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Abstract

In this paper we report on recent developments concern-
ing multidimensional upwind schemes for solving the Fuler
equations on a grid composed of triangles. As a gnide-
line we take the three conceptls which constitnte Roe's one
dimensional approximate Riemann solver: (1) an analytic
eigenvector- or wave decomposition of the flux derivative;
(2) a discrete counterpart using a conservative lincarization
of the flux difference over a cell; (3) an upwind distribu-
tion of the decomposed parts over the meshpoints accord-
ing to the sign of the corresponding cigenvatues. FEach of

these three elements are generalized for multidimensional

flow, avoiding a dimension by dimension analysis. Figen-
vector decompositions for the two dimensional flux diver-
gence (two-dimensional wave models) have been proposed
in 1986. A discrete counterpart using a recently developed
conservative linearization of the flux balance over a triangle
is explained in more detail. Nonlinear positive and linearity
preserving scalar upwind distribution schemes are described
for the distribution of the decomposed parts. Numerical
results on standard subsonic, transonic and supersonic test
cases are presented for different combinations of decom-
position and scalar distribution schemes on iriangulated
meshes. Altheugh many of Lthe theoretical and numerical
alternatives are still open, these results indicate that the
present approach is a viable generalization of the one di-
mensional Riemann solvers.

1. Introduction

Over recent years, it has become increasingly apparent
that the lack of truly multidimensional concepts is severely
limiting the progress in, and performance of Fuler- and
Navier-Stokes computations® 1%, State of the art upwind
methods for compressible flow are based on Ricmann solvers
for the one dimensional Euler equations. Considering Roe's
one dimensional flux difference splitter, the following dis-
tinct steps can be recognized in an interprctation which
differs from the usual viewpoint in the sense that no ref-
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erence is made to Riemann problems or the finite volume
approach®® :

1. First, derive an eigenvector decomposition of the one di-
mensional flux derivative. This eigenvector decomposition
is in fact a wave pattern recognition step, decomposing a
global perturbation in three simple wave contributions. De-
noting by U the vector of conservative variables with flux
vector F{U), the gradients are written as :
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where A*(U) and r*(U} are the eigenvalites and right eigen-
vectors of A(U), the Jacobian matrix containing the deriva-
tives of the flux vector with respect to the conservative vari-
ables.

The governing equation for each simple wave is

awk L AWk
TR " (1.2)

where W* are the characteristic variables corresponding to
entropy and two acoustic variables. The waves are traveling
with speeds A* T, along the z--axis, and have a strength

o® uniquely determined from
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where 1% are the left eigenvectors of A such that

k ™ 6km

r

(1.4)

with &g, the Kronecker symheol. Tt is important to real-
ize that in one dimension uniqueness and existence of this
decomposition is guaranteed by the hyperbolicity of the sys-
tem. :
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2. In the second step, a discrete counterpart for eqs. (1.1)
is constructed, commonly known as a flux difference split-
ter, although a more appropriate naming would be a flux
balance or flux residual splitter, as will be seen later.

The flux residual is defined as the contour jntegral of
the flux vector over a discrete cell representing two adjacent
positions (x;, < zg) on a mesh, with unknowns Uy, and
Un,
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where the wave strength is computed from a discrete version
of eq. {1.3).

a* = 15U, Ug) (Ug - Uy) (1.7)
Egs. (1.5) - (1.7) define what is called a conservative lin-
earization, since it decomposes the conservative residual in
scalar wave contributions related to the quasilinear form of
the equations.

Roe showed!” that such a conmservative linearization
is easily found by introduction of a new variahle called the
parameter vector Z = /p(1,u, H}7. With Z as the primary
unknown, the lincarization is simply given by

(1.8)

defining in this way the averaged Jacobian A(U,Ug) =
A(Z). Here, Z is defined as

= 1
7 = -2-(211 + Zp) (1.9)
In the state Z , the primitive variables are given by
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Combining eqs. (1.5} - (1.8} leads to the familiar result

Fr Fi = AZ)Ug - Up) (1.11)
Egs. (1.5) - (1.7) have the important property that when-
ever Uy, Upg are such that they can be connected by a single
shockwave or a single contact discontinuity with speed s,
only one non-vanishing term in the expansion remains, and
eq. (1.6) reduces to the Rankine-Hngoniot jump relations,

with A* the speed of the discontinuity.

By construction, the linearization of eq. {1.8) satisfies
the following properties, additional to eq. (1.11):

AU, Y - A(Y) {consistency) {1.12)

1_4—( Uyg,Ug)
linearly independent eigenvectors

has real eigenvalues and a complete set of

(1.13)

Egs. (1.11), (1.12) and (1.13} are collectively referred
1017 as Property U, and ensure uniform validity of the lin-
earization both in smooth flow and near discontinuities.

3. In the third step, a scalar upwind distribution scheme
is applied to each part of the decomposed flux residuall®
given by eq. (1.6), depending on the orientation of the cor-
responding speed X,. For example, in the classical first

order upwind scheme, the terms Aegkpk corresponding to
Ak > 0 are used to update Ug, while the parts correspond-
ing to A} < 0 are used to update Uy. Other schemes
like Lax-Wendroff or Fromm’s scheme can be recovered by
selecting other distribution coefficients*®. The key observa-
tion is that the problem is reduced to the design of accurate
and oscillation free schemes for a scalar advection equation
of type {1.2). Notice that the flux balance in the form of
the LHS of eq. (1.6) is never needed in the distribution
step. Due to the conservative linearization, the RHS of eq.
(1.6) in the form of a sum of waves can be used, avoiding
the evaluation of fluxes,

The three steps described above constitute the famil-
iar Roe’s approximate Riemann solver in terms which are
suited for generalization to two and three space dimensions
without resorting to a dimension by dimension analysis :

1. In two or three space dimensions, the decomposition of
the divergence of the flux vector will be written as a sum of
terms of the form eigenvectors x wavespeed < wavestrength,
(1.1}
uniquely determined as in one space dimenston, and intrin-
sic flow properties will be used to find out which cigenvec:
tors, speeds and corresponding directions are relevant. Two
dimensional wave decompositions which generalize eqs. {1.1)
have been introduced already around 1986, when Roc! and
Deconinck et al? came up with criteria to detect and select
relevant simple wave patterns given a linearized flow field.
Both decompositions are summarized, used and compared
in the present work. A new variant of Roe’s approach®® is
recapitulated in section 2.

2. Eq. (1.6) generalizes to a contour integral aronnd a
two dimensional or three dimensional cell.

just like egs. The decomposition however is not

Qo these ele-
ments, a conservative linearization can be constructed hav-
ing Property U. This conservative linearization which was
recently developed®, forms an essential part of the multi
dimensional solver and will be discussed in section 3. Key
requirement is the use of triangular cells in two dimenstons
and tetrahedra in three dimensions. These elements are
the natural extensions of the one dimensional line elemnent,
permitting the definition of a unique linear variation of the
unknown over the cell for given data at the vertices. This
again indicates thai truly multidimensiomal extensions dif:
fer strongly from the dimension by dimension analysis, in
which quadrilateral cells are the natural two dimensional
extension of a line segment.

