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Abstract -- 
remimensional minimum-time paths to a 
a w e  (or point), heading and energy are 
an 'example supersonic aircraft. The optimum 
v a e e n  determined using the calculus of 

-9r3t ions and* energy-state approximation. These are 
imal solutions obtained with the 
that on1 three discrete values of 

0 a m  a r e  available. Constraints 
ber, ang?e-of-attack, dynamic 
or ore included. For ranges long 
velocity i s  attained en route, the 

initial and final arcs can be determined separately, which 
greatly simplifies the solutions. 

Nomenclature 

2 
D + D sec $J = aerodynamic drag; Ib 

0 L 
DO(E,V) = zero-lift drag; Ib 

DL(E ,V) = drag due to L = W at @ = 0; I b 
2 

h + V /2g = energy height; ft 

Law = aerodynamic lift; Ib 

La(E ,V) = l i f t  curve slope; Ib/deg 

V/a = Mach number 

thrust; Ib 

velocity; ft/sec 

aircraft weight; Ib 

local speed of sound; ft/sec 

gravitational acceleration; ft/sec 
2 

2 E - V /2g = altitude; f t  

time; sec 

horizontal position coordinatesi ft 

angle-of-attack; deg 

sin-'(h/2/) = flight path angle relative to 
horizontal; deg 

bank angle; deg 

heading angle; deg 

Subscripts 

f = final value 

max = maximum value 

0 = initial value 

Introduction 

Use of the energy-state approximation greatly sim- 
plifies the determination of optimal flight paths for 
aircraft with only a smal'l reduction in accuracy (see 
e.g. refs. 1 and 2). For three-dimensional flight paths 
the energy-state model requires three control variables: 
thrust (T), bonk angle (G), and altitude (h). For paths 
to a line (see fig. la)  the model uses only three state 
variables, energy (E), heading (t), arid distance to the 
line (x). For paths to a point (see fig. lb), an additional 
state variable i s  needed: lateral position perpendicular 
to the line connecting the initial and final points (y). 
The equations of motion and applicable constraints are 
summarized in  the appendix. 

I f  the initial range (xO) i s  sufficiently large that 
maximum velocity (Vmax) i s  reached in transit, the 
minimum-time path to a line can be separated into two 
parts (see fig. 20). First, the minimum-time path i s  
found to a straight Vmax arc perpendicular to the line 
( i  .e. $ = 0). Second, the minimum-time turn from the 
Vmax arc to the line i s  determined. The length of the 
intermediate Vmax arc then i s  obtained such that the 
sum of the ranges traversed on the three segments equals 
XO. 

This "separation of arcs" greatly simplifies the solu- 
tion since the initial-arc problem has only two parameters 
(Eo, $ ) and the final-arc problem has only two parameters 
(Ef, ($. Each of these two problems can be solved by 
generating a one-parameter family of arcs. However, 
for short ranges (no Vmax arc) the problem has five 
parameters (ED, $ xo, Ef, tf), and the t abu la t i 03  
solutions i s  v i r tuSy  impossible. 

The arcs can also be separated, for sufficiently 
long range, in  determining minimum-time paths to a 
point (see fig. 2b). However, in addition to the length 
of the VmaX arc, i t s  heading and its intercept distance 
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Figure 1. Horizontal Projection. of Flight Paths 
(a) to a Line and (b) to a Point. 
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Figure 2. Horizontal Projection of Minimum-Time Paths 

(a) to a Line and (b) to a Point. 

(x coordinate where Vmax arc or its extension intercepts 
y = 0) must also be determined. This can be done 
iteratively using the two-parameter families of init ial and 80- -_ loo 108 -... 
final arcs mentioned previously. \ 

Aircraft Flight Envelope for Zero Bank Angle E =CONSTANT 

6 0 - - - - -  
Figure 3 shows the flight envelope of an early F4 . . 

("Phantom") airplane a t  weight (W) of 35,000 Ib for zero 
bank angle (I$ = 0)  and l i f t  (L) approximately equal to W V - o  

(see reference 3 for thrust, l ift, and drag data. The 
aircraft can move along constant energy contours (E = 
constant) very quickly by "zoom" dives or climbs (effected \ 
by changing angle-of-attack). The high-altitude, low- 2 a vMIN ( ~ 1 -  

velocity l imit of zoom climbs i s  the maximum angle-of- 
attack (CY boundary. Here we took amax = 12O. 

