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Redesign of Plates by Large Admissible Perturbations

Michael M. Bemitsas* and Chae Whan Rim¥
University of Michigan, Ann Arbor, Michigan 48109

The problem of structural redesign of plates for static deflection and modal dynamics objectives is formulated
and solved by the method of large admissible perturbations. The perturbation approach to redesign is first used
to develop response equations for the objective plate design based on its specifications and the baseline plate
design. The equations of the objective state are strongly nonlinear implicit expressions of the variable plate thick-
ness. A large admissible perturbations algorithm is developed to solve the plate redesign problem and define the
optimal objective state. The latter is reached incrementally with a prediction-correction scheme without repeated
finite element analyses. Systematic numerical applications in redesign of a cantilever plate of 216 degrees of free-
dom are used to investigate the effects of number of extracted modes and redesign variables. It is shown that the
large admissible perturbations theory can be used efficiently to redesign plates for multiple specifications that
require changes to the baseline design and its response of the order of 100%.

Nomenclature

Cyi = admixture coefficient for participation of the jth
mode to changes in the ith mode

E = Young’s modulus

[k], ['K\] = global and generalized stiffness matrices

[k,] = stiffness matrix of element or group of elements
related to property e

K; = ith component of [“K\]

[m], ["M.] = global and generalized mass matrices

[m,] =mass matrix of element or group of elements related
to property e

M; = ith component of [*M.]

n = number of degrees of freedom in finite element
model

N = number of increments in incremental algorithm

n, = number and admissibility constraints

Ry, g, Ny = number of displacement, frequency, and mode

shape constraints
n, = number of extracted structural modes used in
program for redesign of structures

p = number of redesign variables

S1, .52 = initial and objective structural states, respectively
{u} = nodal static displacement vector

o = fractional change to element or group property e
o,, o, = upper and lower bounds of o,

A = prefix denoting total change

) = prefix denoting incremental change

[o] = matrix of mode shape vectors

O = kth degree of freedom ith mode shape
{y}; = ith mode shape

; = ith natural frequency

Indices and Special Symbols

e = index for redesign variables

4 = denoting quantity in increment 1,2, ..., N
~Y = diagonal matrix

O = structural property of state S2
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I. Introduction and Background

TRUCTURAL perturbation methods have been developed
since 197512 and have been used to solve several challenging
structural analysis and design problems. Linear perturbation was
introduced by Stetson! and Stetson and Harrison,? and modified by
Sandstrém and Anderson® for redesigning a structure to improve
its modal dynamics. Both natural frequency and mode shape
improvements were achieved. The meaning of linear here is that
differences in redesign variables and response between the initial
and the improved structural states are small. Nonlinear perturba-
tion methods*~!7 are used to find the objective state for large dif-
ferences—of the order of 100%—between the two structural
states. Perturbation methods calculate the objective state without
trial and error or repeated finite element analyses (FEAs) by post-
processing the FEA results of the initial design. Presently, research
in nonlinear perturbation methods follows several paths which are
summarized in Fig. 1 and outlined hereafter.
The primary goal of nonlinear perturbation methods is to formu-
late and solve structural analysis and design problems as two-state
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Fig. 1 Status of large admissible perturbations theory for solution of
two-state problems in structural analysis and design.
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problems.!> State S1 is the initial known design for which the
required finite element analysis has been performed. State S2 is the
unknown design which must satisfy certain response requirements.
Structural analysis problems that have been formulated and solved
by nonlinear perturbation methods and in particular by the large
admissible perturbations theory are: finite element (FE) model cor-
relation,'!-14 failure point identification,'® redundancy,' and reli-
ability.’® The nondestructive testing problem has been addressed
by linear perturbation methods only.

The problem of structural redesign (inverse design)’~10 has been
formulated and solved by the large admissible perturbations theory.
The problems of target redundancy and target reliability design
have been formulated as two-state problems!®; however, the corre-
sponding solution algorithm has not been developed as yet.

The third goal of nonlinear perturbation methods is to develop
algorithms to achieve State S2 for new response requirements.
Algorithms for natural frequency,*!° normal mode,*-1° and static
deflection®!® objectives have been developed and thoroughly
tested using numerous finite element models. Critical buckling
load, global buckling mode, and stress objectives have been
developed!*>-17 recently; more applications are required, however,
to fully test all aspects of related algorithms.

Algorithmic developments are also required to introduce new
finite elements. Each element requires algorithmic development
because the explicit dependence of the general perturbation equa-
tions on the redesign variables changes. For plates, this relation is
nonlinear. The nature of the implicit dependence of those equa-
tions on the design variables does not change. This dependence
can be seen in the general perturbation equations (14—17). The
algorithms developed so far are to postprocess spring, mass,
truss,'® bar,”10 and marine riser’ finite elements. The plate element
algorithm is developed in this paper. The most challenging
research issue is to develop algorithms that allow for higher differ-
ences between baseline and objective states in redesign variables
and response objectives. In our line of work,'0-215-19 this goal is
pursued by developing large admissible perturbations (LEAP)
algorithms which make it possible to redesign a complex structure
for differences of the order of 100% in redesign variables and
response without repeated FEAs.

