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B g Abstract

SomedthreS-$imensional minimum-time paths to a
efjfie&Bnalehe (or point), heading and energy are
rprgsgéntedsTor anexample supersonic aircraft. The optimum
~aneuvesghavé Been determined using the calculus of
?jar"l‘c'rions and energy-state approximation. These are
are@®ith@iboptimal solutions obtained with the
2 dition®Pussution that only three discrete values of
bank cmgi? (- @2 0, &g {ure available. Constraints
on fhrusf‘.}‘s'\cl number, angle-of-attack, dynamic
pressure Fd load factor are included. For ranges long
enough that maximum velocity is attained en route, the
initial and final arcs can be determined separately, which
greatly simplifies the solutions.

Nomenclature

= Dy+ Dy sec2¢ = aerodynamic drag; Ib
= DO(E,V) = zero-~lift drag; b

= DL(E,2V) =dragduetoL=Wat¢=0; Ib
= h+V*%/2g = energy height; ft

= Laa = gerodynamic lift; 1b

= LQ(E,V) = |ift curve slope; Ib/deg
V/a = Mach number

= thrust; lb

= velocity; ft/sec

= gircraft weight; Ib

= local speed of sound; ft/sec

= gravitational acceleration; ft/sec

= E- V2/29 = altitude; ft

= time; sec

-P:}‘(QOE<~4§QI—I—I"H'_UOUU
I

x
~

= horizontal position coordinates; ft

R
1

angle-of-attack; deg

= sin—](l;/\/) = flight path angle relative to
horizontal; deg

bank angle; deg
heading angle; deg

Subscripts

final value

-
It

max =  maximum value

initial value
Introduction

Use of the energy~state approximation greatly sim-
plifies the determination of optimal flight paths for
aircraft with only a small reduction in accuracy (see
e.g. refs. 1 and 2). For three-dimensional flight paths
the energy-state model requires three control variables:
thrust (T), bank angle (¢), and altitude (h). For paths
to a line (see fig. 1a) the model uses only three state
variables, energy (E), heading (¥), and distance to the
line (x). For paths to a point (see fig. 1b), an additional
state variable is needed: lateral position perpendicular
to the line connecting the initial and final points (y).
The equations of motion and applicable constraints are
summarized in the appendix.

If the initial range (xq) is sufficiently large that
maximum velocity (Vmax) is reached in transit, the
minimum~time path to a line can be separated into two
parts (see fig. 2a). First, the minimum-time path is
found to a straight Vg« arc perpendicular to the line
(i.e. ¥=0). Second, the minimum~time turn from the
Vmax arc to the line is determined. The length of the
intermediate V4, arc then is obtained such that the
sum of the ranges traversed on the three segments equals

X0~

This "separation of arcs" greatly simplifies the solu-
tion since the initial-arc problem has only two parameters
(Eg. ¥g) and the final-arc problem has only two parameters
(Ef, ¢3. Each of these two problems can be solved by
generating a one-parameter family of arcs. However,
for short ranges (no Vmax arc) the problem has five
parameters (Eg, vol,lxo,Ef, ¥¢), and the tabulation of

solutions is virtually impossible.

The arcs can also be separated, for sufficiently
long range, in determining minimum-time paths to a
point (see fig. 2b). However, in addition to the length
of the Vp,ax arc, its heading and its intercept distance
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Figure 1. Horizontal Projection of Flight Paths
(a) to a Line and (b) to a Point.

(x coordinate where V arc or its extension intercepts
y = 0) must also be determined. This can be done
iteratively using the two-parameter families of initial and
final arcs mentioned previously.

Aircraft Flight Envelope for Zero Bank Angle

Figure 3 shows the flight envelope of an early F4
("Phantom") airplane at weight (W) of 35,000 Ib for zero
bank angle (¢ = 0) and lift (L) approximately equal to W
(see reference 3 for thrust, lift, and drag data. The
aircraft can move along constant energy contours (E =
constant) very quickly by "zoom" dives or climbs (effected
by changing angle~of-attack). The high-altitude, low=
velocity limit of zoom climbs is the maximum angle-of-
attack (@, 4.) boundary. Here we took amgx = 12°.