20--- The low-3titude, high-velocity limit of zoom dives i s  
the maximum velocity (Vmax),boundary or the zero 
altitude (h = 0) boundary. Vmax i s  the maximum velocity \ 

independent of E. Also shown are the contours where \ WITH T = T~~~ 

drag (D) equals maximu?l thrust (T.max). These contours I 

separate regions where E < 0 and E > 0 with T = T,, . 1 2  1 6  2 o 

Energy i s  charged by adjusting the thrust, The reglon MACH NUMBER M 

* Figure 3. Aircraft Flight Envelope with I$ = 0, L = W. 
Note at low energies, the constant energy contours are al- 
most para1 lel to constant altitude contours, so angle-of- 
attack primarily controls speed while thrust primarily con- where E > O with T = Tmax i s  quite large and extends 
trols altitude. A t  high energies, the constant energy con- up to E = Emax = 108 kf t .  
tours are almost arallel to constant speedxurves, so a 
primarily controc altitude while T primarily controls peed. 



Minimum-Time Paths to a Given Long Range: $0 = 0, 

$f Unspecified 

Figure 4 shows the altitude-Mach number profile of 
flight paths that ~ i e l d  minimum time to a given long range 
when no turning or slowing-down i s  required (+0 = 0, 
$f unspecified). ("Long range" w i l l  be used henceforth to 
indicate that a Vmax arc occurs on the path). An example 
i s  indicated for Eo = Ef, = 3 kft. For other values of E 
and Ef, zoom maneuvers at constant E to the ascent 

"MAX 
4 CRUISE 1- 
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Figure 4. Altitude-Mach Number Profile of Jr = 0 Path 
for Minimum Time to a Given Long Range. 

and from the descent path are used. The ascent ( e  > 0) 
path uses T = Tma but i s  not the same as the path for 
maximum E (also &own in  Figure 4). The Jr = 0 minimum- 
time path has higher velocity at each energy level than 
the (E),, path lsee ref. 1). The descent path i s  along 
the ~,~,k),(- E) ax boundary using T = 0 and "chatter", 
i .e. banking rapi8 first to @m ., then to - i n  
order to maximize t& drag due ?o l i f t  (L = W sec @,,,). 

Figure 5 shows the altitude-range profile of the flight 
paths in  Figure 4. For long rangex, the init ial and final 
arcs are determined separately; a Vmax cruise arc i s  in- 
serted between them with appropriate range so that the 
t& range i s  the specified xo. For example, with EO = 
Ef 3 40 kft, any range greater thqn 88 nm wi l l  include 
an Initial arc of 80 nm range, a Vmax arc and a final 
arc of 8 nm range. 

Aircraft Fliaht Envelo~e for Maximum Bank Angle Turning 

Figure 6 shows the flight envelope of the same air- 
plane i n  turning maneuvers at maximum bank angle ($ = 
@ ), with L cos @ = W, i .e. the vertical component 
oPf% equal to weigrf. Here we took tan @, = maximum 
load factor = 4. The maximum angle-of-atto& boundary 
i s  also the locus of maximum turn-rate ($ma ) and 
minimum velocity for a given energy (vmin@)). This 
boundary i s  now substantially lower than In Figure 3, as 
i s  the contour where D = Tmax. The intersection of these 
two contours at h = 20 kft, M = .75 i s  the highest energy 
where maximum turn rate can be sustained (called the 

RANGE TOIFROM \jMAX Inml 

Figure 5. Altitude-Range Profile 4 = 0 Path for 
Minimum Time to a Given Long 
Range. 

E = CONSTANT 
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Figure 6. Aircraft Flight Envelope for @ = 
L cos = W. 

Lufbery circle point i n  ref. 4). The region where i > 0 
with T = Tmax., @ =  @ ax is relatively small and occurs 
in  the transon~c speefregime below h = 20 kft.  

Minimum-Time Paths to a Line (Long Range): Jln # 0, 
EF and tf Unspecified 

Figure 7 shows a horizontal projection of a typical 
minimum-time path to a given line which i s  far enough 
away that a Vmax cruise arc occurs en route. The case 
shown is for Ep =. 43 kft, $ = 1 80°: The continuous 
bank angle so utlon (ref. 53 uses a turn for the first 
1 lo0 (to Jr = 70°), then a gradually decreasing altitude 
and bank angle to the A $  = 0 minimum-time locus of 
Figure 4. Note that Jr = 0 i s  not reached "exactly" until 
V = VmW at a range of 86 nm. Also shown in  Figure 7 i s  
a subopt~mal path with @ limited to three discrete values 



OPTIMUM (VARIABLE cP. NON-ZOOM DIVE) 

' d O P T I M A L  APPROXIMATION 
K 0 .. - W = 70° (DISCRETE a. ZOOM DIVE) 

RANGE TO VMAX lnml 

Figure 7. Horizontal Projection of a Typical Minimum- 
Time Turn to a Given Long Range, Eo = 
43 kft. 

