDINATE NORMAL
TO SOLID SURFACE

QTK__:\ T l__

Steady-State Heat Input

HEAT
INPUT

TIME 4

Figure 1. Semi-Infinite Slab with Periodic Heat
Input and Ablation

where v is the ablation velocity in the positive y di-
rection. Then since

e _3a
2y 39
and
i i 2
£ _ Qg £ 3
Tt Y05 ®)

the energy conduction equation in the moving vy co-
ordinate system becomes

2
aT 2T g T
£ LA S ) 4
at * V(t)ay Kay2 (4)

The boundary conditions follow.

1. Temperature bounded as y — ~®
T<Xfory<?0 (5)

where X is some positive constant.



2, The heat transfer at the wall, neglecting ra-
diative emission, is the oscillatory heat in-
put qft} reduced by the effect of vaporization
or mass blockage in the poundary layer and
the latent heat of vaporization,

aT

Ky ly=0~ q,,®
= qlty - 0.68 M*%% Anpv(t) - pvitih
l Mass E\;locka.ge | l Heat of |
Vaporization
= qlt) - pv(thh (6)

where Y/ is the mass blockage parameter given by
the empirical relation

Ah{pv)
_ 0.26 w
v=1-068M (ﬂ—_q(t) )

Ah is the enthalpy difference across the houndary
layer
M is the molecular weight ratio (air to material
vapor)
k is the thermal conductivity
p is material density
v({t) is the ablation velocity
h_ is the heat of vaporization
su%script w denotes wall conditions

III. Solution

In order to determine what the nondimension-
alized energy equation reveals about g solution,
write equation (4) in nondimensionalized form. In-
trogucing the dimensionless parameters denoted
by 7,

,,.
£

* b
==

|

D3
=

where 7 is the period of the oscillatory heat input,

T
T expl—
Wy K

where TW exp (vly/fc) is the steady-state temper-
1

T =

ature, For g' << qy it will be subsequently shown
that T' << T, T=T, exp (vly/K), and T* is of
1

order one.
* y v
y = '6— = %
T1

where §_, is the thermal thickness for the steady-

T
1
state problem, i.e., the distance y required for the

temperature to decrease by 1/e.

(t)
1

<

v¥ =

|

<

where vy is the steady-staie ablation velocity. For
q' << gq, it will be shown that v' << vy, v(t}= vy,
and v* is of order one.

Employing these dimensionless parameters, the
energy equation (4) may be written

2 2,
1aT* Y1 «2T" V1 2o
o T\ Ve Tl a2) e O
{wK) (wk) ay*

Equation {7) now indicates that the problem may be
considered quasi-steady if

V2
—1->>1
WK

since then the unsteady term is small compared to
the steady-state terms, assuming of course that the
dimensionless quantities are of order one. This
corresponds to w << 1 cps for typical materials.

To determine the actual sclution, the ablation ve-
locity and surface temperature are written in terms
of their steady and unsteady components:

v(t) = vy + volt) (8)

Ty, t) = Tl(y) + Tyly, t)

T, (y) + Re [T'(y) eiwt] (9)

where T'(y} is the complex amplitude of Ty{y, t}.
Since the governing equations will be linearized,
To(y, t) will have the same frequency as q(t) but

will in general have a time lag ¢. For the perturba-
tion q' << qq, it is assumed that the ablation velocity
depends on g and T as in the steady case derived by

l.ees 4); that is,
g
E
_wal)__ w.
V) = An |1 - R, (10)
w

where for no chemical reaction, the mass fraction
of element E is

-1

= B _
KE =(1+ M(p 1)
w v



or
(11)

where p is local pressure
P, is vapor pressure of element E

IIT.1. Solution with No Mass Blockage

Although no great simplification arises by as-
suming no mass blockage (Y = 1), the relations
become more tractable, From (10) and (11), the
ablation velocity

aft)
P
pARM[-Z - 1
pV

v(t) = (12)

is a function of g(t) and wall temperature, the latter
through Ah and By (Ah dependence weak). The va-
por pressure py, of the ablating material is a func-
tion of both material temperature and local pres-
sure. Neglecting the effect of pressure p, an
empirical expression for the vapor pressure Py ig

-1
v €xp [Bl(l - B2TW )}

TW
2

P

1

"
T

(13)
W

where the following assumption has been made

T
B1B2 w2
T
w

<< 1

1 M

Then from (12} and (13), ablation velocity may be
written

T
BB, o W, (t)

T T
W1 (p - pvJ Y1

p
Ah M{— -
’ (p )
1

qft)l1 +

v

"

-t
—

+
<
jas)
D
+

where the second-order term has been dropped.
Relations (4), (5), (6), and (14) set the problem.