The low-altitude, high-velocity limit of zoom dives is

the maximum velocity (V,qx).boundary or the zero
altitude (h = 0) boundary. V4« is the maximum velocity
independent of E. Also shown are the contours where

drag (D) equals maximum thrust (T.max). These contours
separate regions where E< O and E> Q with T =T, ..
Energy is charged by adjusting the thrust.” The region

*
Note at low energies, the constant energy contours are al-
most parallel to constant altitude contours, so angle-of-
attack primarily controls speed while thrust primarily eon-
trols altitude. At high energies, the constant energy con-
tours are almost parallel to constant speed-curves, so
primarily confroﬁ altitude while T primarily controls speed.
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Figure 2. Horizontal Projection of Minimum-Time Paths
(a) to a Line and (b) to a Point.
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Figure 3. Aircraft Flight Envelope with ¢ = 0, L~ W.

where E > 0 with T = Trmax is quite large and extends
up to E = Epgx = 108 kit.



Minimum-Time Paths to a Given Long Range: %0 =0,
{f Unspecified

Figure 4 shows the altitude-Mach number profile of
flight paths that yield minimum time to a given long range
when no turning or slowing-down is required (¥ =0,

f unspecified). ("Long range” will be used hencefor'rh to
indicate that a V| qx Or¢ oceurs on the path). An example
is indicated for Eg = Ef, = 3 kft. For other values of E

and Ef, zoom maneuvers at constant E to the ascent po?\

ALTITUDE, h (kft)

T=00 =1+ Dy,
1 —J
o 04 16 2.0

MACH NUMBER, M

Figure 4. Altitude-Mach Number Profile of = 0 Path
for Minimum Time to o Given Long Range.

and from the descent path are used. The ascent (E > 0)
path uses T=T but is not the same as the path for
maximum E also “hown in Figure 4). The ¢ = 0 minimum-
time path has higher velocity at each energy level than
the (E), pafh (see ref. 1). The descent path is along
the Vmaxﬁf ax boundary using T= 0 and "chatter",
i.e. bonklng rapl ¥ first to Pm then fo = gmax. in
order to maximize the drag due S5 1ifr (L=Wsec ¢qy)-

Figure 5 shows the altitude-range profile of the flight
paths in Figure 4. For long ranges, the initial and final
arcs are determined separately; a V. cruise arc is in-
serted between them with cpproprlote range so that the
total range is the specified xy. For example, with Eg=
Ef = 40 kft, any range greater thn 88 nm will include
an initial arc of 80 nm range, a V, ,, arc and a final
arc of 8 nm range.

Aircraft Flight Envelope for Maximum Bank Angle Turning

Figure 6 shows the flight envelope of the same air-

plane in turning maneuvers at maximum bank angle (¢ =
with L cos ¢ =W, i.e. the vertical component

o?nfv?f equal to welgrﬂ? Here we took tan ¢, .. = maximum
load factor = 4. The maximum angle- of-cfl’og( boundary
is also the locus of maximum turn-rate (qu ) and
minimum veloc1fy for a given energy (me £)). This
boundary is now substantially lower than in Figure 3, as
is the contour where D =T The intersection of these
two contours at h = 20 kft, M = .75 is the highest energy
where maximum turn rate can be sustained (called the
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Figure 6. Aircraft Flight Envelope for ¢ = ¢
L cos ¢

max’
max ~ w.

Lufbery circle point in ref. 4). The region where E>0
with T = Tmox' ?= Pmax i relatively small and occurs
in the transonic speed regime below h = 20 kft.

g7 0,

Minimum-Time Paths to a Line (Long Range):

E¢ and §g Unspecified

Figure 7 shows a horizontal projection of a typical
minimum~-time path to a given line which is far encugh
away that o Vmo cruise arc occurs en route. The case
shown is for E 43 kft, V = 180°, The continuous
bank angle so uhon (ref uses a frqgx furn for the first
110° (to § = 70°), then a gradually decreasing altitude
and bank angle to the Ay = 0 minimum~-time locus of
Figure 4. Note that § = 0 is not reached "exactly" until
V=V at a range of 86 nm. Also shown in Figure 7 is
a subopfimal path with ¢ limited to three discrete values
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Figure 7. Horizontal Projection of a Typical Minimum-

