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During hypersonic, the shock heated air generates a weakly ionized plasma layer around
a vehicle. Since the created plasma layer has a high plasma number density, the vehicle has a
communication problem known as radio blackout. Solving radio blackout is an important
issue for safety of the vehicle, catastrophe analysis, and mission success. In order to solve
radio blackout, we propose to manipulate a plasma number density. This paper describes
studies of manipulating a flowing plasma with electric and magnetic fields. We suggest a
two-dimensional model of an ExB layer which helps to determine the optimal configuration
of the ExB layer and location of an antenna. The suggested numerical model uses a
hydrodynamic MHD approximation and it is solved using a finite volume method with a
Riemann solver. In this paper, we demonstrate that an applied ExB layer can manipulate
plasma density in a specific region. The manipulated plasma reduces radio wave attenuation
in a plasma layer and provides the possibility for communication during radio blackout.

Nomenclature
B = magnetic field, [T]
E = electric field, [V/m]
Jradio = radio wave frequency, [Hz]
= plasma frequency, [Hz]
= current density, [A/m?]
= electron mass, 0.911 x 107[kg]
= ion mass, [kg]
plasma number density, [m™]
total plasma pressure, [N/m’]
friction force for the electrons
friction force for the ions
magnetic Reynolds number
electron temperature, [eV]
ion temperature, [eV]
plasma flow velocity, [m/s]
Hall parameter
= magnetic field stream function
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i = ion mobility

o = DC conductivity, [S/m]

6 = electrical conductivity tensor
@ = plasma potential, [V]
Subscripts

e = electron

i = ion

o = initial condition

1. Introduction

HE communication or radio blackout problem is an important issue for hypersonic vehicles. When a vehicle

flies with hypersonic velocity, a plasma layer is created as a direct consequence of conversion of kinetic energy
of the vehicle into thermal and internal energy of the surrounding medium via a shock wave.! Within the shock
wave, a plasma layer is formed when the temperature is high enough to excite the gas molecule internal energy
modes up to the point where dissociation and ionization reactions occur. The created plasma layer usually has an
electron number density of 10'” to 10*° m™, and it may cause negative effects on a vehicle’s operation, particularly
for its communications.” When the plasma frequency of the plasma layer around a vehicle exceeds the radio wave
frequency used for communications: f, > frdio, the plasma layer reflects or attenuates radio waves which are
transmitted from or to a vehicle.” Therefore communication is temporarily interrupted, which is known as
radio/communication blackout. For re-entry hypersonic vehicles, radio blackout typically lasts several minutes,
depending on the angle of re-entry and the particular trajectory.”*

It is extremely important to develop strategies for propagating telemetry during the radio blackout of hypersonic
flight. When the radio/communication blackout happens, vehicles lose voice communication, data telemetry, and
GPS navigation.” This is critical for vehicle safety because the vehicles cannot receive any guidance information
from ground stations or GPS satellites. The vehicle’s safety is compromised when it travels hundreds of miles
during a few minutes of blackout without any guidance information such as GPS navigation or voice
communication.” For example, the Soyuz TMA re-entry vehicle experiences about 10 minutes of radio blackout,
enough time for it to travel several thousand miles without guidance from a ground station or GPS satellite.” Radio
blackout also makes catastrophe analysis impossible, eliminating a critical factor for understanding and preventing
reentry accidents. In the space shuttle Colombia disaster, telemetry was lost prior to disintegration due to radio
blackout.® When the telemetry was recovered from the radio blackout, there was little available data at the ground
station to assist in determining the cause of the disaster. In addition, radio blackout plays a significant role in
mission success. For an unmanned vehicle, a blackout makes it lose control or guidance from a ground station. In
this case, continuous and real-time telemetry determines whether the vehicle succeeds in a mission or not.