(- Q ax, 0, + mqat). I t  consists of a 4 turn al l  the 
wayyo Jr = 0 (wh~c occurs at a range op8.5 nm), then a 
zoom dive to the A $  = 0 minimum-time locus of Figure 4. 
Both paths reach V ax at substantially the same time and 
distance (86 nm). yecause of its simplicity, this suboptimal 
path provides a significant reduction in  computational 
requirements, with only a slight reduction in flight time. 
This model appears to be quite similar to the energy- 
maneuverability model of Boyd (ref. 6). 

There are four types of minimum-time turns to a 
given long range where Ef and $ are unspecified. 
Figure 8 shows the accelerating turn case where E < 

0 

0 0.4 0.8 1.2 1.6 2.0 

MACH NUMBER. M 

Figure 8. Minimum-Time Turns to a Given Long-Range 
(Eft Jrf Unspecified), Eo < 30 kft. 

30 kft. For JIO = 0, the aircraft zoom dives to h = 0 
and follows the A $  = 0 minimum-time path. For 00< $13 - 
< 1800, the aircraft zoom dives or climbs to the imax 
locus where an accelerating turn takes place, followed by 
a zoom dive to the A $  = 0 minimum-time path. Figure 9 

MACH NUMBER. M 

Figure 9. Minimum-Time Turns to a Given Long Range 
(Eft Jrf Unspecified), Eo = 30 kft. 

shows the constant-velocity turn case where E0.= 30 kft. 
Here the aircraft zoom dives or climbs to the $,,, locus 
where a constant-velocity turn takes place, followed by 
a zoom dive to the A) = 0 minimum-time path. Figure 10 
shows a decelerating turn case where 30kft < E < 93 kft. 
The aircraft room dives or climbs to the qma, l!cus where a 
decelerating turn takes place, followed by a zoom dive 

MACH NUMBER, M 

Figure 10. Minimum-Time Turns to a Given Long Range 
(Ef, $f Unspecified), 30 kft < Eo  < 93 kft. 



to the A$ = 0 minimum-time path. The examples of Figures 
8-10all usedT=T ax. For Eo>95+(180-~rg/ l3)k f t ,  
an initial period of? = 0 i s  required. An example of such 
a case i s  shown in  Figure 11 for Eo = Emax = 108 kft and 

0 0 4 0.8 1.2 1.6 2.0 

MACH NUMBER M 

Figure 11. Minimum-Time 1800 Turn to a ~ i v e n  Long 
Range (Eft $f Unspecified), Eo = Emax = 
108 kf t  . 

q0 = 1800. The aircraft turns about 15' before T i s  
switched from zero to Tmax to complete the turn. 

Figure 12 shows all minimum-time turns to a given 
long range (Ef,tf unspecified) with Eo,$ as parameters. 
Nole there i s  a range of possible Ef froT% to 108 kft 
at V a .- The suboptimal paths with a +,,,ax turn all  the 
wayTo$ - 0, then a zoom dive to the A +  = 0 minimum- 
time path are also depicted. 

---- SUBOPTIMAL APPROXIMATION 1GMAX TOW ' 0. ZOOM 

DIVE T o A W =  OMIN. TIME PATH) T = O  7 

PATH 

Figure 12. 

0 60 100 

ENERGY HEIGHT, E Ikltl 

Minimum-Time Turns to a Given Long 
Range (Ef, f f  Unspecified). 