At this juncture, the earlier assumptions that

Tg << Ty
and

Vo £t Yy
for

g == 9

may be verified. Equation (6) restricts ablation ve-
locity perturbation to a magnitude comparable to
that of the heat input. Further, acknowledging that
temperature perturbations at depth y are less or
equal to surface temperature perturbations,

Tz(ys t).S T2(01 t)

an examination of equation {14) reveals that ablation
velocity perturbations are directly proportional to

T
g B.B wz(t)

172 P
Tw - Tw
1 (p pv 1) 1

Since the vapor pressure constant (Ble/TW )

1
[I/(p - P, ﬂ is in general of order 10, temperature
1

perturbation must then be of order 10-1 or less
than the order of the heat input.

9y

The differential equation (4) may now be reduced
to a second-order linear nonhomogeneous differen-
tial equation by substituting (9} and (14) and neglect-
ing second-order terms:

. ! ., dT
T elwt iy g'i . T_w BIBZ P iwt” "1
lq1 TW Tw _ dy
1™ (p pv)
1
dr 2 air
Loar T etdtr o T
- 2
1dy "Y1 ay 4 o’

Eliminating the steady-state part



—

! B,B T daT
iwT (y) + vy g— + —--—Tl 2__p T__.W - 1

1 - ¥

W) (p pv> W, .
1
2
dT! d T
TViay O K (15)
1 dy dyz

For the vaporizing case, the steady-state temper-
ature is identically(3)

Vly
T, =T  exp-—
1 w K
1
or
dT Tw v v,y
—1__11 . (16)
dy =« Py
and (15) becomes
T T
T2 7k dy ?T
dy ¥
v 2 B.B T V.V
- <, 12-—£-~-—-WT exp~1~
K q1 Tw T w1 K
11P=Py Wy
1
{(17)

While q' is given, Ty, is unknown and behaves
somewhat like an eigenvalue of the problem. The
roots of the homogeneous equation are

2 i/4
dor i ig
== exp

v v
I S §
mZ—ZKi2K1+ 2
1

0= tan‘1<4i2">
1

The homogeneous solution for T' for all w is

my s

where

T = clem1y + CzemzY

Since
Re (ml) > 0 always

and

Re (mz) < 0 always

Therefore, Cg = 0 for boundedness as y — -co. The
particular solution is

2
v , B.B T v,¥
fiu g_ * 'I’l 2 T = Tw exp (%) (18)
1 W1 (p—pv> Wl 1
1

50 that the general solution is

T =¢,eM1Y
1
vlz . B1B2 T v, ¥
+ie—d P T exp|—
Kkw(q T T w K
1 W, (p - pvj Wy 1
1
(19)
or
T' = C1 exp Dy (cos Ey + i sin Ey)
+ iF exp Gy + iHT‘W exp Gy (20)
where
; 5 1/4
1 dax 9
D= o 1+11+ 5 cos 5
\4
1
. 3 1/4
1 4wk .
E = P 1 ‘7 smu~2~
1
v 2
1 q
F=o—a
Kw g "Wy
v
G=-1
2
v, B.B
g--L 12 _p

T Ra T
¥ (p"pvb

Setting y = 0 in (20} and solving for T'(0) = T'w,

C1+iF+iCIH—FH

1 —

Tw— 2
1+H

(21)

To determine the unknown constant Cq, the remain-
ing boundary condition, equation (6), for the heat
transfer to the wall must be used. Fory =1



k& @) - pv(t)h
Yy=0
Using (14) and (1),
aT q' iwt
k= ={g, -pvh)Y+2e (g, - pv )
ayy -0 1 1v a4, 1 1v
- _ﬁ(ph vl)___w fewt
Smce (from Ref. 3) 4y pvlh =pv,e b w1
2T Yy Vig" iwt
3y X w, T Tw
Yly=0 1 1M1
v,.B.B .
1172 p v o, wt
- T [ " T (22)
1[P-P, | P Wy
1
or
g'..’E _‘.r_]‘.Ble p hv Tl
dy £ T ¢ w
y=0 W (PP, VP Wy
1
V1 .
+=dr -AT' +B (23)
K W w
1 71
where
AL T
Tk T T _
1 P PPy
1
v
B=f1T
4G ¥