Time Turn to a Given Long Range,

En=
43 kft. 0

(- ¢ ,0,+9 ). lt consists of a § turn all the
way gx\b =0 (wmgﬁ occurs at a range of'd5 nm), then a
zoom dive to the Ay = 0 minimum=~time locus of Figure 4.
Both paths reach V. at substantially the same time and
distance (86 nm). 'Eecause of its simplicity, this suboptimal
path provides a significant reduction in computational
requirements, with only a slight reduction in flight time.
This model appears to be quite similar to the energy-
maneuverability model of Boyd (ref. 6).

There are four types of minimum~-time turns to a
given long range where Ef and ¥ are unspecified.
Figure 8 shows the accelerating turn case where Eg<

80

60 — — . __

N\
N\
\,

N
a0 T = Tpax ALL THE TIME"

< N\ ’
AW = 0MIN, TIME PATH \N &
. -

20— —— __

APPROXIMATION
{AW=180°ON Wyay)

1.6 20

08
MACH NUMBER, M

Figure 8. Minimum-Time Turns to a Given Long-Range

(E¢, ¥ Unspecified), Eg < 30 kft.

30 kft. For yn =0, the aircraft zoom dives to h=0

and follows the A§ = 0 minimum=time path. For 0°< yg

< 1809, the aircraft zoom dives or climbs to the §

locus where an accelerating turn takes place, followed by
a zoom dive to the A}y = 0 minimum-time path. Figure 9
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Figure 9. Minimum-Time Turns to a Given Long Range
(Eg, ¥¢ Unspecified), Ep = 30 kft.

shows the constant-velocity turn case where Eq = 30 kft.
Here the aircraft zoom dives or climbs to the Ymax locus
where a constant-velocity turn takes place, followed by

a zoom dive to the 4% = 0 minimum-time path. Figure 10
shows a decelerating turn case where 30kft < Eq < 93 kft.
The aircraft zoom dives or climbs to the Vmax locus where a
decelerating turn takes place, followed by a zoom dive
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Figure 10. Minimum-Time Turns to a Given Long Range
(Eg, ¥ Unspecified), 30 kft < Eg < 93 kft.



to the Ay = 0 minimum~time path. The examples of Figures
8-10 all used T =Ty qx. For Eg>95+ (180 - ¥o/13) kft,

an initial period of T = 0 is required. An example of such
a case is shown in Figure 11 for Eq = Emax = 108 kft and
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Figure 11. Minimum-Time 180° Turn to a Given Long

Range (E¢, ¥ Unspecified), Eg=E_ =
08 k. T max

Vn = 180°. The aircraft turns about 15° before T is

switched from zero to T ~ to complete the furn.

Figure 12 shows all minimum~time turns to a given

atV .
way T8y =

time path are also depicted.

CHANGE IN HEADING ANGLE, AW (DEG)

long range (E¢, ¥ unspecified) with Eq, ¥q as parameters.
Noge there is a range of possible E¢ from%

8 to 108 kft

The suboptimal paths with a ymax turn all the
0, then a zoom dive to the Ay = 0 minimum-~
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Figure 12, Minimum-Time Turns to a Given Long

Range (EF' 5 Unspecified).

Minimum-Time Flight Paths to a Point or Line from Vpoy

Cruise; E¢ and ¥f Specified

Figures 13 and 14 show a horizontal projection
and an h vs M profile, respectively, of a typical minimum-
time path to a point or line from V| . cruise. The case

0 2 a ] 8 10
0 T T T T T

Viax (L (=Ehyax

| -——CHATTER 'LOMAX)_"—_’

Eal @=®max
= /.
:» E = 70 kft. E=46—= \wMAX
o2}
z
P E=39
2 3 E = 37 kit
g A W= 180° \/T=°
(%] /
a 1 I L Tmax |

Figure 13. Horizontal Projection of Typical Minimum-
Time Path to a Point from Vax Cruise.
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Figure 14. Minimum-Time 180° Turn to a Point from
Vmax Cruise, Ep= 37 kft.