During the last 50 years, a number of approaches have been suggested to solve the problem of radio blackout
during re-entry or hypersonic flight.** They include aerodynamic shaping, quenchant injection, high frequencies,
and Raman scattering’. The suggested approaches have technical or practical limitations such as cost, system
weight, and aerodynamic performance, so they can only apply in specific cases. For example, the space shuttle
solved the radio blackout problem by using NASA’s Tracking and Data Relay Satellite (TDRS) system, but even the
TDRS is not a general solution for the radio blackout problem. Since the TDRS requires the tail end of the vehicle to
have less ionization than the front of the vehicle to provide a hole through which communications with the TDRS
can be maintained, it cannot be used with ballistic re-entry vehicles or with powered air-breathing lifting vehicles.
The TDRS also cannot be used in Mars entry missions because Mars has no communication-satellite system.

Previously, we suggested a strategy for propagating telemetry through a plasma layer in a feasible and reliable
manner.”’ Our re-entry telemetry scheme expands upon the magnetic window method via the addition of electric
fields to increase the density reduction possible for a given magnetic-field strength. The magnetic window method is
one of the most promising methods where a strong DC magnetic field is used to allow radio-wave propagation
through the plasma layer.* However, this technique is limited by the required magnetic field strength. A reasonable
magnetic field strength is up to 0.15 T in terms of acceptable weight and volume for re-entry vehicles but an
approximately 1 T magnetic field is required to penetrate the plasma layer by using the magnetic window method.”
The limitation of the magnetic-window method can be improved upon by the addition of an electric field. The
applied electric-field accelerates the plasma temporarily over the antenna, reducing the local density to allow
communication. As shown in Fig. 1, the reduced plasma density can create a “window” in the re-entry plasma layer
through which radio waves can be transmitted and received. However, the use of an electric field alone is
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impractical due to shielding of the electrodes by sheath effects. At high densities, the sheath which forms around the
electrodes can have a thickness of millimeters or less. The electrode-shielding problem can be decreased by a
magnetic field.

In previous work, we demonstrated the effectiveness of the electromagnetic field with a two-dimensional
simulation. The results showed that the applied ExB layer can effectively reduce the plasma number density out to
approximately 3 cm from the surface.” These are very promising results for mitigating the radio blackout problem,
because the plasma density peak in the RAM-C hypersonic re-entry flight is at about 1-2 cm from the vehicle
surface.”'’ Our two-dimensional model used a constant one-dimensional magnetic field, although practically it is
difficult to create a constant one-dimensional magnetic field. During the process of creating the window, the plasma
density reduction is significantly affected by the magnetic field configuration. Therefore the overall performance of
the electromagnetic scheme for reentry telemetry is considerably affected by the magnetic-field configuration. A
two-dimensional magnetic-field model can help to predict the effectiveness of the electromagnetic ExB layer as the
re-entry telemetry scheme.

In this paper, we use a two-dimensional magnetic-field configuration which is based on experimental data and
demonstrate the effectiveness of the two-dimensional magnetic-field model in comparison to the one-dimensional
magnetic-field model. This will be seen as an effective approach to solving the blackout problem. In Sec. II, we
describe a physical model of an ExB layer with a two-dimensional magnetic-field. The numerical method and
boundary conditions are described in Sec. III. Section IV shows numerical results of the two-dimensional ExB layer
model and evaluates the results in terms of blackout mitigation. Conclusions are formulated in Sec. V.

II. Two-dimensional Magnetic Field Modeling

The magnetic field is one of the most important parameters affecting plasma-density reduction in the ExB layer.
In order to investigate the effectiveness of the magnetic-field configuration, a variable magnetic-field model is
needed. In this study, we model the two-dimensional variable magnetic-field of the ExB layer. The governing
equations for the ExB layer are composed of two parts which are the flow field and the electric field.

A. Plasma flow description
We previously developed a two-dimensional MHD model of an ExB layer." This model is based on a two-

dimensional steady-state fluid plasma model with the following general assumptions':

1) The ExB layer is quasi-neutral.

2) The neutrals are at rest.