Then, to solve for the complex constant Cq, (21) is
substituted in (19) and (23), and the derivative of
{19} evaluated at y = 0 is equated to (23). Cj is
given in Appendix I. T', may then be written

T,W=Wg1N+1F(1 +1;I) (24)
(1 +H)
where W, N, and 8 are defined in Appendix I. Tak-

ing the real part of (T'elwt),

T =T +coswt‘g HSN——}%
vy 1+H

2

+sinwt—H—F—H—W+ HF (23)
3 8 2
1+H

To determine time lag of the thermal oscilla-
tion relative to that of the heat input, note that equa-
tion (25) can also be written in the form

’I’W = ’I‘Wl + L cos (wt - ¢)
= TW + L cos wt cos ¢ + L sin wt sin ¢ (26)
1
Thus,
2
_N - FS - HW + 2 I5
1+ H2
L sin¢ = S 27
W - HN - ~—HFSZ
L cos ¢ = S(1+H) {28)
2
_N - FS - Hw + LS
-1 1+ H2
¢ = tan TS (29)
W - HN - 3
1+H

The ablation rate is obtained by combining (14)
and the periodic part of {25). From (14),

- q'
vit) = vyt q_l cos wt

B.B .
172 P 1 Re (T'wemt)

T, T \T_
1 p'pvl Y1

=v1+QcoswtcosB+QsinwtsinB

+

y B.B
_ 172 P L
Qcos;S’-—ql+TW - T cos vy
1P Py} ™
1
B.B
Qsin g = L2 P

L .
N ] ,I—,w— sin ¢ Vl
1 P pvl 1

One must evaluate the individual constants for
specific materials in order to further define the
thermal and ablative lags.



I1.2. Solution with Mass Blockage

The velocity function must be changed to in-
clude mass blockage, as must the heat-transfer
boundary condition at the surface. First (10} and
(7} are solved, yielding

- q(t)
vit) = - 68M0 26 M°'7 7 - {30)
pah "8 \p,

1

i ) M0.74 p -
Yalt) =qt)<1 - 1+ 558 - (31)

The only difference between this and the previous
treatment (i = 1)is that a more complicated de-
velopment is required to determine the effect of
temperature on vapor pressure and subsequently
v{t) and ¥(t). Bubstituting for vapor pressure py
from equation (13)

vit) = vy
. pv,AhM _B. B, T' 1|,
sv, Re <X L P12 wilet (32)
1 q g, p_ T T
1 Lo Py twy oy

The differential equation (4) is again reduced
to a second-order linear nonhomogeneous differ-
ential equation by substituting (9} and (32) and
neglecting second-order terms:

dyz K dy K 4y
T
+pV1AhM“Q_BB2Tw o x_r_ﬂ
94 Py Tw Tw Y1 Pk
1 1 1

The boundary condition (8) becomes

qw(t) = Yqt) - pv(t)hv

' .
=pv,c Tw (1 +4 Re ewt)
P¥N Y

2
(ov,) Ah M
NS SR (0.68 ah M028 4 p )
q, pv1 v

t
BBy T Joot

Note that equations (20), (21), and {24) through {(29)
for material temperature are still valid, A and "
having changed.

Vl ql Ah MB | .__PL
A= wTw - K T T
K 1 pcp q1 P

The ablation velocity thus is obtained by combining
(82) and the periodic part of (25)

v(t) = vy Yy &1 cos wt
pv, Ah M _ B.,B .
N 1 pT172 1 Re (T' emt)
a4 Py Tw Tw w
| 1

v+ vl(Q cos wt cos B + Q sin wt sin 8)

¢ pv,Ah M B.B
Qcos == + ! —P-lz-—-Lcos¢o
ql q1 pv Tw Tw
1 1 1
pv., Ah M BB
Q sinp = 1 2 1 2—1Lsin¢
ql pv Tw Tw
1 1 1"
IV. Results

The effects of frequency of oscillation and ma-
terial properties on the thermal and ablative oscil-
lations can now be discussed in the light of the
above solution. These effects are manifested in
the amplitude of the thermal and ablative oscilla-
tions, the lag of these oscillations relative to those
of the heat input, and crossovers of the ablative
lag from a dynamically stabilizing to a destabiliz-
ing condition with changing frequency. The latter
effect, an important dynamic stability considera~-
tion, is readily understood by examining ablative
lags of 27 - € and 27 + € or 0 - € and 0 + €, where
€ << g, Assuming the ablative surface rearward
of the plate center of gravity, the ablative momen-
tum flux for the lag 27 + € or 0 + € assists the
plate inertial force, a dynamically destabilizing
condition. The flux for the lag 27 - € or 0 - €
(actually an ablative lead) opposes the plate in-
ertial force, a dynamically stabilizing condition.