The last goal of nonlinear perturbation methods is to redesign
more complex structures in terms of number of degrees of free-
dom, type of finite elements (beam, plate, etc.), and multiple
response objectives.

In redesign, the question of uniqueness arises. In general, rede-
sign goals can be achieved by an infinite number of different struc-
tures. Thus, an optimization criterion is needed to select the best
redesign. In that respect, structural perturbation methods are
related to structural optimization. Gans and Anderson® used incre-
mental perturbations to find an optimal turbine blade design. In
each increment, a finite element run was performed at the end of
the prediction and correction phases. Structural perturbation meth-
ods differ from design sensitivity methods?!?3 in two ways. First,
sensitivity derivatives need not to be computed, and second, the
general perturbation equations provide equations for the general
response of the objective state S2.

The problem of plate optimization is somewhat related to the
plate redesign problem studied in this paper. Several analytical®
and numerical finite element techniques®?2*26-31 have been devel-
oped to produce an optimal plate of variable thickness. Prasad and
Haftka?® minimized the weight of a plate subject to stress and dis-
placement constraints. Good reviews of the plate optimization
problem are provided in Refs. 27 and 28. Koski et al.? found a
Pareto optimum minimizing the weight of a plate subject to stress,
displacement, and frequency constraints. Natake®® used a biqua-
dratic approximation of constraint frequencies with respect to
design the variables to avoid iterative solution. Lin and Liu! opti-
mized a plate subject to buckling constraints. Sensitivity methods
for optimization of plates have been used by Brockman and
Lung,22 and Vanderplaats et al.2? The basic differences between
other techniques and the large admissible perturbations theory are
the following: 1) the latter can calculate the objective state S2 for
large differences between structural states S1 and S2; 2) no

repeated FEAs are needed—S2 is produced by postprocessing the
FEA results of S1 and the required response of state $2; and 3) the
perturbation approach to redesign (PAR) produces equations for
required responses of the objective state S2.

In this paper, the problem of structural redesign of plates to
achieve modal dynamics and static deflection objectives is studied.
The problem is formulated in Sec. IL A using PAR. A LEAP algo-
rithm is developed in Sec. ILB. Several numerical applications for
plate redesign are presented in Sec. Il for single or multiple
response objectives. The capability and accuracy of the large
admissible perturbations theory to solve the plate redesign prob-
lem for large changes and compatible or incompatible require-
ments is investigated for a variable number of extracted modes and
redesign variables. Results show that the mew algorithm is far
superior to the previous algorithm.® The contributions of this paper
consist of formulation of the plate redesign problem where the
explicit—as well as the implicit—dependence of the general per-
turbation equations [see Egs. (14-17)] on the redesign variables is
nonlinear; and development of the corresponding LEAP algorithm
for plates.

II. Structural Redesign of Plates

The large admissible perturbations approach to redesign con-
sists of two parts: PAR, the perturbation approach to redesign
which formulates the redesign problem as a two-state problem;
and LEAP, the large admissible perturbations algorithm which cal-
culates state S2 from its required response and FEA results of state
S1 for structural redesign of plates. PAR is described in Sec. ILA,
and LEAP in Sec. IL.B.

A. Perturbation Approach to Redesign

In this paper, the general perturbation equations for modal
dynamics and static deflection redesign of plates are derived and
used in numerical applications. Counterpart equations for other
elements,'%12 and for different response requirements (buckling
and stresses'®) can be derived. The free vibration equations for
state S1 are

(K- ) mD{w};={0} for j=1,2,...,n o))
where the n eigenvalues (0,2. ,j=1,2,..., nsatisfy equation
det ([k] - @] [m]) =0 @)

In Eq. (1), damping may be included only in Rayleigh’s form. The
uncoupled modal equations are

K =M o] 3

where [K\] and [“M.] are the generalized stiffness and mass
matrices.
The governing equation for static FE analysis of state S1 is

(k] {u} = {f} C))

1. Structural Perturbations

Let the counterparts of the Eqs. (1-4) for state S2 be denoted by
primed quantities. The following structural perturbations may be
introduced. For modal dynamics

(k"] = [k} + [Ak] ®

(m’] = [m] + [Am] ©
o] =[ox]+ [MA(WA] M
[¢7] = [¢] + [A0] ®

where (0] = [{W¥}1, {¥}2, ..., {W} ] is the matrix of eigenvectors
of S1 and [*®2.] is the diagonal matrix of the corresponding eigen-
values; and for static analysis

{u} = {u} +{Au} &)
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=4 +{Af} (10

Prefix A indicates difference in quantities between S1 and S2. Even
though Eqgs. (5-10) appear to be difference relations, they also rep-
resent first-order terms in the linear perturbation method intro-
duced by Stetson! and Stetson and Harrison.”? The term linear
refers to small structural changes between states S1 and §2, and
consequently use of first-order terms only in Stetson’s perturbation
series. It is correct to use the term perturbation because of the
approach used to derive those equations.!? In the large admissible
perturbations theory which is used in this paper, the A terms in
Eqgs. (5-10) are not small and the solution algorithm implements
an incremental prediction-correction scheme to deal with those
large A terms. Further, a distinct perturbation parameter does not
exist any longer. It is more appropriate to consider [Ak] and [Am]
as perturbation matrices. Accordingly, the term perturbations
instead of perturbation is used when appropriate.