3) There is no ionization in the ExB layer.

4) The electron temperature, T,, is constant at 5 eV.

5) The ions are cold in hypersonic flow, T; = T..

6) The ion mobility, 4, is determined by ion-neutral collisions.
These assumptions are physically reasonable for this application. First, quasi-neutrality is consistent with measured
data from re-entry vehicles.'® The measured data shows the Debye length is typically on the order of 10° m so the
sheath region is very small compared with the plasma region. Although strictly speaking the neutrals are not at rest
with an incoming hypersonic flow condition, the stationary neutral assumption will maximize the effect of the ion-
neutral drag term in the model, thus rendering our calculations for a worst-case scenario. Furthermore the boundary
layer around the vehicle results in relatively slow neutral velocity compared to the vehicle velocity, and it is in this
stagnation layer that the plasma density to be mitigated is highest. In the ExB layer model, we concentrate on a
hypersonic boundary layer. The plasma is already created by associative and electron-impact ionization which are
the two production mechanisms of electrons in a hypersonic flow."" Therefore, we do not need to consider an
additional plasma creation by ionization. Therefore, the two-dimensional steady-state ExB layer model can be
described by:

V- (nV)=0 (1)
Mn (V-VV)=en (E+V xB)-Vp +R )
v(nV,)=0 3)
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where R; is the friction force for the ions and R, is the friction force for electrons. Equations (1) and (2) are mass
and momentum conservation for ions, respectively. Equations (3) and (4) are mass and momentum conservation for
electrons, respectively.

We consider a quasi-neutral plasma with one species of ions so that

n.=n, n (5)

In order to simplify Egs. (1)-(4), we employ the plasma velocity V and the electric current J defined by

MV +MV
Vo il e Ve

M +M, ©
J=en(V,-V,) (7)

Due to M, <« M, the ion velocity becomes the plasma velocity
Va2V ®)

i

From Eq. (8), the ions mass-conservation equation, Eq. (1), gives the mass continuity equation for the plasma flow.
V-(nV)=0 )
The plasma momentum equation is obtained from summation of momentum equations, Egs. (2) and (4).

Mn(V-VV)=(JxB)-Vp+R (10)

where we have made use of the total plasma pressure p = p, + p_ . Therefore, Egs. (9) and (10) describe the plasma
flow in an ExB layer. In Eq. (10), the JxB term is the Lorenz Force accelerating the plasma.
B. Two-dimensional magnetic field model
The ExB layer model, Eqgs. (9) and (10), needs a description for the current density, J. From subtraction of mass
conservations of ions and electrons, Egs. (1) and (3), we obtain the current density conservation as

V-J=0 (11)

The current density is calculated from the generalized Ohm’s law. The generalized Ohm’s law can be expressed in a
matrix form as follows:

J=o(E+VxB) (12)
where & is the conductivity tensor:

1+8° BB, BB
BB 1+B’ B (13)
BB. BB, 1+p’
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The conductivity tensor, Eq. (13), can be simplified for a two-dimensional magnetic-field configuration. A
schematic of the two-dimensional magnetic-field model of the electromagnetic layer is shown in Fig. 2. In this
study, we consider the magnetic field has only x and z direction components, B,, B.. In this case, the conductivity
tensor becomes

where: S =B,

, B 1s the Hall parameter, and o is the DC conductivity.

1+8° 0 BB
~ (o2
&= - 1 0 (14)
1+4 ,
BB 0 1458

Thus the component forms of the current density become

J)( 1+ﬂ.\’2 0 ﬂ,\‘ﬁz E.\’
o
J, |= -l o 1 0 ||VB-VB (15)
' 1+ﬂe 2 v v ‘
/. BB 0 145, E.

From the current-density conservation, Eq. (11), with the usual definition of an electric field, Eq. (15) becomes
v.((}w):v-(&(VxB)) (16)

Therefore we obtain a Poisson-like equation for the potential distribution from Eq. (16).