3. Scalar distribution schemes will distribute the decom-
posed parts of the flux balance to the vertices of the cell,
depending on the orientation of the corresponding advec.
tion speed in the two dimensional or three dimensional



space. The schemes discussed will meet constraints con-
cerning conservation, positivity and accuracy as explained
in section 4.

Bach one of these three constitutive steps of the mul-

tidimensional generalization of Roe’s one dimensional flux -

difference splitter is a topic in itsell, deserving a more elab-
orate discussion than this paper permits. In fact, progress
on wave models*®® 2% linearization'®?* and discretiza-
tion31122:23.24 hae been reported in various publications
over the last five years, showing an evolution of understand-
ing and sophistication. Although research in the above top-
ics continues, we think that the basic concepts at the root of
the method are understood and fit together very well. Not
excluding further developments we present in this paper for
the first time a coherent description which may later be re-
fined or extended, but which is not likely to be drastically
changed. Furthermore, we show numerical results with the
method, where in previous publications!®® the essentjal
element of the conservative linearization® was missing.

The multidimensional generalization {reated in this pa-
per is in strong contrast with the classically adopted dimen-
sion by dimension generalization of the one dimensional ap-
proximate Riemann solver. In the standard interpretation
in a finite volume context, the flux at the interface between
zy and g can be found from the solution of the approxi-
mate Riemann problem {or the linearized equation

ou = U
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Ulz,0)=U; , =z<0
U{z,0)=Ugr , z>0

where U and Upg are either the average state in adjacent
cells or some higher order reconstruction at the cell inter-
face. Consequently the waves emanating from the jump of

the unknowns at the cell interface influence the value of the

unknowns of the neighbouring cells Uy and Ug.

In two or more space dimensions, the flux at a cell
interface is defined in exactly the same one dimensional
way. The flux jacobian is now taken in the direction of
the cell face normal 7L x. Again, the waves influence only
Uy, and Ug. The standard generalization has the drawback
that a set of Riemann problems is solved related to each cell
face. Every flux is decomposed in waves traveling normal
to the cell {ace, which is irrelevant from the physical point
of view. This results is a solution algorithm which depends
on geometrical variables which have little or no relation
with the relevant flow directions. Consequently the choice
of the grid has a disproportional influence on the solution,
as has been observed e.g. for calculations in which a shear
{contact discontinuity) or shock is present in the solution,
but where these phenomena are not aligned with the grid.

The multidimensional generalization discussed in this
paper does not have this shortcoming. The wave propaga-
tion directions depend uniquely on intrinsic flow properties,
while the scalar discretization schemes aim at a discretiza-
tion along these preferential directions.

i

As an intermedizate step between the approach followed
in this paper and the dimensionally split approach, so-called
Rotated Riemann Solvers can be considered®1%. For the
definition of the cell face Riemann problem they take into
account variables like flow direction or velocity difference di-
rection over a cell face. In this way some multidimensional
behaviour is introduced. Although some promising results
have been obtained along these lines, this is not the ap-
proach followed in this work. Instead we prefer to abandon
the finite volume viewpoint which inevitably leads to some
one dimensional Riemann problem between two neighbour-
ing cell states, and we adopt the residual distribution strat-
egy as introduced before!8:21,24:25,

Test computations indicate that the choice of the wave
decomposition is very important and is still a matter of
further research. Indeed, satisfactory results were only ob-
tained for one of the 6 wave models (model C), while the
4 wave model failed completely for subsonic and transonic
flow. Another topic for further investigation is the imple-
mentation of boundary conditions in the multidimernsional
upwind solver. Nevertheless, comparison of the computa-
tions using model C with standard grid aligned upwind
solvers indicates that non-aligned discontinuities are indeed
captured in fewer cells by the present approach.

. 2. Multndlmenslonal wave decomposition models

for the Euler equat:ons

The generalization of Roe’s one dimensional scheme,
s decribed in the introduction, requires first an eigenvec-
tor decomiposition of the two dimensional flux divergence,
similar to what has been achieved in one dimension by eq.
(1.1). Two approaches have beer proposed in the past.
One is based on two dimensional characteristic theory *%35,
and the other is based on a superposition of simple wave
solutions?39:18,

In the first approach, 4 particular compatibility equa-
tions are selected, and the corresponding eigenvectors are
used to split the flux divergence. The decomposition takes

the form
Z Mook ks

The 4 eigenvectors are selected to minimize in some sense
the term S, but elimination of this term is not always pos-
sible. Moreover the computation of the relevant wave di-
rections requires the solution of a quadratic equation, in-
troducing a non-uniqueness problem. '

In the second approach®®91®, at least for the mod-
els considered in this paper, 6 simple wave solutions are
selected such that their superposed effect is equivalent to
the flux divergence. Thus the 6 eigenvectors, strengths and
speeds are found analytically. The decomposition is always
complete and unique, given by

BF BG (2.1)

8 G o
F a =3 Mokt (2.2)

k=1



Both decompeositions are briefly described below, but
the emphasis is put on the second because it has lead to
more satisfactory results at this stage of our research, as
will be discussed in section 5.

2.1 Characteristic decomposition model.

Deconinck and Hirsch? propesed a decomposition met-
hod in which characteristic cornpatibility cquations are se-
lected which lead to an optimal decoupling of the Euler

equations into a set of scalar 2I) convection equations. Start.

ing point is the system of Euler equations in dlvergence
form,

%—?4'%%+%(yi: , or %[EJ—JrVF 0 (2.3)
with U = (p, pu, pv,pE)". Characteristic variables W are
defined by a transformation using a 4 x 4 matrix I %

AU = L'oW W - LaU ‘
L7 = (el ¥ 0% ) L= (1P Py (24)

The column vectors r* and row vectors 1% are right, re-
spectively left eigenvectors of the Jacobians of eq. (2.3) in
some particular flow dependent directions. In vector nota-
tion, the transformed system representing four particular

characteristic compatibility equations becomes

W awW aW
LD, D
ot Oz P Ay

FQ -0 (2.5)

where ), and 12, are diagonal matrices, which have as
dingonal elements the convection speeds in @ respectively y
direction. The ferms Q represent off diagonal terms, which
appear since in general the Jacobians of the fluxes F and

G do not commute. The different terms in eq. (2.5) are
given by :
B - Lop
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The convection speeds for the four characteristic compo-

nents are therefore

A 1, A 0, Ay :‘1{(2)} MYy e’
{2.7)

(1)
2)

The vectors 51 and §12) are normal 1o the vectors

The selection of the nptimdl char-
M2y

RO respectively #f
acteristics is done hy choosing two normals £ and &

which render Lhe transformation optimal in the sense that

the coupling term Q is minimized. The first decomyposi
tion normal (1) is therefore chosen paralle! to the pressure
gradient, while the second decomposition normal #(?) is a
function of the strain rate tensor. More details on the de-
composition can he found in the original paper? and®*.3.
Note that both normals and hence the decompusition
are a function of gradients of the flow variables anly, and do
not depend on any direction dictated by the mesh.
forming eq. (2.5) back to conservative varialles, ome oh-
tains the decomposition of the flux divergence, eq. (2.1},

Trans-

where
e M ;
ot = Tp YW (2.8)
AR | XK (2.9)
4
s Zle‘k (210)
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2.2 The six wave models.