Minimum-Time Flight Paths to a Point or Line from V,- 

Cruise; Ef  and $f Specified I 

Figures 13 and 14 show a horizontal projection 
and an h vs M profile, respectively, of a typical minimum- 1 

time path to a point or line from Vmax cruise. The case 

!=99 kft RANGE FROM OMAX, x (nm) 
V~~~ 

4 6 8 10 
I I - 
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0 3 -  E = 37 kft 
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Figure 13. Horizontal Projection of Typical Minimum- 
Time Path to a Point from Smax Cruise. 
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Figure 14. yinimum-Time 180° Turn to a Point from 
Vmax Cruise, Ef  = 37 kft. 

shown i s  for Ef  = 37 kft, A+  = 1800. I t  consists of: (a) a 
straight chatter arc (0 = +_ 0 ) descending in altitude 
on the Vmax(E) boundary w i v q  = 0 to E = 70 kft; (b) a 
@ma turn , stil l descending on the Vmax(E) boundary with 
1 = 6, to A + ?  600, E: 47 kft; (c) a zoom climb to the 
Jim,, boundary; (d) a Jr ax turn., decelerating with T = 0, 
to A+ = 150°, E 39 kg; (e) a $ma turn decelerating 
with T = Tm x, to A$ = 1800, Ef = 37kft; and finally 
(f) a zoom cjlmb or dive to the desired final altitude. 
Note this same case applies to turning onto a line (A+  = 
+ 900) i f  Ef  = 44 kft (there would be no T = Tmax phase). 

Figure 15 shows another type of path for Ef = Emax 
= 108 kft, A$= 180°. I t  usesT=TmaXall the way and 
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Figure 15. Yinimum-Time 180' Turn to a Point from 
Vmax Cruise, Ef = Emax = 108 kft.  

consists of four arcs: (a) 4 ax turn decreasing energy to 
67 k f t  and turning 180°, (fl a zoom dive to the A Q  = 0 
minimum-time path, (c) with 0 = 0, moves along A $  = 0 
minimum-time path to the Vmax(E) boundary, up' that 
boundary to M = 2, and (d) a constant Mach number climb 
at M =  2 to Ef= 108 kft.  

Figurg 16 shows a l l  minimum time turns to a point or 
line from Vmax cruisewith Ef,bJrf as parameters. Note 
that paths may start anywhere on A$ = 0, 98 < E < 108 
assuming that the appropriate energy would have been 
achieved during cruise by a constant Mach number climb. 

---- SUBOPTIMAL APPROXIMATION I W M A X  T~~~ TOA w +, 

ZOOM DIVE T O A W =  OMIN TIME PATH1 
/ 

ENERGY HEIGHT. E 1kf11 VMAX CRUISE 

Figure 16. Miniqum-Time Turns to a Point or Line 
from Vma, Cruise. 

I t  i s  also possible to "separate arcs" for cases where 
the init ial turn reaches Vma,(E) but not necessarily VPea 
with 0 = 0. I t  i s  only necessary to mcltch Ef of the inltla? 
arc to Eo of the final arc where, i n  this case, 75 5 E 5 
98 kft. 

Conclusions 

When the init ial range i s  sufficiently large that the 
maximum velocity constraint i s  encountered en route, the 
calculation of minimum-time maneuvers can be greatly 
simplified by a separation of arcs into two 2-parameter 
problems. For shorter ranges the solution involves five 
parameters. Suboptimal paths along which the bank angle 
i s  restricted to three discrete values (- @max, 0, + 4 ax) 
compare favorably with the optimum, continuous ban?: 
angle solutions for transonic speeds and below. At  very 
high speeds the difference becomes more noticeable. How- 
ever, the suboptimal paths are much simpler'to compute 
aqd increase the flight time on1 moderately, thus making 
them attractive for ~ossible on-hne, real-time applications. 
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Amendix - Eauations of Motion and Constraints 

The equations of motion for three-dimensional fl ight 
using the energy-state approximation are (see Nomen: 
cloture): 



4 = 9 tan @ 
v 

x = - V c o s *  

9 = V sin Jr 

The state variables are El (, x and y j  the three control 
variables are V, T and @. The auxi lory variables h, a, 
and y are defined in the Nomenclature. These equations 
assume: (a) b( << I, (Y(<< 1, (b) v!+( .c< g, (c) in- 
stantaneous velocity changes ~ossible at constant E (zoom 
dives or climbs), (d) T << La, and (e) weight change i s  
negligible during the maneuver. 

The following constraints are observed: 

O S T S T  (E,V) 
max 

where 

Tmax(E,V) = maximum available thrust 

tan gmax = maximum permissible turning load factor (g's) 

The maximum velocity constraint i s  imposed by engine and 
dynamic pressure limits and the constraint that h 2 0 (see 
Fig. 3). The minimum velocity constraint (see Figs. 3 * 
and 7) results from specifying a maximum angle-of-attack: 

The bank angle constraint assures that the ~ F W  are not 
subjected to excessively high load factors. 

* 
amax was taken as 12' for our examples. 

** 
qjmax was taken as a76O for our examples (tan @,,, = 4). 