( 1+ jazqs [ 1+, jawﬁ [ 28.8.. j o’

- = 5 +| ——————Oo + — o ¢

1+ ﬁmz + ﬂuz o 1+ ﬁmz + ﬂ“z oz \1+B  +p. )oxoz

+{3( LT 20}3( PA. 20]}% -
ox 1+,Bw +ﬂe’; ox 1+ﬂu +ﬁ“ ox

{ 0 ( B.A.. ) 0 ( 1+5 )} o¢
P [ 5L SR U S S N— | AR
ox\ 1+ ,HMZ + ,6’“2 ox\ 1+ [5’“2 + ﬁmz Oz

Equation (17) is a non-linear 2™ order Elliptic PDE. Solving Eq. (17) gives the potential distribution of an ExB
layer.

III. Numerical method and boundary conditions

The two-dimensional ExB layer MHD model, Egs.(9), (10), and (17), is solved numerically with an iterative
scheme. The solution begins with an assumed initial potential distribution, ¢’ which is obtained by solving the
Poisson equation. Equations (9) and (10) are solved by using the finite volume method with the Harten-Lax-van
Leer contact wave (HLLC) Riemann solver'* to give plasma number density and velocity. The obtained plasma
number density and velocity distributions are used to calculate the new potential distribution. The potential
distribution is obtained from solving Eq. (17). The alternating direction implicit (ADI) method is used to solve Eq.
(17) for the two-dimensional magnetic-field model with Poisson-like equation. Since the coefficient of the last two
terms of Eq. (17)
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may be much larger than other terms, we must carefully discretize Eq. (17). Therefore the upwind discretization
scheme is applied. The new potential distribution provides a new electric field for the next iteration. After several
iterations, all variables converge and we obtain a steady-state solution with sufficient accuracy.

Figure 3 shows boundary conditions which are applied in the two-dimensional ExB layer MHD model. The
inflow boundary condition is applied for the left side. It uses the initial plasma number density and the constant
neutral number density. In this case, the bulk-plasma velocity has only an x-direction component. The right and
upper side boundaries use the outflow boundary condition and no potential variation across the boundary is
assumed. The bottom boundary uses the dielectric boundary condition. Due to the dielectric boundary condition, no
ions are neutralized at the dielectric wall, which means that the wall fully absorbs ions. An applied potential
boundary-condition at the electrodes is shown in Fig. 4. It uses a linear distribution between the two electrodes and
an exponential distribution beyond the electrodes for numerical stability.

An applied two-dimensional magnetic-field is generated by an electromagnet. In the present study, we assume
the magnetic Reynolds number of a hypersonic flow field is much smaller than unity. The magnetic Reynolds
number, Ry, is a measure of the coupling between the motion of the magnetic field line and the motion of the
conducting fluid. When the magnetic Reynolds number is much smaller than unity, the magnetic field is not greatly
affected by the fluid motion."” It means the induced magnetic field by current is negligible compared with the
imposed magnetic field."* Due to the small magnetic Reynolds number assumption, we can neglect the induced
magnetic field. Therefore the generated two-dimensional magnetic field is assumed to be entirely determined by the
applied electromagnet and to be unaffected by its discharge.

Figure 5 shows the configuration of an applied two-dimensional magnetic-field in this study. The applied
magnetic field is calculated using a Poisson solver with measured magnetic-field data. In the MHD limit, a magnetic
field satisfies a divergence free condition:

V.B=0 (18)
A magnetic field stream function, 4, is defined as

0 0
B =—Aand B =—21
S Ox S0z

Equation (18) becomes a Poisson equation with a magnetic field stream function, 4.

Vi=0 (19)

The boundary conditions of Eq. (19) are used from a magnetic-field data measured in the Plasmadynamics and
Electric Propulsion Laboratory (PEPL) at the University of Michigan. Solving Eq. (19) gives a magnetic-field
distribution for this study. As shown in Fig. 5, the configuration of a magnetic field does not depend on the
maximum magnetic-field strength and the maximum magnetic-field strength is given near the two electrodes.