This decomposition proposed by Roe?2? is hased on

a superposition of 6 simple wave solutions, assuming lin-
earized flow. Simple wave solutions for lincarized flow are
defined by

Uk - ‘¢rkrk e akrk i

(ene + yny — Ak {2.11)

where o is the strength of the wave, n. - cosf and Ty
sinf the components of the unit vector # in the propaga-
tion direction @ (omitting superscript k), and r¥
cigenvector of the Jacobian An, + Br, with corcesponding

eigenvalue A%. The gradient of Uk is

a right

VU* = a7 of v (2.12)

VW = YWk = off = FTUF (2.13)

Substitution in the Euler equations shows that the charac-
teristic variable W* satisfies the advection equation

AW
r

57 k4 (Ang b Bry )iV ek

(2.14)

or

ank

TS L v ¢ L
at '

(2.15)

where the two dimensional advection speed veetor A5 has
been introduced,

vk [ .
An o Anm {2.16)
2q. (2.15) is the two-dimensional equivalent for the
simple wave equation in one dimension, eq. (1.2}, [n eq.

(2.15), the speed )Tﬁ ts in the direction of the gradient T
and is therefore called the ‘gradient dependent speed’. Tor
the Euler equations, these speeds are obtained for o given
direction 7 by solving the eigenvalues of An, +- Bn,, leading
to ]

AL

. {2.17)

Nt (g A} o)R

The first two correspoud to an entropy and a shear wave,
while the second two correspond to two acoustic waves (fig.
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1). For subsonic flow in the direction n,(# -7 < ¢), A}
and A% have opposite signs, while for supersonic flow in the
direction 7 they have the same sign.

)

Fig. 1.

model.

Speeds and directions for the waves in the § wave

The speeds (2.17) are quite different from the linearized
speeds obtained from the characteristic wave decomposi-
tion, eq. (2.7). However, looking at eq. (2.15) one observes
that the space operator is unaffected if we replace Xﬁ by
X", where X* is defined such that it satisfies

X = (XF R (2.18}
becanse
XEGWE e (NELR) R TWE e (R RO E] - XL Ok

(2.19)
Hence for the Euler equations, one can construct the lin-
carized speeds X* as

Xl 2

" (2.20)
e

which are precisely the speeds used in the characteristic
decomposition madel, where £ Z?) play the role of 7.

Matching the local gradient with a superposition of
simple waves of the abave type uniquely defines the decom-
position, precisely as in 1D, eq. (1.1.a).

In one dimension there is only one degree of freedom
per wave, namely its strength a*. The basis consists of
3 independent eigenvectors, which means that in total 3
strengths have to be found. On the other hand, the space
derivative of the flux has 3 components, The flux deriva-
tives can therefore be uniguely matched to this basis of
eigenvectors.

In two dimensions each simple wave has two degrees
of freedom, namely its strength o* and its propagation di-
rection 8*. Now the basis consists of 4 independent eigen-
vectors, so in total 4 strengths and 4 angles have to be
found. The space derivative of the flux has now 4 com-
ponents, while the derivatives are in z and y direction.
Again the flow derivatives can be matched to this basis of 4
eigenvectors. The complex algebra which comes out of this
matching process can be considerably reduced by adding
two acoustic waves, in which case some of the strengths
and angles have to be specified a priori. This option has
been taken by Roe'2? in his 6 wave model, where by phys-
ical reasoning some of the directions are fixed. The choice
of waves for what Roe called model B, is :

(1) One entropy wave with unknown direction %, and in-
tensity S, : two unknowns.

(2) A shear wave with unknown strength 5. traveling in
the direction perpendicular to the streamlines.

(3) Four mutually perpendicular acoustic waves, contribut-
ing five unknowns : one direction # and four strengths

o5, 1= 1,4.

The choice of the direction of the shear wave leaves some
room for discussion. Comparing the linearized speeds (2.20)
with the characteristic speeds (2.7) both approaches lead to
the same shear wave treatment if the shearwave direction in
the 6 wave model is selected parallel with the pressure gra-
dient direction (1)), This was proposed by De Palma et
al'® (model C) and decouples the shear wave from the pres-
sure disturbances. Model C shows indeed improved perfor-
mance compared to model B (see section 5).

It is clear that many other wave models may be pro-
posed, based on physical reasoning, and it is likely that
more performant models will come cut of ongoing research
in this field. In any case, superposing a number of waves
to match the gradients leads to

(2.22)

After substituiion in the flux divergence one obtains ex-
presston (2.2), which can also be written as

OF | 9G _
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because of the equivalence (2.19).

3. Multidimensienal linearization with property U

The second step in a multidimensional generalization
of Roe’s approximate Riemann solver is the construction of
a discrele counterpart of the wave decomposition (2.1) or
(2.2}, to be called the flux residual or flux balance split-
ter, by analogy to the fiux difference splitter in 1), Such
a discrete form is obtained after integrating (2.1) or (2.2)
over a cell. The LHS then becomes a flux integration in
conservation form, whereas the RHS should decompose it



in linearized scalar wave contributions. An essential ingre-
dient in this proces is the use of a conservative linearization
procedure®

It will be shown that a consistent conservative discreti-
sation can easily be obtained starting from the condition
that U varies linearly over the cell. In one dimension a cell
is simply a line element. Given the value of the unknown U
at the cell interfaces, the solution can be represented by a
piecewise linear function in between. The two dimensional
cells having the property of linearly varying unknowns are
trinngles, and in three dimensions tetrahedra, with the un-
knowns given al the vertices. This representaiton is identi-
cal to standard linear finite element conventions.

The aim now is to write multidimensional generaliza-
tions for the discrete form of the gradient of the unknowns
as given in the previous section, and of the divergence of the
flux on a triangle. In other words, eqs. (2.1) or (2.2), de-
pending on the choice of the wave model, has Lo be writien
in a form similar to eqs. {1.5) and (1.6). The linearization
has to satisfy the two dimensional equivalent of Property
U (egs. (1.11), (1.12) and (1.13) ).

Let us first define the discrete derivative of a variable
over a triangle as the average:

- 1 N 1
V _ V N dS =L -’dl
9= 5 / q(z,y) o f grit

with S the arca of the tnangle.