2. Plate Redesign Variables

In plate redesign, there is only one redesign variable per finite
element or group of elements, that is the plate thickness 7. Changes
in stiffness and mass are expressed in terms of plate thickness
changes as

p 14 14
[ak] = Y 1ak] = Y [ak] + Y [ak)] 1)

e=1 e=1 e=1

where [k,] is the stiffness matrix of redesign group e and may
include bending, torsion, stretching, etc.; [kj :| .| k" | are bending
and membrane stiffness matrices of redesign group e. Equation
(11) can be written in terms of the fractional changes o, of the
plate thickness in redesign group e as

p P
(ak] = YA +a) -1} + Y [k o, (12)

e=1 e=1

Similarly, [Am] can be expressed as

p
[Am] = Y [m,]a, (13)
e=1
3. General Perturbation Equations

In previous work,”!! the general perturbation equations for
redesign requirements in modal dynamics and static deflections
have been derived for several different finite elements (see Fig. 1).
In those cases, the counterparts of Eq. (12) were linear expressions
of o,. For plate redesign, the general perturbation equations for
modal dynamics are derived by combining the counterpart of Eq.
(3) for state S2 (primed quantities) with Eqgs. (5-8), (12), and (13):

14
> {{""}f [T 0w (o) + (w3 Tk (L + )

e=1
—oP{y} Imiv'}, (1 +a,) }
= (W Im{ w0 - (v} TK{y'),
p 7 T ’ 4 ’ T 7’
+3 {{w}i [k, 14w} — 0Ly} [m,1{y }l}

e=1

for i=1,2,...,n (14)

r
3 {{w'}f[ke vy v e+ (v [ w0 +ocef}

e=1

P
=—{WH Ty + Y Ly Tk L), (15)

e=1

14
S v Im I {w (L +a) =—{y'}] [ml{y'},

e=1

.
+ 3 (vl Im v},

e=1
for i=1,2,...,n, j=i+1l,...,n (16)

Equation (14) represents the Rayleigh quotients for w?,i=1, 2,
..., n, that is the n diagonal terms of the counterpart of Eq. (3) for
S2. Equations (15) and (16) represent the orthogonality conditions
of unknown mode {\y’}i ,i=1,2,..., n,of $2 with respect to [£”]
and [m]. Theoretically, orthogonality of modes with respect to one
of [k7] or [m’] satisfies orthogonality with respect to the other as
well. Numerically, however, both conditions must be forced for
{y’}, to be real modes of the unknown state S2.

For static redesign, the general perturbation equations are
derived by combining the counterpart of Eq. (4) for state S2 with
Egs. (5) and (7-10):

r < q); c ’
w = ,7{ )y ¢ﬂfz] amn
b=1

ji=1

where

Pr AT m ’
K= {y} [k{y}+Y {{\If LR Y +ay)

e=1

+ (v vy (v o)’ - {w’}f[ke]{w’}}

for i=1,2,...,n, j=i+2,...,n )
Equation (17) is derived by performing a series expansion of the
static degrees of freedom {u"} of the unknown state S2 in terms of
the unknown modes {y"}; of state $2.92 Thus, inversion of [k] in
the counterpart of Eq. (4) for S2 is avoided.

When certain response characteristics of $2 are defined—natu-
ral frequencies, complete or incomplete mode shapes, or static
deflections—the general perturbation equations provide the corre-
sponding equations. Those equations depend both explicitly and
implicitly on the redesign variables . The explicit dependence on
o, is obviously cubic. The implicit dependence is due to the depen-
dence of the unknown modes { ¢’} i=1, 2, ..., n of the objective
state on the redesign variables o,. General perturbation equations
for stress, critical buckling loads, and buckling modes were
derived in Ref. 15 for elements other than plates. Plate redesign for
stress and buckling constraints will be pursued in future work. The
mathematical problem of redesign for natural frequencies and
static deflections is formulated next.