IV. Results

A. An ExB layer with a two-dimensional magnetic-field

We first apply our model to a simple configuration that has been studied experimentally. The simple
configuration of the ExB layer is shown schematically in Fig. 2. In Fig. 2, an electric field is applied using two
electrodes. The anode and cathode are Smm in length and are separated by 4 cm. Under the two electrodes, an
electro magnet is located that provides a two-dimensional magnetic field. For the ExB layer simulation, argon is
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used with a constant background neutral pressure and the neutrals are assumed at rest. The detailed initial conditions
of the ExB layer are specified in Table 1. In this study, the magnetic field strength indicates the absolute value of the
magnetic field at the center between the two electrodes. The plasma number density is normalized by the plasma
bulk density, no and it is called the plasma density reduction. A strong plasma density reduction indicates a large
effect of the applied ExB layer.

The plasma density reduction with the two-dimensional magnetic field is shown in Fig. 6. It shows the strongest
plasma density reduction occurs near the cathode. There are also two increased density regions, beyond the anode
and the cathode. The increased density region of the cathode is also shown in the one-dimensional constant magnetic
field model.” It is primarily caused by the 0 V potential beyond the cathode. The applied 0 V potential is quite
reasonable because we assume that the area beyond the cathode has a vacuum condition. However, the one-
dimensional magnetic field model does not have the increased density region near the anode. We can expect this
increased region due to the gradient of the applied two-dimensional magnetic-field. Therefore the optimal location
of an antenna can be determined from Fig. 6 and it is near the cathode.

As a mitigation scheme, an ExB layer has two important parameters in terms of communication through a
plasma layer; plasma density reduction and effectiveness area of an ExB layer. First, the density reduction required
to mitigate through a plasma layer is determined base on the peak plasma density and the radio-wave frequency used
for communication. As shown in Table 2, various radio-wave frequencies are used for different applications. This
means each application requires a different plasma density reduction to solve radio blackout. When the plasma
number density is higher than a critical number density, a radio-wave has infinite attenuation in the plasma layer.
Therefore we need to reduce the plasma number density at least below the critical number density.>>"> A required
plasma density reduction for each radio-wave frequency is indicated in Fig. 7. Therefore we can set the desired
plasma density reduction for each specific communication radio-wave frequency at the peak plasma number density
of an ExB layer.

Another important parameter is the thickness of the plasma layer which is effectively manipulated by an ExB
layer. It is determined base on the required plasma-density reduction. The region effectively manipulated by an ExB
layer should be larger than the thickness of the plasma layer which prevents communication. In order to solve radio
blackout, the effectiveness area of an ExB layer can be found from Fig. 8 which shows more detail of the plasma
density reduction. For a GPS signal which uses 1.5 GHz, the required density reduction is about 0.7 for a 4.2 x 10'°
m” bulk plasma density. Therefore Fig. 8 tells us that the applied ExB layer can effectively reduce the plasma
density up to approximately 2 cm above the surface for solving radio blackout of GPS navigation. When the
thickness of a plasma layer is smaller than 2cm, the created the “window” can penetrate the plasma layer for GPS
communication. For the RAM-C flight test, the thickness of the plasma layer is approximately 1-2 cm but it depends
on the altitude. For the low-altitude case, the plasma layer is thin and has high peak plasma density. At high
altitudes, the plasma layer is thicker and the peak plasma density is lower than the low altitude case. Therefore Fig. 9
shows the applied ExB layer has a possibility to create a “window” for GPS navigation.

The configuration of the magnetic field can affect the plasma density reduction of an ExB layer. Previously, we
suggested a one-dimensional magnetic-field model of an ExB layer.” Figure 9 shows the two-dimensional magnetic
field model predicts lower plasma density reduction than the one-dimensional magnetic-field model. The reason is a
difference of magnetic field strength between the two magnetic-field models, as shown in Fig. 10. The strength of
the two-dimensional magnetic field configuration decreases with distance from the wall surface. However, the
magnetic-field is constant in the one-dimensional case.