(3.1)

Only for lincar space

vatiation of ¢, this leads to the simple formula (see section

4):

= 1 &
Vg = EZ 1iGi

i~

(3.2)

where n; is the scaled inward normal opposite to vertex i
with value ¢;.

we can write

£ ffac

At this point it is evident why the choice of linearly varying
unknown U over the cell is made : for a linearly varying
U, the gradient VU is constant over the cell, and can he
taken out of the integration in the RHS of eq. (3.3}

For the derivative %“
(')F U

nT

== dS

(3.3)

F‘ ?U
which enables us to define a linearized Jacobian
_ 1
AUy, Up, Uy) ?[/A(U}ds (3.5)
hla

with U;, Uz, Uy the values of U at the vertices of the tri-
angle, Hence, merely assuming linear variation of U leads
to an exact evaluation of the flux contour integral over
a triangle, provided eq. (3.5} can be integrated analyti-
cally, thus satislying our requirement for Property U. Two-
dimensional extensions of eqs. (1.13) and (1.141) are ful-
filleel, while the two dimensional generalization of eq. (1.11)
is written as :

o

L _au
V.F= Aa—U BQ— (3.6)
X By

where B is obtained in a similar way as A.

The straightforward cheice of taking the conservative
variables as independent linearly varying unknowns ts not
the best to be made. Due to the fact that A(U) and B{U)
are strongly nonlinear in U, the integration needed in (3.5)
is hopelessly cumbersome to compute.

A much more eonvenient choice is the parameter veclor
Z = (71,22,23,20)" = /p(l,u,v,H)7, defined by Roe'”
The reason is that each component of U, F and G 1s merely
a bilinear function of the components of Z, and as a con-
sequence aU, g—% = Az and gz- = Bz are just lincar
functions in the components of Therefore, integration
over the triangle reduces to taking the arithmetic mean,

e.g.:
yJ EI;//TAZ(Z)ds —?——) AT
(3.7)

and similarly Bz = Bz(Z), where Z is a 2D gencralization
of the Roe average'”
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Primitive variables V in the state Z is given by
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(3.9)

Tl @

Note that the multidimensional conservative lincariza.
tion depends on all unknowns U in the cell. ‘This is in
contrast with the linearization used in the dimension by di
mension generalization, where only the values adjacent to
a cell interface are used. Also the use of triangles is crncial
for the simplicity in the above reasoning.

Given linear varialion of Z, we define the lincarized
Jacohian in conservative variables, A, sueh that:

IF(Z) GU
[f, Totas Af[ T s
S sy Ou
')Z. (3.10)
— s
= A — d5| =
[//93 A7 } i
while at the same time
OF(Z YA
f M2 s 7, % s, (3.11)
S 8.’1’,‘ T

The matrix Mz(Z) = @%—%g) needed in (3.10) is again a

linear function of Z. It is given as®!



22! 0 0 0
Z* 2! 0 0
Mz(Z) = (3.12)
z* 0 2! 0
1 1__%_1;,2 l;_lza 1y
Hence, its integration over the triangle is given by
- 1 —
My = — / MAZYLS = My(Z) (3.13)
St JSsy

Substituting in (3.10) and identification with (3.11) leads
to

A Mz=4Az andsimilarly B .Mgz= By (3.14)

An important consequence is the following : since A- Mz(Z)

= Az(Z), one has

~ OF
z=7 U Z=Z

A= AxZ) M;\(Z) = 9F 92 = AMZ)
(3.15)

This means that consistent averages are now easily obtained
for any of the matrices, For example, for the primitive

variable V = (p,u,»,p)” 3%, it is easy to check that
22! 0 0 0
_ A 1
av (z*)? 2! 0 0
8z 2 1
L 0 i ]
Yzl =¥l y-1.s -1
g Y v 4

(3.16)

Hence, the consistent compuiation of the derivatives vV
in primitive variables is given by :

TV v+ V/pH]

(3.17)
where 7,%,7 and H are given by (3.9). Clearly, these gradi-
ents are consistent in the sense that if p, u, v or p are con-
stant over the cell, then their gradient is zero (note that p =

- 2, 2
X 5 lp[H C 2} ¥_1). Further, they are defined constant
aver a cell since the gradients of the parameter variable in

the RHS are constants, In this way, the residual {3.6) can
be expressed in any variable, e.g. in 'V :

oF 96 BV BV
6:1" + By AV'E:;- + ngy— {3.18)
where é’_{/ has to be computed from (3.17), and
- oF — -  0G
= —(V 3.1¢
Av BV(V) , By 3V( ) (3.19)

It should be well realized that the gradients in the LHS
of eq. (3.17) are evaluated in the way of eq. (3.1). How-
ever, one cannot use eq. (3.2} since the primitive vari-
ables do not vary linearly over the triangle following the
choice of the parameter vector as independent variable. 1f
we look at the 1D expression for Au for simplicity, writing
out the 1D counterpart of eq. [3.17) for Au reveals that

Au= € . (up —u). The term § = JPLPR appearing in
the difference is the Roe average density, which is distinctly
different from the averaged density appearing in eg. (1.10).
In fact, the average f is an average which is mainly used
to evaluate expressions like A(pu) in terms of arbitrary dif-
ferences Ap == pp — pr. and Au = ug — ug rather than in
terms of Ap and Awu. In either one of the conventions, the
result locks very similar :

——

A(pu)-pAu{-uAp*—pE + 3 Ap

where ¢ = % .
3.1 Conservative linearization applied to the char-
acteristic decomposition.

It is now straightforward to apply the results from the
preceding section to the decomposition described in section
2.1. Indeed, one can evaluate the strengths (eq. 2.8) as :

AT

ak = :\—-_.—E.VW (3.20)
where: e _A

YWk = FVU (3.21)
while the coupling term $ of eq. (2.10) is evaluated from:

~~ 4 L

S T y Qk I‘k (322)

k=1

with C’ﬁ obtained from (2.6c), using the linearized variables
and the gradienfs in primitive variables (eq. (3.17)). The
final result is a conservative splitting of the flux balance
over a triangle of the form

6F , 99
ﬂTFndl f/ =X )d.S’

3.2 Conservative linearization applied to 6 wave mod-
els.

4
o [zmk N s}

k=1
(3.23)

The basic equation matching the wave strengths with
the gradients® is performed in primitive variables 'V
(py 1,0, )" using :

— S
vV = L ok pk (3.24)
1
Here, the LHS is given by eq. (3.17), where v are the

right cigenvectors in primitive variables, linearized using
the parameter variable average.

Once the angles and the strengths are obtained from
the matching (3.24), the conservative flux balance is ob-
tained from:

j/ BF 3G) dS = St Z NF ok ok

(3.25)



which can as well be written as, eq. (2.2) :

IF  9G S ET,
(25 a5y SR
Sr k=1
or
aF  8G T S, =
rETY s = 8 EVWE pk 3.27
//ST(& ay)( Z (3.27)
where o "
6W" =~ a*n
v (3.28)

Nk (Xk . iR)RE

It is remarkable that in the numerical implementation, con-
servative fluxes are never estimated. Indeed, because of the
conservative linearization 1t 1s sufficient to compute direcily
each of the terms in the RHS, and to distribute them to the
vertices of the trizangles using one of the scalar distribution
schemes discussed in the next section.