4. Problem Formulation

Depending on the number of redesign variables o, the number
of state S2 response specifications, and the number of orthogonal-
ity conditions used, the problem may be overdetermined or under-
determined. In the former case, the computer code returns a mini-
mum error solution (see Sec. IL.B). When the problem is
underdetermined, solution is not unique and an optimization crite-
rion is needed. The minimum change criterion® given by Eq. (18)
is used in our work.”'%15-19 Other criteria, such as minimum
weight or minimum static strain energy could be used. Then, the
plate redesign problem can be cast in the following optimization
format:

: P
Minimize Y’ ol (18)

e=1
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subject to n, natural frequency requirements

of =0 +Aw., i=1,2,...,n, (19)
ny normal mode requirements
0% =0y +AQ,;, number of (&, i) = n, (20)
n, static deflection requirements
u =u;+ A, i=1,2,...,nm, 21

2p lower and upper bounds on redesign variables

“l<o, <,0,<,0, e=1,2,...,p (22)

o =

and n, orthogonality constraints [Egs. (15) and (16)]

n

ny =23 (n,—i)=ny[(2n,— 1) = ny] (23)

i=1

When the left-hand sides of Eqs. (19-21) are replaced by gen-
eral perturbation equations for the specified response requirements
Aw; , Ady;, and Ay, of state S2, the problem becomes strongly non-
linear in the o,’s, both implicitly and explicitly. Thus, a solution
algorithm (LEAP) must be developed to find a solution—without
trial and error, or repeated FEAs—for large values of Aw; , Ady;,
Au,, and the redesign variables o, ’s.

B. Large Admissible Perturbations Algorithm

The LEAP algorithm developed to solve the plate redesign
problem addresses and handles the following difficulties:

1) All required response Eqs. (14-17) and admissibility condi-
tions for state 2 depend nonlinearly on the redesign variables o,
both explicitly and implicitly. Those equations are derived by
combining specification Eqs. (19-21) with the corresponding gen-
eral perturbation Egs. (14-17). The admissibility conditions used
in the solution process are Eqgs. (15) and (16) for which the corre-
sponding natural frequencies have been defined.

2) The set of response objectives provided for S2 is in general
incomplete. That is, only a few natural frequencies, some incom-
plete normal modes, and some static deflections may be provided
by a designer. Actually, it is practically impossible for the designer
to have complete and nonconflicting response specifications for
state S2 because the latter is unknown.

3) State S2 must be calculated by postprocessing FEA results
for state S1 and the specified response of state $2 without repeated
FEAs, trial and error, or sensitivity analysis.

The LEAP algorithm developed for plate redesign is outlined in
Fig. 2. Its basic features are the following:

1) State S2 is reached incrementally by changing state S1
response in increments no larger than 7%. In each increment, a lin-
ear inadmissible prediction and a nonlinear admissible correction
are performed.

2) In the prediction phase, the increments of less than 7% are
small enough to ensure that small perturbation techniques' pro-
duce reasonable though inadmissible results. Only the implicit
dependence on a,’s is linearized for modal dynamics. The explicit
cubic dependence is too important for plates and is not linearized.
The static redesign equations are not linearized either. The predic-
tion phase is described in Sec. IL.B.1.

3) In the correction phase, prediction results are used and then
corrected to satisfy the complete nonlinear equations for required
response and admissibility conditions. This part of the algorithm is
described in Sec. I1.B.3.

4) The resulting problem—in both the prediction and the cor-
rection phase—at each increment is solved by nonlinear optimiza-
tion if it is underdetermined, or a minimum error algorithm if it is
overdetermined. Solvers and computer implementation are
described in Sec. I1.B.4.

1. Inadmissible Predictions

For small increments, a linear perturbation technique decouples
the diagonal from the off-diagonal terms of the counterpart of Eq.
(3) for state S2 and produces the following equations, respectively

(WY [3KI{yY - of {w} Bml{y};= M3,
for i=1,2,...,n, 24)

[} [BKI{wh- o] LW} [Bm{yi= Mici (o] - o))

for i,j=1,2,....n, 25)

where M; = {y} JT[m]{w}j, n, is the number of extracted nodes for
adequate represeritation of state S2, and § indicates small incre-
mental changes to distinguish them from the large global changes
designated by A. The admixture coefficients ¢;’s are defined by

(301 = [¢l[c]” (26)

where ¢; = 0 and ¢;;’s are small.
For plate redesign, Eqs. (24) and (25) become

p

v {({w}?[k:”]{w}i —ol (v} [me]{\l!},)(l +a,)

e=1
+{w}f[kf]{w}i(1+ae)3}

P
= MBw + z[{w}f[ke] {vh-o {w} [m,] {w},.J

e=1

i=1,2,...,n, @n

RESTRUCT DB for Plate Redesign

State Si
Redesign objectives
[w7?], [¢], [

{6}, (Pl (0]

State S1
FE model | FEA results
2
i), [m), () |- O LT

(o). [Pg), 0
f

PAR: Plate performance equations for State 2
Nonlinear modal dynamics equations (14)
Nonlinear static equations (17)

Nonlinear admissibility equations (15,16)
i

T—( Solution by LEAP algorithm: Increment 1=1,...N)

Prediction phase:
Small change inadmissible perturbations
Nonlinear dynamic and static changes

Correction phase:
Small chahge admissible correction

Nonlinear dynamic and static changes

1
Nonuniform plate thickness
1% €=1,..p
]
Plate State S2 and performances
7,00, 1] _

{o'), [P'eeds [9')

Nonlinear
optimization
problem [30]

e, €=1,..p

Fig. 2 Plate redesign by a large admissible perturbations algorithm.
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3 {{w}f[kfj (wh (o) + (w3 K] (wh(1 + o)

e=1

- (D,Z{W}zT[me]{\V}l(l +ae) } =Mjcij(wi2—0‘)j2)

P
+ Y [{w}f[ke] {wh—o] (v} [m,] {w},-]

e=1

G=1,2,....n 28)

The n, static requirement equations defined by Eqgs. (17) and (21)
are used as they are in their complete nonlinear form.