Figures 9 also show the applied ExB layer only affects the plasma density near the cathode. It means an ExB
layer will not disturb an entire flow. This is an important fact for a practical application because an applied ExB
layer gives a window for communication without any effect on a vehicle’s aerodynamics.

In order to optimize the system, it is important to understand the effectiveness of the applied magnetic-field in
the ExB layer. In a previous study, we already showed that a larger magnetic field gives a stronger plasma density
reduction with the one-dimensional ExB layer MHD model.” The two-dimensional ExB layer MHD model gives
similar results. Figure 11 shows the plasma density reduction in the ExB layer with several magnetic field strengths.
As expected, a larger magnetic field gives a stronger density reduction. However, the maximum magnetic field
strength is limited because of the weight of a permanent magnet. Although the higher magnetic field guarantees a
larger window for communication, it gives a negative effect on vehicle performance due to a heavy weight.

Figure 12 can be used to optimize the applied magnetic-field strength. It shows the effectiveness of the magnetic
field strength for three different models which are the one-dimensional ExB layer simulation model, the two-
dimensional ExB layer simulation model with one-dimensional constant magnetic field and the two-dimensional
ExB layer simulation model with two-dimensional variable magnetic field. As shown in Fig. 12, the plasma density
reduction ratio increases with magnetic field strength. However the increase of the plasma density reduction
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becomes smaller at the strong magnetic field condition. The 0.2 T magnetic field condition gives the maximized
plasma density reduction ratio. It is also interesting that all models agree in the case of large magnetic field, stronger
than 0.2 T.

The electric field is another parameter that affects the plasma density reduction in the applied ExB layer. In the
one-dimensional case, we showed that a higher potential drop gives a stronger plasma density reduction but the
maximum applicable potential drop is limited due to an electrode arching.” For the two-dimensional ExB layer
MHD model, the effectiveness of the electric field is shown in Fig. 13. It is found from this figure that the density
reduction is improved by a higher potential drop. Furthermore, Fig. 13 shows that the change of the plasma density
reduction becomes smaller at the high potential drop. Thus, there is an optimum value for the potential drop in order
to communicate through a plasma layer.

B. An ExB layer in a hypersonic flow

In Figs. 6 and 8 - 13, the numerical result does not include the generation of a plasma layer so the entire
simulation domain is assumed as a plasma layer. Therefore it is necessary to simulate an ExB layer in hypersonic
flow in order to consider a realistic plasma layer. For an ExB layer simulation in a hypersonic flow, we use the
OREX vehicle, which was launched by the H-II rocket from Japan to conduct an earth reentry experiment."* OREX
is a blunt body reentry vehicle and it has a nearly zero angle of attack in the reentry experiment. Figure 14 shows the
simulation domain with a simplified OREX geometry that is composed of a spherical nose with a 1.35 m radius and
a 50-deg sphere cone. Figure 14 also shows the location of the cathode with Smm width and the electromagnet. An
anode is grounded on the vehicle so it has a OV potential.

OREX is simulated at the 59.4 km flight condition with an ExB lay for the plasma manipulation in the boundary
layer. The applied magnetic-field configuration is similar to Fig. 5. Table 3 shows inflow conditions and wall
temperature of OREX at 59.4 km. The chemical composition of free stream air is assumed to be 79% N, and 21%
0,.