Even more, it is not necessary to compute the residual
in conscrvative variables as in eqs. (3.25) - (3.27}. One can
use any quasilinear form of the Euler equations, e.g. using
V = (p,u,v,p)” as dependent variable :

ov -8V - AV
A By 0

(3.29)
where A and B are the jacobians of the Euler equations
taking V as the independent varable.

In this variable, A and B have a very simple form®,
and so have the eigenvectors ¥,
The residual in the quasilinear form is then computed

as

OV Y ] R
/:/Sr (}15:; 71‘851—;) dS = Sr Z k ok pk

and the npdating will be done in primitive variable V. This

(3.30}

has actually not been implemented for the numerical results
presented in section 5, but it will certainly improve the
efficiency of the approach.

4. Scalar advection schemes.

The first two steps of the multi-dimensional general-
ization of Roe’s approximate Riemann solver | sections 2
and 3, resulted in the representation of the flux divergence
or restdual over a cell as the superposition of contributions
with known speed and orientation. In the characteristic de-
composition mnethod we have 4 characteristic contributions
with known orientation, together with a term representing
pure diffusion, which can be handled with a central dis-
cretization. Alternatively, in the 6 wave models we have
just 6 waves with given speed, strength and orientation.
Using a conservative linearization procedure, the discrete
formulation of these waves has been found in terms of the
unknowns at the vertices of a triangular ccll. The upwind
discretization of the convective terms in the splitting there-
fore only has to deal with each component seperately, gov.

erned by a linear scalar advection equation, e.g. eq. (2.5)
for the characteristic decomposition or eq. (2.15) for the 6
wave model, which taking into acconnt eq. (2.19) can be
written as

5 A
—6T-+)"‘-VW’°::0 k1,6

where by construction of the linearization

BUR v L P (4.2)

As a result of the representation as a sum of waves, the
numerical behaviour of the discretized system is completey
governed by the schemes for the two-dimensional scalar
wave equation, concerning accuracy, convergence, stabil-
ity and monotonicity. This explains the increased interest
m the solution of the scalar advection equation. Any in-
perfection in the scalar schemes will show up in the Euler
results, and we may not expect the results for the system of
equalions to be betier than the performance for the scalar
equation. In the results section, some elementary test cases
show that the solution of the system is of abouf the same
quality as for the scalar wave equation in the case of model
C decomposition.

A general theory of scalar advection schemes is pre-
sented in a separate paper at this conference?, based on
the pioneering work?! which was later elaborated®425  In
the present section we confine ourselves to a description of
the two residual distribution schemes used for the computa-
tions presented in section 5. The first scheme is the optimal
linear positive scheme on a compact stencil composed of the
vertices of all triangles meeting at a given meshpoini. It has
becn proven that such a linear positive scheme js at most
first order accurate in space. Therefore a second nonlinear
variant has been developed which is both positive and sec-
ond order accurate in space (for a homogencous advection
equation), very similar to the nonlinear TVD schemes in
one dimension.

4.1. Preliminaries

Consider the numerical solution of the two-dimensianal
scalar adveclion equation

W, + A VW = 0 (4.3)

where ) is a constant vector in the 2D plane. The mesh is

taken as an arbiirary triangulation of the domain., Over a

typical triangle T with vertices V;, V%, Vi, and edges K, Fs,

s (see fig. 2), the solution is represented as piecewise
linear. The integral of W, over element T' will be

f j W, dz dy = / f X-VW dr dy - jﬁ WX dn
Sy S5y arT

4.4)
Here 87" is the boundary and §¢ the arca of T, and G:(mss’
theorem has been used. Note that di is the inward nor-
mal to an element of the boundary. Since W varics linearly
within each triangle, and hence along each side, {1.4) be-
comes




1 ¢ . 1 v L
br = (Wit Wo)X-diy 4 o(Wa 4 Wo)X -5t

(4.5)

.

1 T
+ ';z'(Wa + Wl)’\ 1T

where 1) is the inward normal to £; scaled with the length
of E;, and so on. Rearranging, one obtains '

(4.6)

where the last change is possible because for any triangle,

Ay o+ Ay + oy o= 0 (4.7)

Fig. 2. Notation to describe a general triangle with edges
F1, vertices Vi and normals 7, scaled with the length of E;.

Note that if X7, is positive, then flow enters T' through
F;, and vice versa. Because of (4.7), we can write many
alternative formulae for ¢r. Some of these are

-+

P

by = — 3 (W, - W) (W — W3)
e 5.k
A znz(w - W) - 2"3(w3 AT
; ﬁ)"””’(w3 W) - A '2”‘ (W — Wy)

The existence of these alternatives will prove useful. An
alternative route into these results would have heen the
interesting identity {cfr. eg. {3.2))

3
25rVW = Y W (1.9)
1

The natural analogue of the scalar distribution scheme
in one dimension as discussed in the introduction would
appear to be the following. Tor each triangle in turn carry
out, for £ = 1,2, 3, the following three replacements,

SWi -s §W, + ol Atdy (4.10)

where §; is the area that weights W; in the integration
of W. It will be one-third the total area of the triangles
having ¢ as a vertex, commonly known as the median dual
cell around i, see fig. 3. It can easily be shown 212425 that
(4.10) is a conservative scheme, provided

3 .
doal =1 VT (4.11)
1

All schemes discussed will satis{y this condition.

Fig. 3. Median dual cell around vertex 1,

iIf a given triangle sends only contributions to its own
vertices (which is the only choice considered in this work),
the schemes have a compact stencil for a given meshpoint
i, which contains at most the vertices of all triangles with
common vertex ¢. This restriction is, moreover, an aid to
efficient coding. After assembling the contributions from
all triangles T" meeting in £, we obtain the scheme

Al o '
L D I (4.12)
T
oar
I‘Vin+l - Wrin - _E_;M_Z”l] 5 J W’T, (4[3)
] rIv j':l

with T3, T», and T3 the vertices of T and ﬁ';‘r the normal
oppusite to vertex T} in triangle T.

¥

Additional to constraint (4.11) for a conservalive scheme
we consider the following two design criteria : '

Property P : Positivity

1

Positivity?® means that every new value W/ can be

writien as a convex combination of old values :

wpt :Z‘ W with Veg = 0, {4.14)
k

while 3" ex = 1 for consistency. It guarantees a maximum
principle for the discrete steady state solutinn thug prehibit-
ing the occurrence of new extrema and huposing stability
on the explicit scheme (4.13).

As far as we know, this condition has never been put
forward in the finite element context. In the finite differ-



ence and finite volume context it is well known and exten-
sively used to design discontinuity capturing high resolution
schemes, even on unstructured grids. A stronger condition
but easier to verify is local positivity by which it is re-
quired that the contribution of each triangle separately is

positive?4.

Property LP : Linearity Preservation

By this we require that the scheme preserves the exact
steady state solution whenever this is a linear function of
the space coordinates = and y, for any arbitrary triangu-
lation of the domain. Since the condition considers only
the steady state, it is an accuracy requirement on the space
discretization only.