In the prediction phase in increment {, £= 1, 2, ..., N, the prob-
lem defined in Sec. II.A.4 reduces to the following problem:

14 e~ 1 2
minZ{(1+Za€)H(l+qae)—l} (29)
g=1

e=1

subject to n, frequency requirements (27), n, modal requirements
defined by Eqgs. (20) and (28), n,, static requirements (17), and 2p
lower and upper bounds on the redesign variables

A< o< 0,<,00,  e=1,2,....,p (30)

This problem is nonlinear and solution is achieved using the non-
linear optimization code NPSOL? implemented in the redesign
code. 1

2. Cognate Space

A; the end of the prediction phase, the admixture coefficients Cijp
i,j=1,2, ..., n, are computed using Eq. (28). Then the normal
modes that have not been specified—as per Eq. (20)—are com-
puted using Eq. (26). Computation of admixture coefficients may
consume as much as 80% of the required CPU time in a given
increment. Thus, in the first increment, the cognate space for the
modes that are being changed is identified."! Admixture coeffi-

p3

’-aS.'//_aG_'- _(x7_'/Zoa8_'

E =2.07x 105 MPa
p=7833x 10°9 N sec?/mm?

Length = 1000 mm
Width = 1000 mm

v=03 . Thickness = 10 mm
Uniform Load = 1.6 x 102 MPa
. Responses
fj=496Hz fr= 12.17 Hz Upax = 1.646 mm

Redesign Groups (shown only for shaded section)

Fig.3 Cantilever plate FE model and redesign groups.

cients between modes in different cognate spaces have very small
values and are set equal to zero. This significantly reduces the
required CPU time. Cognate spaces are identified numerically by
setting a lower limit of 107 on the admixture coefficient. Previous
applications show that cognate spaces have physical meaning. For
example, all bending modes of a structure may constitute one cog-

nate space, torsional modes may constitute another space,
etc 11,12,15-19

3. Admissible Corrections

At this point we could proceed to the next increment. The error
could build up fast, however, unless a new FEA is used to update
the modal basis. To avoid repeated FEAs the results of the predic-
tion phase are corrected by satisfying the nonlinear specification
equations (14) and (17) and the admissibility conditions (15) and
(16). The specified modes and those predicted by Eq. (26) at the
end of the prediction phase are used. Here, the term admissibility
must be explained. The orthogonality conditions (15) and (16)
have been linearized in the prediction phase to produce the admix-
ture coefficients c; [Eq. (28)]. In the correction phase, the com-
plete nonlinear expressions (15) and (16) must be forced so that
the modes computed by Eq. (26) correspond to the structure speci-
fied at the end of the correction phase by the redesign variables o,.
Consequently, the orthogonality conditions determine whether the
incremental changes are admissible (real) or not. Summarizing, the
problem solved in the correction phase is the following: satisfy the
optimization criterion (29) subject to n, requirements (14), n,
requirements (17), and n, admissibility conditions (15) and (16).
The theoretical number n, is given by Eq. (22). In practice, most
dominant admissibility conditions are satisfied.

At the end of the correction phase, after the new incremental
values of the redesign variables ,¢t, have been computed, Eq. (31)
is used to compute unspecified natural frequencies of state S2

4 ’ T ’ ’
I S L H LS5 on

My v oy,
and Eq. (17) to compute unspecified static deflections.

4.  Computer Implementation

The LEAP algorithm described earlier is implemented in code,
the program for redesign of structures (RESTRUCT) which is
presently about 27,000 Fortran 77 commands and postprocesses
data produced by MSC/NASTRAN on the University of Michigan
main frame computer IBM 9021. Next, several numerical applica-
tions are used to demonstrate the ability of the developed LEAP
algorithm to produce accurate results for large differences between
states S1 and S2.

III. Numerical Applications

A rectangular plate of thickness ¢t = 10 mm and side £ = 1000
mm, clamped at one edge and free along the other three, subject to
a uniform load of 100 MPa is used in all numerical redesign appli-
cations in this section (see Fig. 3). First, systematic finite element
analyses were performed using MSC/NASTRAN to establish a
satisfactory FE model. Figure 4 compares the first ten natural fre-
quencies of the cantilever plate as computed using 16, 64, and 256
finite elements. An analytical expression for the first six natural
frequencies provides additional data for comparison.’**> On the
basis of Fig. 4, it was decided that the 64-element model is accu-
rate enough for the purpose of this work.