Figure 15 shows the electron number density distribution with the ExB layer. As shown in Fig. 15, the applied
ExB layer reduces the electron number density. It shows the plasma density reduction increases with magnetic field
strength. The result predicts the highest plasma density reduction when both the electric field and magnetic field are
applied. In Fig. 15, there is a plasma density reduction even when there is no applied voltage to the cathode. The
density reduction in this case occurs because of the magnetic field. The applied magnetic field can give a current
density though there is no electric field. The generated current density is smaller than with the electric field case but
it can give a Lorenz force for the plasma acceleration. When the electric field is applied, it gives a higher current
density. In this case, the magnetic field helps to maintain a strong electric field. Therefore the electric field improves
the plasma density reduction in the hypersonic plasma layer. Figure 15 also shows the plasma returns to its original
density past the applied ExB layer. This means the applied ExB layer can manipulate a plasma layer without
disturbing the flow field in order to solve the communication blackout problem.

Figure 16 shows the maximum plasma density reduction as a function of applied magnetic-field strength and
potential drop . It agrees with Figs. 12 and 13. The applied ExB layer with 0.5 T and -500V potential drop gives of a
plasma density reduction about 0.15. In this case, the signal attenuation becomes approximately 5 dB for X-band
which was used for OREX reentry telemetry. This demonstrates the possibility of an ExB layer mitigation scheme to
solve radio blackout in the hypersonic flight condition.

V. Conclusion

We have studied an ExB layer to allow communication through the plasma layer during the radio blackout period.
The numerical result shows a significant density reduction in an ExB layer. The application of electric and magnetic
fields could therefore allow radio communication through a hypersonic plasma layer. The numerical result also
shows the applied ExB layer reduces the plasma density near a cathode. It means the ExB layer mitigation scheme
can manipulate plasma in a specific region. The reduced plasma density and area can be controlled by changing
magnetic field strength and potential. Therefore the numerical analysis can help to determine an optimal
configuration of an ExB layer as a mitigation scheme. In addition to solving radio blackout, the ExB layer mitigation
scheme also can be used in other industrial applications such as semiconductor production and positron storage
because it can manipulate plasma in a precise area.
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Table 1. Initial conditions of a simplified ExB simulation.

Applied Magnetic field
Velocity, Initial plasma density, = Gas pressure,  Electron temperature, potential drop, strength,
Vo [m/s] ny [m] Pn [mTorr] Te [eV] AQ[V] B [T]
1000.0 4.2x10' 1 5.0 -800 0.07
Table 2 Commonly used radio wave frequencies and their limits for the maximum plasma density"'*"’
Band Name Frequency Plasma density limit [m™] Example uses
VHF 30~300 MHz 1.2x10"7 ~ 1.2x10"7 Aviation communication
UHF 300~3000MHz 1.2x10" ~ 1.2x10" GPS
L band 1 ~2GHz 1.3x10" ~ 5.1x10' Military telemetry
S band 2~4GHz 5.1x10" ~ 2.0x10" Satellite communication, Space shuttle, ISS
X band 8~12 GHz 8.3x10" ~ 1.9x10" Satellite communication, RAM C Test
K, band 12~18 GHz 1.9x10" ~ 4.1x10' NASA’s Tracking Data Relay Satellite (TDRS)
K, band 27~40 GHz 9.4x10"™ ~ 2.1x10" Radar and experimental communication

Table 3 Inflow condition of the OREX at 59.4 km'®

Velocity, Uy [m/s] Temperature, T, [K] Wall Temperature, T,, [K] Air density, P, [Pa]
5561.6 248.12 1519 23.60
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Radio Wave Signals are reflected or attenuated

Radio Wave

; Anode

() (b)

Figure 1. (a) A schematic of a hypersonic vehicle with approximate plasma layer around the vehicle. In
this case, the radio waves are reflected or attenuated against the plasma layer. (b) A schematic of a
hypersonic vehicle with approximate plasma layer around the vehicle with an ExB layer mitigation
scheme. The applied ExB layer manipulates the plasma layer and creates a “window” for communication
through the plasma layer.
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Magnetic field, B

Electric field, E

Electromagnet

Figure 2. A schematic of the two-dimensional magnetic field model of the applied ExB layer.
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Figure 3. A schematic of the two-dimensional magnetic field model of the applied ExB layer.
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Figure 4. A schematic of the two-dimensional magnetic field model of the applied ExB layer.
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Figure 5. The applied magnetic field configuration which is normalized by the maximum magnetic field
strength, B,.