The effects of frequency of oscillation on the
thermal and ablative lag for no mass blockage are



noted in Fig 2 and 3 for Teflon and quartz, respec-
tively (material properties used in these calcula-
tions are listed in Table 1). Both the thermal and
ablative lags approach zero for low frequency as
expected. As frequency increases, the thermal lag
rises rapidly, crosses 27, and asymptotically
approaches 97/4 as w - . The ablative lag rises
slightly, decreases, crosses 2, and asymptotically
approaches 27 as w — «. The asymptotic behavior
as V@_(;f-{/vl —~ o0 [w — @) is the case of no ablation
or ablation velocity negligible compared to the
velocity v3wk. This result, as expected, is the
same as that for no ablation as derived by Carslaw
and Jaeger.(f’)

The effect of frequency of oscillation onthe non-
dimensionalized thermal and ablative oscillation-
amplitudes are indicated in Fig 4 and 5. The am-
plitude and lag of the theimal and ablative oscilla-
tions relative to the forcing heat input oscillation
are indicated for frequencies w = 1071 and 103
radians per second in Fig 6 and 7.

Although quartz is not a pure vaporizer and
thus does not satisfy the problem conditions, it
does illustrate the effect of material properties.
The effect of material is on the ablative lag which
is considerably higher for the Teflon material.

Mass blockage appears to cause little change
in either the maxima of the ablative lag and lead
or the crossover frequency as indicated in Table 2,

V. Conclusions

An analytic solution has been obtained for the
thermal and ablative lag resulting from a periodic
heat input to an ablating flat plate. The importance
of this solutionlies inthe revelation of a crossover
from a dynamically stabilizing to a destabilizing
condition (or vice versa) as the frequency of oscil-
lation increases.
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Property Units Teflon Quartz
’I‘W1 = steady-state wall temperature °R 1648 5803
B1 = vapor pressure constant 23.87 27.615
B, = vapor pressure constant %R 1580.0 5688.0
q' = heat transfer rate perturbation Bta,z-ft—g-sec-1 27.0 8.0
a; = steady-state heat transfer rate Btu'ft_g-sec'1 2'700.0 800.0
v, = steady-state ablation velocity ft'zsec_f1 1.6 % 10-?3 8.22 x 10::
k¢ = thermal diffusivity ft -sec 3.41 x 10 9.35 x 10
hV = heat of vaporization Btu-lbm_I 750.0 5500.0
¢, = specific heat Btwlbm LoR71 0.30 0.25
Ah = enthalpy difference across Btu'lbm_l 8470.0 7453.0
boundary layer
p = local pressure atm 3.963 3.963
Pyy = steady-state vapor pressure atm 4 2.65 1.72
p = material density lbm-ft 137.0 140.0
M = molecular weight ratio 0.29 0.72
(air to material vapor)

Table 1. Material Properties and Envirenmental Conditions for Teflon and Quartz

Mass No Mass
Blockage Blockage
Crossover frequency (rad-sec'l) ~15 ~15
Maximum ablative lag (rad) 0.140 0.139
Maximum ablative lead (rad) 0.103 0.101

Table 2. Effects of Mass Blockage on the Ablative Lag

Appendix I
The constants Cl, M, N, S are defined
Cc - -AB - ADFH + BD(1 + H2) + DGHF - BGI—I2 + AFGH - FG2H + AEF - FEG
1 2 2 2

A2 D21 + HY) « GPH% - 2AD - 2DGH® + E(1 + H?) - 2AEH + 2EGH

. ij;AZF + ABH + AEFH - EB(1 + Hz) - EGHF + AGF - BGH + ADF - FDG]

A% D20« 1)+ GPH - 2AD - 2DGH® + E2(1 + H?) - 2ARH + 2EGH

W

It

-AB - ADFH + BD(1 + Hz) + DGHF - BGH2 + AFGH - FGzH + AEF - FEG

2
N=-A"F+ ABH + AEFH - EB(1 + HQ) - EGHF + AGF - BGH + ADF - FDG

2

S=A" + Dz(l + H2) + GzH2

- 2AD - 2DGH + E2(1 - H?) - 2AFH + 2EGH
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