shown is for E¢ = 37 kft, Ay = 180°. It consists of: (a) a
straight chatter arc (¢ = + ) descending in altitude
on the Vipqx(E) boundary withT = 0to E= 70 kft; (b) a
Prmax 9N still descending on the Vmax(E) boundary with
T= 8, to Ay = 600, E = 47 kft; (c) a zoom climb to the
¥may boundary; (d) a ¥pax turn, decelerating withT=0,
to &y = 150°, E= 39 kit; (e) a ¥ turn decelerating
with T=T xr fo by = 180°, Eg = 37kft; and finally

(f) a zoom elimb or dive to the desired final altitude.
Note this same case applies to turning onto a line (8¢ =

+ 90°) if Eg~ 44 kft (there would be no T= T, phase).

Figure 15 shows another type of path for E¢ = Epqy
= 108 kft, a4 = 180°. ItusesT=T__ all the way and
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Figure 15. Minimum-Time 180° Turn to a Point from
Vmax Cruise, Eg= Ep, . = 108 kft.

consists of four arcs: (a) ¥ ax furn decreasing energy to
67 kft and turning 180°, (lS'S a zoom dive to the 8y =0
minimum-time path, (c) with ¢ = 0, moves along 44 = 0
minimum~time path to the Vmax(E) boundary, up that
boundary to M = 2, and (d) a constant Mach number climb
at M =2 to E¢ = 108 kft.

Figurg 16 shows all minimum time turns to a point or
line from V 4y cruise with E¢, Ayf as paramefers. Note
that paths may start anywhere on 8¢ = 0, 98< E < 108
assuming that the appropriate energy would have been
achieved during cruise by a constant Mach number climb.
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Figure 16. Minimum-Time Turns fo a Point or Line
from V. Cruise.

Paths that Reach V. _ (E) but not \Y

max

It is also possible to “separate arcs" for cases where
the initial turn reaches V. (E) but not necessarily Vo
with ¢ = 0. It is only necessary to match Eg of the initia
arc to Eq of the final arc where, in this case, 75< E =<

98 kft.
Conclusions

When the initial range is sufficiently large that the
maximum velocity constraint is encountered en route, the
calculation of minimum-time maneuvers can be greatly
simplified by a separation of arcs into two 2-parameter
problems. For shorter ranges the solution involves five
parameters. Suboptimal paths along which the bank angle
is restricted to three discrete values (- ¢gx, 0, + $max)
compare favorably with the optimum, confinuous ban
angle solutions for transonic speeds and below. At very
high speeds the difference becomes more noticeable. How-
ever, the suboptimal paths are much simpler'to compute
and increase the flight time only moderately, thus making
them aHractive for possible on-line, real-time applications.
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Appendix — Equations of Motion and Constraints

The equations of motion for three-dimensional flight
using the energy-state approximation are (see Nomen-
clature):

s _V 2
E=—(T-D,-D, secy)
w 0 "L



§=Ztang
A%

x=-Vcos V¥

y=Vsiny

The state variables are E, ¢, x and y; the three control
variables are V, T and ¢. The auxiliary variables h, «,
and ¥ are defined in the Nomenclature. These equations
assume: (a) k] << 1, |v|<< 1, (b) VIV| << g, (c) in-
stantaneous velocity changes possible at constant E (zoom
dives or climbs), {(d) T<< L_, and (e) weight change is
negligible during the maneuver.

The following constraints are observed:

0<T<T  (EV)
max

VoinE DS VSV, (E)

ax
- < ¢ <+
¢mox =¢= ¢max

where

T (E,V) = maximum available thrust
max
tang T maximum permissible turning load factor (g's)

The maximum velocity constraint is imposed by engine and
dynamic pressure limits and the constraint that h = 0 (see
Fig. 3). The minimum velocity constraint (see Figs. 3
and 7) results from specifying a maximum angle-of-attack:

_ Wsec $< 4
LQ(E,V) max

o

The bank angle constraint assures that the crew are not
subjected to excessively high load factors.

*
o
¥max Was taken as 12° for our examples.

* %
o =
q’max was taken as = 76° for our exomples (tan Pmax 4),

T ——