(a) Horizontal direction magnetic field configuration, B, /B,.

(b) Vertical direction magnetic field configuration, B, /B,.

(c) Normalized magnetic field strength configuration with the magnetic field lines.

American Institute of Aeronautics and Astronautics
092407



4.2
0.10 P
Ly} 3.6
|§| 3.4
N 0.08 32
5 2.8
'..3 2.6
@ 0.06 24
£+ ] 2.0
- 1.8
1]
.% 0.04 }j
@ 1.2
> 1.0
0.02 gg
0.4
0.2

Anode — ———Cathode

-0.02 0.00 0.02 0.04 0.06 0.08
Horizontal direction, x [m]

Figure 6. A distribution of plasma density reduction. The initial plasma density, n, is 4.2 x 10'°m™ and the
initial neutral pressure is 1 mTorr. A -800 V potential is applied with 0.07 T magnetic-field strength.
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Figure 7. Required plasma-density reduction for several radio-wave frequencies.
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Figure 8. The distributions of the plasma density reduction at several vertical positions: z = 0.0 cm, 2.0 cm,
and 4.0 cm. The initial plasma density, ny is 4.2 x 10'*m™ and the initial neutral pressure is 1 mTorr.
A -800 V potential drop is applied with 0.07 T magnetic-field strength.
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Figure 9. The distributions of the plasma density reduction with the one-dimensional magnetic field and
two-dimensional magnetic field at several horizontal positions. The anode and cathode are located at x=0.0
cm and 4.0 cm, respectively. The initial plasma density, n, is 4.2 x 10'*m™ and the initial neutral pressure
is 1 mTorr. A -800 V potential drop is applied with 0.07 T magnetic-field strength.
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Figure 10. Magnetic field distributions for the 1D magnetic field model and measured data for the
B =0.07 T case: (a) z-direction magnetic field strength, Bz (b)x-direction magnetic field strength, Bx.
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Figure 11. The plasma density reduction along the x-direction for several magnetic field strengths.
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Figure 12. The plasma density reduction at the z = 4.0 cm position as a function of magnetic field strength.

10 10
= ——®—— 1D Magnetic field model & ——=—— 1D Magnetic field model
s, s,
c ----M--- 2D Magnetic field model < ----i--- 2D Magnetic field model
g 08} g 08}
[ [
c c
L L
B 06F B 06F
3 3
° °
e e
2 04 2 04
2 | .y g
] Y N ]
- T o
© e ©
02F R _— 02F
: 4 2 l\g
o o B S R Y
0.0 1 1 1 0.0 1 1 1
] -500 -1000 -1500 ] -500 -1000 -1500
Applied potential, Ap [V] Applied potential, Ad [V]
(a) (b)

Figure 13. The plasma density reduction variation with applied potential drop

(a) The initial plasma density, n, is 4.2x10'®* m™ and the initial neutral pressure is 1 mTorr. A -800 V
potential drop is applied with 0.07 T magnetic field strength.

(b) The initial plasma density, n, is 2.4x10'® m™ and the initial neutral pressure is 150 mTorr. A -100 V
potential drop is applied with 0.035 T magnetic field strength.
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Figure 14. The simulation geometry and mesh for the OREX re-entry vehicle.
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Figure 15. The electron number density distribution near the surface of OREX for several operational
conditions of an ExB mitigation scheme.

American Institute of Aeronautics and Astronautics
092407



0.9

0

0.8 without Electric field 7

e

0.7

0.6

0.5

04

Density reduction, n/n

0.3

0.2

0-1 1 1 1
0 0.1 0.2 0.3 04 0.5

Magnetic field strength, [T]

Figure 16. The maximum plasma density reduction by an ExB layer in a hypersonic flight condition.
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