In the context of linear finite elements property LP is
an obvious requirement, but since our methods originate
from a different approach it is not automatically enforced,
as will be seen in the following. It includes consistency in
space defined as preservation of an exact constant steady
state. Indeed, there is a strong relation hetween the no-
tion of constancy preservation and first order accuracy of
finite difference space discretizations on regular grids at one
hand, and linearity preservation versus second order accu-
racy on the other hand. In fact this equivalence is the basis
for the well known MUSCL interpretation of upwind differ-
encing on regular grids and it has been shown that schemes
satis{ying LP are second order on a uniform Cartesian grid,
at least for the homogeneous advection equation.

2425 that linear schemes (¢ con-

It has been shown in
stant in eq. (4.14)) cannot be positive and linearity preserv-
ing at the same time, thus generalizing Godunov's theorem
on the incompatibility between second order accuracy and
monotonicity preservation. Hence, to combine both prop-
erties P and LP, one has to look for nonlinear schemes,
precisely as in 1D with the TVD schemes. Before intro-
ducing 2 nonlinear scheme which satisfies both properties

P and LP, we discuss the optimal linear scheme.

4.2. The optimal linear scheme satisfying property
P {positivity)

The scheme is called the N-scheme, the nomenclature
of Sidilkover®” for schemes on structured grids. For a trian-
gle with one inflow side (fig. 4), with downstream vertex 3,
the straightforward choice is to send the entire fluctuation
to the downstream node 3, giving of - of = 0,0l - 1
and for the updating of node 3 due to triangle T

At X A P .
W3n+1 = W] — 9_3 _2_1([,}r] - W) + _,,:?i(ﬂ’z — W3}

(4.15)
where the form (4.8) has been used. Since both A - and
X7, are negative, this leads to a locally positive scheme
under the condition

53

At < o
X iy

(4.16)

o3

On the other hand, this update is linearity preserving as
well, since the updating vanishes for an exact linear solu-
tion. Hence for one inflow side triangles, the one target
distribution to the downstream node satisfies both P and
LP2, and it is the optimal choice?*.

10
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Fig. 4. Examples of a triangle with cither one or two inflow

sides.
(2) : X-fiy > 0,X i < 0,373 <0
(b): X-fiy > 0,X 7y > 0,X 73 <0

Consider now the second case of a two inflow side trian-
gle and suppose that two sides, say F|, E; are both inflow
sides (fig. 4). The upwind philosophy suggests that no sig-
nal is sent to ¥3. In®*2% it i5 then shown that the following
update from triangle T is optimal :

—

Ay

S W = 5 W~ A (WP — W)
L (4.17)
A +7lg I’V;

SQIV2n+1 = Sszn - At[ 9 (

- W)

In constructing this scheme, we have again used the
alternative expression (4.8). Local positivity of the scheme
(4.17) is obtained, taking into account that both X -7, and

e

A - 7y are positive coefficients, if the timestep is limited by

Al < min

(4.18)

A less restrictive condition for global positivity is ob-
tained by taking into account the coefficients of Wp for all
triangles T meeting at P leading to

Sp
Y max (0,1 A7)

Of all linear positive schemes, the scheme (4.15), (4.17)
is the one which allows the maximum timestep and has
the most narrow stencil (hence its name N-scheme where
N stands for Narrow). In many cases, namely if only 3
triangles contribute to a given vertex, it leads to a 3-point
stencil.

Therefore it is not surprising that when applied to a
Cartesian grid triangulated by tracing the diagonals such

At

[Fa

(4.19)

that their projection on X is maximized, the N-scheme be-
comes identical to the optimal most compact linear pos-
itive scheme on a structured Cartesian grid, having a 3
point stencil and known as the streamline upwind scheme
of Rice and Schnipke®®. Sidilkover®™ renamed this scheme
as the N-scheme, explaining our present nomenclature on
unstructured grids. The scheme on a structured grid is well
known to be first order accurate in space, confirming our

findings that the N-scheme (as well as any other lincar posi-

tive scheme) is not linearity preserving. When applied with

\,__..'



the "wrong” choice of the diagonals, the N-scheme becomes
identical to regular dimensionally split first order upwind-
ing, which is again the most compact 3-point stencil for
that choice of the diagonal,

The N-scheme is also closely related to the work of
Hughes et al?® in the development of Petrov-Galerkin finite-
element methods. They also found it necessary to distin-
guish between cases with one or two inflow sides, and gave
a neat geometric construction that clarifies (4.17). The
velocity X is to be regarded, as in fig. 5, as the sum of
components parallel to F, and F,,

(4.20)

Y,

Fig. 5. The effect of convection speed vector X as a sum of
. its components along sides 1 and 2.

The fluctuation due to Aj, is (cfr. 4.8)

1, . 1
¢ = *E(M AWy - W) — ”2“()\1 g ) (W — W)
= (R )W W) (1.21)
= (AW - Wy)
and similarly the fluctuation due to Xy is
o,
¢y = (W - W) (4.22)

Now the whole of ¢; can be sent to V}, because for X , only
F7 is an inflow side, and the whole of ¢ can be sent to V.

Of course, the main drawback of the N scheme is that
it does not preserve a linear steady state solution (property
LP) as can be casily verified from eq. (4.17) : For an exact
linear steady state, the sum of the two split parts adds to
zero, but each of the parts seperately can be non-zero, thus
sending an update which destroys the exact linear solution
at the next time step.

4.3. The NN scheme.
Linear schemes satisfying property LP are important

from the viewpoint of accuracy, although they lack the

crucial property of positivity (P). Both central and up-
wind schemes belong to this class, with among the central
schemes the well known Petrov Galerkin and Streamline
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Diffusion (or Least Squares) Petrov Galerkin Finite Ele-
ment schemes, for which a-Lax-Wendrov derivation has be
given?*. The numerical diffusion obtained with all these
schemes is comparable, and as could be expected much
lower than for any of the linear positive schemes we have de-
veloped. However, these schemes cannot be retained since
they do not preserve monotonic profiles over discontinuities.

Instead, we consider a nonlinear scheme, called the NN
scheme (Nonlinear Narrow), which is indeed positive and
linearity preserving. Because of our generalized Godunov
theorem, the scheme has necessarily to be nonlinear.

Consider again the linear N-scheme. For triangles with
one inflow side, the updating (4.15) satisfies both property
P and LP. So in this case there is no need at all to turn to
a nonlinear scheme.

On the other hand, for a two inflow side triangle (fig.
4) with downstream vertices 1 and 2, the updating is given
in eq. (4.17), and the scheme is positive under condition
(4.18). However, this npdating is not linearity preserving as
mentioned before in the previous section: for this to be true,
both terms 2FL (W — W*)] and 282(WJ — W) should
vanish for an exact linear solution, while in reality only the
sum of the two do vanish on a general triangulation.