Numerous applications were run and the results are summarized
in Tables 1-5. Three different redesign requirements were used in
sets of one (Table 1), two (Tables 2—4), or three (Table 5). Each
table, for each case, shows the case number; the redesign goals in
the form of a ratio as /o), co'zz/(oz2 ,and u’,, /u... ; the per-
centage error in achieving the goals in comparison to reanalysis
performed by MSC/NASTRAN for the redesign produced by
RESTRUCT; the CPU time in seconds. It should be pointed out
that implementing the complete nonlinear expression (17) for the
static deflection requirements has eliminated the prediction error
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MODE | MODE NATURAL FREQUENCIES

# SHAPE |Analytic[32]] 16FE | 64FE | 256FE
htand |

1 [ i 4.99 495 496 4.96
-

2 E—— 12.19 12.35 12.17 12.15

3 [ i 30.63 3231 30.96 30.56
St

4 i 39.07 41.48 39.50 39.01
e

5 H 4447 49.19 4513 44.40
“~rn

6 tt} 77.82 90.89 80.12 7786

7 [I : 103.63 9279 88.91

8 ] 112.11 96.96 9293

9 13863 | 10867 | 10296

10 17345 | 14215 | 13459

Fig. 4 Natural frequencies and mode shapes of cantilever plate.

in the redesign algorithm which was computed in previous publi-
cations.!%17 Tables 1-5 also provide information about the num-
ber of redesign variables p, the number of extracted modes #,, and
the number of admissibility constraints 7n,. Table 6 shows the opti-
mal values of the redesign variables ¢,, e =1, 2, ..., p for five dif-
ferent applications with compatible objectives. Table 7 shows sim-
ilar data for five more applications.

A. Single Redesign Requirements

This is the simplest of all redesign problems. Eight cases are
shown in Table 1 and the error is trivial even for changes by a fac-
tor of two in either redesign goal 0)'12/ ®; or u,, /u,, . Higher
changes in redesign goals, by a factor of three or more, can be
achieved without additional FEAs and with very small prediction

CITOr.

B. Two Compatible Redesign Requirements

In Table 2, redesign applications for two simultaneous require-
ments @;°/ 6012 andu’ , /u, .. are shown. Redesign objectives in
this table are labeled compatible; and this term needs clarification.
We call compatible redesign goals those that would cause similar
changes in a uniform plate. This is by no means a rigorous defini-
tion. The following examples are helpful in clarifying the term.
Doubling the first natural frequency increases the bending rigidity
of the plate; reducing the maximum static deflection by a factor of
two has similar effect; such changes are labeled compatible. As a
second example, consider doubling the first natural frequency and
the maximum deflection. Such redesign objectives are labeled
incompatible. In nonuniform plate redesign, as are all the cases in
Tables 1-6, incompatible requirements result in more dramatic
changes in the thickness of plate groups. As a third example, con-
sider the case of (' /0012 =2.0,u),,,/ Uy, =0.8); even though an
analytically compatible change would require s’ /u,,,, =0.5, the
change of (2.0, 0.8) is still labeled compatible.

Twelve cases of compatible redesign requirements are shown in
Table 2. The error is very small even for changes by factor of two in
the redesign requirements. By comparing cases 22-1-22-4 and 23-
1-23-4 we observe that the error increases as the redesign objective
values depart from the ideal uniform plate relation (0)'12 / colz) X
(U /4. ) = 1. Comparing cases 11-4, 12-4 and 22-4, we ob-
serve that the optimal redesigns are practically identical as shown in
Table 6.

Table 4 shows six more cases (41 and 44) of compatible rede-
sign goals in the first and second eigenvalues. Results are signifi-
cantly more accurate than in the case of incompatible objectives as
in cases 42 and 43.

C. Two Incompatible Redesign Requirements

Twelve redesign applications with incompatible redesign objec-
tives are shown in Table 3. Ten more cases 42, 43 are shown in
Table 4. Table 3 shows that the error increases very fast. This is so
because dramatic departure from the uniform plate redesign is
re%uired to achieve such highly incompatible changes where ((1)'12 /
;) X (ul,, /... ) =40. There are two ways in which the rede-
sign results can be improved. In cases 31-6 and 32-6, the incre-
mental changes in redesign goals were reduced from 7 to 4%; this,
however, results in small improvement. In cases 31-5 and 32-5, an

Table 1 Plate redesign for single requirement

Goals Error (%)°
Case® # O/ @ WUy O/ Ui U CPU(S)
11-1 1.065 — 0.014 —_— 56
11-2 1.287 —_ 0.177 — 210
11-3 1.460 —_— 0.354 — 313
11-4 2.000 —_ 0.917 — 569
12-1 — 0.933 — —0.004 64
12-2 — 0.758 — —0.182 249
12-3 ——— 0.660 — —0.381 371
12-4 —_ 0.500 —_— —0.831 616

?In all cases,p = 8,n,=5,and n,=4. YError (%) = 100 X (goal — reanalysis)/reanal-
ysis.