To cure the problem, we may rccall (section 2} that
the residual is not changed if one replaces by by the gradient
dependent convection speed eq.(2.18), given by

vWw

e (4.23)

Jo=(X-A)y@ , A=

where 7 is 8 unit vector parallel with YW evaluated with
¢q. (4.9). Indeed, one easily verifies that
3. oUW =X UW (4.24)

Also, one may add a component parallel to the isolines of
W without changing the residual (fig. 6). For

X=X 4 80— X,) (4.25)
with 8 an arbitrary real, onc still has
YOUW = X VW (4.26)

W:Ct

W:Ct

Fig. 6. The Auctuation remains uncbanged if X* is chosen
along the line perpendicujar to Xa



However, using X, or 3* instead of A makes the scheme non-
linear, even for a linear equation. Choosing X, instead of A
in the distribution makes the scheme linearity preserving,
because

v
St VW2

VW
Vw2
vanishes for a steady state which is a linear function of z

and y. Two cases may occur : if )« -fi; and X, -7y are both
positive, the resulting scheme

A =(2-YW)- (4.27)

-

An
2

oWt = W AT Dlown _gry)

(4.28)

S Wt = S;wr At[ (W” - W)

is positive as well (for At small enough). This situation
corresponds to a location of Xn pointing inside the triangle
in the same way as A (fig. 6). Towever, in the case that A,
points ontside the triangle, either An-iiy oF Xn-fig is negative
and the resulting scheme is no longer positive. In fig. 7
this situation is depicted, for /\,L 1, < 0 and A g > 0.
Recalling that any X* defined in {4.25) can be used, we may
select the smallest X* which makes the scheme positive,
which is the vector with the direction along the edge E,
(fig. 7). Since this makes the scheme single target to node
2, X* - iy being zero, the scheme is indeed positive for At
small enough.

Fig. 7. Choice of convection direction for the distribution
scheme if Ay, points outside the triangle,

Summarizing, the NN scheme which is both positive
and linearity preserving, is given by the following algorithm.
1) if the triangle has one inflow side according to A, send
the residual to the unique downstream vertex.
2) if the triangle is two target according to X, say with
nodes 1 and 2, Lompnte b
o if both A, -7, > 0 and Xn
target formula (4.28).
else if /\u fi; < 0and X, 73 > 0 send the residual
to node 2.
o c¢lse send the residual to node 1

> 0 use the two
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4.4 Application to the Euler equations.

Application of the above schemes to the Euler equa-
tions is very easy, considering each of the splitting parts as
a scalar residual AF-VW* multiplied with right eigenvector

r*.

N-scheme.

Considering the characteristic decomposition model,
the 4 scalar contributions are distributed according to the
N-scheme using the speeds @, %, ¥+ ¢5?) and @ ¢k, The
source term S, eq. (2.10) is distributed either by sending
equal parts to the 3 nodes or by distributing Q*r® according
to the speed Xk,

For the 6 wave model, the 6 scalar contributions are
again distributed according to the speeds X* correqpondmg
to each of the 6 waves, namely @, %, 7 + cA and v i
where 71 is the propagation direction of the first acoustic

ey,

wave, and 7, is perpendicular to 7.

NN-scheme.

I the NN-scheme, additional 'gradient dependent’ ad-
vection speeds are computed for the two-target distribu-
tions.

For the 4 wave model ,these are given by eq. (2.18).

For the 6 wave models these 'gradient dependent’ speeds
are simply the original speeds resulting from the model as

given in eq. (2.17).

From the above discussion it appears that the two
approaches have become very similar with respect to the
entropy and shear wave, the main difference being in the
treatment of the acoustic waves.

Nevertheless, no results could be obtained with the 4
wave model, except for the supersonic oblique shock re-
flection problem. On the other hand, the 6 wave models,
in particular model C has proven to be quite robust for all
test cases considered so far, although some problems remain
with respect to the solid wall boundary conditions.

5 Application to structured grids.

The linearization and spatial discretization described
in this paper are based on triangulation of the domain,
making use of a uniquely defined gradicnt of unknowns over
a triangle. The most obvicus domain of applications is
therefore the area of unstructured solvers as indicated by
the title of this paper.

For structured solvers however, the multidimensional
generalization can be used as well. It is sufficient to di-
vide a quadrilateral by one of its diagonals triangles, to
be able to apply the method described so far. Question
is of tourse, which diagonal has to be inserted to split the
quadrilateral in to two triangles 7 On a scalar equation it
can be shown that taking the diagonal closest to the advee-
tion direction and applying the N scheme corresponds to
the Rice and Schnipke scheme®® on a Cartesian grid, while
taking the other diagonal reduces to the much more diffu-
sive standard finite volume npwinding on the quadrilaleral
cells. This behaviour is confirmed by numerical tests on
scalar convection equations.



For 2 system of equations it would be ideal to take the
optimal diagona!l for each of the waves involved in model-
ing the flow. In doing so, no clear procedure is available
yet to ensure conservation. We can for the moment only be
conservative if we take the same diagonal for a given quadri-
lateral for all 4 or 6 waves. The choice of diagonal will be
made by the wave with the largest strength a*, We must
pay attention to the normalization of the eigenvectors, since
the choice of r* in the evaluation of the residual is sensitive
with respect to scaling. It turns out that the eigenvectors
as defined by Roe permit the use of the strength without
scaling.

Some results on a structured grid with optimization of
the underlying triangles appear in section 5. For compari-
son, the choice of diagonal can be made independent of the

solution. To avoid bias due to a certain choice of diago-

nal, diagonals can be arranged to alternate going from one
quadrilateral to another. Some results on those isotropic
grids appear slso in section 5.

5. Results

The purpose of the present section is to show evidence
that the methodology described in this paper represents
a viable alternative for the well established dimensionally
split (or locally 1D) TVD upwind solvers, especially on
unstructured grids composed of triangles. For comparison
with structured grid results, we use the approach of divid-
ing quadrilaterals along one of their diagonals as described
in section 4.5.

Many of the results shown cannot yet compete with
standard TVD results, namely for subsonic and transonic
flow test cases. For supersonic flow on the other hand, the
present results indicate that shocks or contact discontinu-
ities not aligned with the grid are resolved in fewer cells
with the present approach, when compared with standard
solvers on the same structured grid. For upwind solvers
it is the subsonic flow which represents the most critical
regime, due to the fact that the domain of dependence is
ommnidirectional, while the discretization only picks oul a
discrete number of privileged directions. Therefore, mul-
tidimenstonal upwind solvers have it very difficult to treat
this situation correctly, and subsonic results have only been
obtained after the consistent conservative linearization was
introduced, (section 3.). Even with the correct hneariza-
tion, no subsonic results have been obtained for the charac-
teristic decomposition (section 2.1), for reasons which are
not well understood at the moment. One of the problems
might be the non uniqueness problem in determining the di-
rection £(?) in the decomposition or the incompleteness of
the decoupling. Further investigation in this area is needed.

Another problem area to be further investigated is the
implementation of consistent boundary conditions, espe-
cinlly along solid walls. It appears that there is a loss of
conservation in the layer of triangles along the solid walls.
Taking the symmetry boundary condition or doubling the
oblique shock problem by adding the mirror problem to
avoid a solid wall boundary condition gave no improvement.