Table 2 Plate redesign for > and u'max: compatible requirements

Case® Goals Error (%)° CPU
# (D’?/(Df u:nax/umax 0)’?/(0? u;nax/umax (S) nr ”a
211 1.065 0.939 0.017 -0.071 39
21-2 1.287 0.777 0.212 —0.248 143
213 1.459 0.685 0.420 —0.478 212
21-4 2.000 0.500 1.098 -1.387 383

22-1 1.065 0.939 0.015 —0.001 73

22-2 1.287 0.777 0.199 -0.155 276
22-3 1.459 0.685 0.398 -0.323 411
22-4 2.000 0.500 1.012 —0.836 748

23-1 1.065 0.980 0.008 0.006 74

NN DWW WW
N O N N N N S SN T

23-2 1.287 0.922 0.134 —0.134 278
23-3 1.460 0.885 0312 -0.376 414
23-4 2.000 0.800 1.238 —2.104 748

In all cases, p =8. PError (%) = 100 X (goal - reanalysis)/reanalysis.

Table 3 Plate redesign for ’2 and u,,,: incompatible requirements

b

Casc? Goals Error (%) CPU

# (D’f/w% u:nax/umax m,f/mf u:nax/umax (S) nr na
31-1 1.065 1.065 0.038 —0.201 40 3 2
312 1.287 1.287 1070 2478 143 3 2
31-3 1.459 1.459 3.427 ~7254 212 3 2
31-4 2.000 2.000 28.25 -4133 384 3 2
31-5¢ 2.000 2.000 6764  —1835 426 3 2
31-64 1.080 1.080 0.097 -0.376 75 3 2
31-74 1.470 1.470 2799  —8.572 354 3 2
32-1 1.065 1.065 0.031 —-0.017 74 5 4
32-2 1.287 1.287 0.868 -1.131 276 5 4
32-3 1.459 1.459 2919 —-4.032 411 5 4
32-4 2.000 2.000 3044 3092 748 5 4
32-5¢  2.000 2.000 6.571 -15.14 752 5 4

%In all cases, p = 8.

bError (%) = 100 X (goal - reanalysis)/reanalysis.

¢State 51 in cases #31-5 and #32-5 are produced by an intermediate FEA from cases
#31-3 and #32-3, respectively.

449 increments, 7% in all other cases.
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Table 4 Plate redesign for ©’} and ©’; : compatible
and incompatible requirements

Table 6 Plate redesign variables for five applications
with compatible requirements

Goals Error (%)° Case # 114 12-4 224 552 56-2
Case® # o oe o0 ool CPUG) o 0292 0292 0294 0297 8.522 o
(02
41-1 1.065 1.065 0.014 0.039 75 ) 2
o 460 Laeo 0420 L33 o o, 0.160 0.170 0170  0.170 8%; o
. . ! } .
41-3 2.000 2.000 1211 4332 : 4
phS e 9% I P 7% o, 0046 0046  0.043 0048  0.068 o
: - : : 0.021 g
22 1.208 0.828 2910 2516
P 2% s e o fég o 0003 0003 —0.005 —-0.007 —0.002 o
- : - : —0.009 o,
42-4¢ 1.459 0.658 1.704 4323 492 . g
prs L2 08 5408 e 322 as 0375 0375 0375 0371 g.gg ot
} ) . ) . o
42-64 1.470 0.680 8.579 12.1 10
PR oo loes S e s o ol o1& 0162 o163 021 oy
) . ) ) P o
432 0.828 1.208 2123 1.
P e o Tosy 5 (5’(3»7; ‘zé‘s’ o 0046 0046 0042  0.039 g.ggg s
) . . ) ' w
43-4¢ 0.685 1.460 1.636 1.
e o e oo 8.222 ‘7“1‘3 O 0004 0004 —0.005 -0003  0.004 O4s
44-1 0.933 0.933 0.012 0.046 78 0.000 i
44-2 0.660 0.660 0.556 1.530 439
44-3 0.500 0.500 1.586 3.925 726
*In all cases,p =8, n,=5,and n, =5.
YError (%) = 100 X (goal — reanalysis)/reanalysis. Table 7 Plate redesign variables for five applications
“Baseline is case #42-3.
d4% increment, 7% in all other cases. Case # 11-3 223 32-3 42-6 56-1
¢Baseline is case #43-3. o 0.140  0.160 -0.060 -0251  0.176 o,
0.139 o
o, 0.063 0078 —0.092 —0.159  0.103 a;
0.062 a,
Table 5 Redesign for o}, o, and u,,, Oy -0.004 0016 -0383 —0200 0.028 s
= 0.007 g
Case? Goals Error (%) CPU o 0063 0000 —0.568 —0080 —-0003 o
00, 0/ 0) U U O/ @] 05/ 0] W e P (5) 0006  ag
51-1 1459 1459 0685 1.115 2239 -1.169 4 463 s 0166 0189  —-0.073 0372 g%gg ’;"10
512 2000 2000 0500 2587 5762 -2754 4 844 y
521 1459 1459 0685 0430 1343 —0388 8 530 % 0059 0072 ~0.09% 0151 8‘82; Zii
522 2000 2000 0500 128 4171 —1075 8 967 . '
53-1 1459 1459 0685 0529 1747 -0.644 16 530 % 0.006 0016 —0.388  —0.342 8'8(2); Z”
532 2000 2000 0500 1001 4443 -1.070 16 966 o 20065 0000 —0589 —0532 0004 o
54-1 1459 1248 0.685 0400 0272 -0367 4 463 ¢ ’ ' ’ ’ 0.006 aiz
542 2000 1500 0500 1511 0903 —1437 4 844
55-1 1459 1248 0685 0371 0220 -0300 § 531
552 2000 1500 0500 0994 0387 -0814 8 968
56-1 1459 1248 0685 0.123 0225 -0.053 16 531
56-2 2000 1500 0500 0318 0326 -0.120 16 969 tion and in general reduces the prediction error. The first twelve
g;'; ;33(7) ;38(7) 8;2: (1)‘51(1)2 ;i(l)i :?;g; g 173(3 cases in Table 5 show the dependence of the error on the number
58-1 1447 1241 0574 1402 1062 -1276 8 704 of redesign variables. .
582 2000 1500 0354 4804 4281 4329 8 1311 The effect of the extracted modes and the number of admissibil-

*In all cases, n, =5 and n, =4. PError (%) = 100 X (goal — reanalysis)/reanalysis.

intermediate FEA was used with incremental changes of 7%. A
similar observation can be made in Table 4.

D. Three Redesign Objectives

Compatibility is even more difficult to define in this case. The
general concept, however, of compatibility defined in Sec. IIL.B
still holds. The tables show sixteen redesign anhcatlons w1th
three simultaneous redesign requirements for ®,” /o, , (1)2 /co2 R
and u , /u_.. . These requirements could be classified as compat-
ible even though there is significant departure of requirements
from analytical compatibility for uniform plate. The accuracy of
computations in finding the optimal state S2 without any FEA’s is
impressive even in case #58-2 where u/ ,, /u ., changes by a fac-
tor of nearly three.

E. Effect of Redesign Variables and Extracted Modes

The accuracy of redesign by large admissible perturbations
depends on the number of redesign variables p, the number of
extracted modes 7,, and the number of admissibility conditions n,
which is a function of n, given by Eq. (22). Increasing the number
of redesign variables gives more flexibility to redesign optimiza-

ity conditions is shown in Tables 2 and 3. In all applications in this
paper, it was found that the effect of the mass admissibility condi-
tions was trivial and were eliminated from the redesign process.
All stiffness admissibility conditions were used. In general, accu-
racy is improved by increasing the number of extracted modes and
admissibility conditions. There is a limit, however, to the validity
of the statement. Specifically, if the number of admissibility condi-
tions is increased to the point of having more equality constraints
than redesign variables in the optimization process, then the prob-
lem will be overdetermined, and there will be no solution.

F. Optimal Redesigns

Table 6 shows the plate redesign variables for five applications
with compatible redesign goals. The flrst four cases show practi-
cally identical results. In case 11-4 ®) /(»)1 = 2.0; in case 124,

Uiax/Umax = 0.5; in case 22-4 the previous two objectives are
used simultaneously; in case 55-2, the third redesign requirements
®,”/ ®, = 1.5 is added. In the last case 56-2, the same three simul-
taneous requirements as in case 55-2 are used; the number of
design variables, however, is doubled. Comparison of cases 55-2
and 56-2 shows that the tendency in the redesign is identical. In
case 56-2, however, variation of the plate thickness is much
smoother as expected. Further, the optimal value of the objective
ZP - 3 in case 55-2 is 0.5342; that multlphed by 2, to account
for the different number of redesign variables, is larger than the
optimal value of }:f : =0.7482 in case 56-2.



1028 BERNITSAS AND RIM: REDESIGN OF PLATES BY PERTURBATIONS

Table 7 shows the plate redesign variables for five applications
for which the redesign requirements are not ideally compatible.

Closing Remarks

Formulation of the plate redesign problem to achieve modal
dynamics and static deflection requirements using the perturbation
approach to redesign (PAR), and solution by a large admissible
perturbations (LEAP) algorithm, has further established the capa-
bility and potential of the large admissible perturbations theory to
address and solve two-state problems in structural analysis and
design. Implementation of the complete nonlinear expressions of
the general perturbation equations for both modal dynamics and
static deflection requirements have made predictions by code
RESTRUCT nearly exact and have reduced redesign errors drasti-
cally. Even in the case of redesign for multiple requirements, the
accuracy of the LEAP algorithm improves with the flexibility of
the model. Specifically, higher number of degrees of freedom and
redesign variables improves the accuracy of the solutions. Accu-
racy also depends on the number of extracted modes and the num-
ber of imposed admissibility conditions. Compatibility of multiple
requirements is a very important factor. Incompatibility results in
excessive departure (by a factor of two or more) from the original
design and reduces the accuracy in redesign solutions. In the
extreme case where multiple requirements are conflicting, there is
no optimal solution (to minimum change criterion) and a minimum
error algorithm is used to solve the problem. The successful devel-
opment of a LEAP algorithm for plate redesign has made it possi-
ble to address in the near future the problem of stiffened plate
redesign. The major challenge in that problem is the shifting of the
neutral axis during the redesign process.
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