The following test cases are considered -

a) Reflection of an oblique shock on a flat plate, with an
incoming Mach number of 2.9 and an incident shock
angle of 297, '

b) Channel flow with a 4% bump with inlet Mach number
of 1.4 (mainly supersonic).

¢) Channel flow with a 4.2% bump for inlet Mach num-
bers of 0.6 {c1, fully subsonic) and 0.85 (¢2, transonic).

Some of the test cases have also been run with a stan-
dard state of the art grid aligned finite volume Roe flux dif-
ference splitter by M. Manna®? on o quadrilateral grid, us-
ing minmod limited MUSCL extrapolation and x-schemes
with & = 1/3 in a cell-centered formulation.

The unstructured grids were generated with an advanc-
ing front method combined with Delauney triangulation.
The user only specifies the point distribution at the bound-
aries. This program was written by J.D. Miiller at VKI
and Ann Arbour. The resulting grids can be highly reg-
ular, many of the triangles being equilateral and about of
the same size if the boundary point distribution is smooth
enough. For the plotting on the unstructured grid use was

- made of software written by P. Vankeirshilck.

The oblique shock test case has been chosen to make
comparisons between different wave models, discretization
schemes, and for the structured solver the choice of under-
lying triangles.

Results on an unstructured grid are shown in fig. 8
where the solution in the form of iso Mach lines is super-
imposed on the grid. For this computation the NN scheme
with model C has been used. The corresponding iso entropy
lines are given in fig. 9. The spurious entropy generation
near the inlet and at the reflection point are also common
to standard structured solvers. In figs. 10 and 11 solutions
on structured grids are shown, first for the NN scheme with

" model C and optimal choice of the triangles {(fg. 10) and

then the solution obtained with the standard dimensional
solver (fig. 11} on the 61 x 21 points grid of fig. 12a. The
shock capturing for the new scheme secems slightly better
than for the standard solver. Comparison between other
combinations of wave models and discretizations is shown
in fig. 13 a-g in the form of a cut through the domain at
Y =0.5and Y = 0 for the Mach number. In order of ap-
pearance they are : the results on the unstructured grid,
maodel C, NN scheme {a) ; model C with the NN scheme on
the structured grid with optimal choice of the diagonal (b)
; The standard solver on the same grid (c) ; the character-

~ istic decomposition method with the NN scheme (d) on the

isotropic grid of fig. 12b ; model B with the NN scheme on
the iotropic grid {e) ; model C with the NN scheme on the
isotropic grid (f} and model C with the N scheme on the
isotropic grid (g).

The characteristic model (d) and the 6 wave model C

(f) lead to monotonic results of comparable quality. How-

13

ever, the solution with the § wave model B (e) is not mono-
tonic. This is not in contradiction with the use of a positive
scheme for each wave separately, but indicates that model
B is not capable of extracting the physically important up-
winding directions in an oblique shock. Therefore, we will
not consider model B for the further comparisons. The
difference between the NN scheme compared with the N
scheme for model C follows from comparing (f) with (g).
The improvernent obtained with the NN scheme is as ex-
pected from experience with scalar test cases?*.



Computations on a grid with optimal diagonals using
model C with the NN scheme (b) compared to standard
grid aligned Roe flux difference splitting on the quadrilat-
eral grid {c) indicate that the shocks are captured in fewer
cells using the present approach. These solutions are of
comparable quality of the results obtained on the unstruc-
tured grid (a). Fig. 14 shows the convergence for fig. 13b.

For the supersonic channel, the iso Mach lines of fig.
15 using the NN scheme with model C are again super-
imposed on an almost uniform unstructured grid of 1977
vertices. The bump is shifted a bit towards the entry of
the channel with respect to the standard configuration to
catch a bit of the fourth reflected shock. On the structured
grid using optimal diagonals, NN scheme and model C {fig.
16), results are compared with the standard grid aligned
Roe flux difference splitter (fig. 17) on a grid of 63 x 33
points shown in fig. 18. The multidimensional solver shows
slightly better definition of the first reflected shock than the
standard solver. This is confirned by a cut of the value of
the Mach number on the lower wall for the three cases (fig.

19).

Considering next the transonic GAMM channel, on the
structured 80 x 33 grid of fig. 20, a comparison is made be-
tween the present approach (model C, NN scheme, optimal
diagonals) (fig. 21) and grid aligned Roe FDS on the same
mesh, using the quadrilaterals only {fig. 22). The bound-
ary conditions for both solvers differ, which may explain
the difference of the Mach number in the two solutions.
The performance is not as good as for the fully supersonic
flow test cases, although the essential phenomena of the
flow appear in the solution, including a noticable reexpan-
sion after the shock. The iso Mach lines are less smooth,
an observation confirmed by a cut over the lower wall (fig.
23).

Finally, a preliminar result for the iso Mach lines in a
fully subsonic flow in the same channel is shown in fig. 24,
obtained with model C and the NN scheme. The deteri-
oration of the quality of the solution already appareni in
fig. 21 has progressed, resulting in a solution which lacks
the symmetry expected for a fully subsonic flow. The iso
pressure lines {fig. 25) however are much more symmetric,
which is confirmed by a cut of the pressure on the lower
wall (fig. 26}). Again the boundary treatment gives Mach
numbers slightly lower than those for for the structured
dimensional solver. The unstructured grid of fig. 27 con-
tained 3092 vertices with a less regular shape due to the
increased density on the lower wall. The code does not suf-
fer from a Jack of robustness however. Local timestepping
with a CFL of 0.8 has always been possible with model ('
and the NN scheme, but convergence tends to stagnate at
a level where the density updates are about four orders of
magnitude lower than the density itself.

A general conclusion from the numerical results shown
is that at present the method described performs well for su-
personic flows, where the numerical results are comparable
to- or better than those from standard solvers. The influ-
ence of the wave model is large. Model B lacks monotonic-
ity, while the characteristic decomposition method fails to
work under subsonic conditions. Focussing on model C with
the NN scheme, shock resolution is good, and sometimes

better than what can be obtained with standard solvers.
The solutions for lower Mach numbers are of preliminary
character.

8. Conclusion.

In this paper we have presented a coherent overview
of the concepts needed to generalize Roe’s one-dimensional
approximate Riemann solver to multidimensional flow in a
way which does not rely on dimensional splitting. Find-
ing the relevant waves and applying a correct upwind dis-
cretization turns out to be considerably more difficult than
in 1D. On the other hand, a conservative parameter-vector
linearization in 2D and 3D is conceptually similar to the
1D development and poses no problems, provided that tri-
angular cells are used in 2D, and tetrahedra in 3D.

At this development stage the computational results
are still {o be considered preliminar, in particular for sub-
sonic flow problems. Evidently, more work remains to be
done on wave modeling and boundary conditions, while
the linearization and scalar distribution schemes are sat-
isfactory from the theoretical point of view. Neverthcless,
model C shows improvements in shock capturing compared
to standard solvers, especially on unstructured grids. On
structured grids, the gain is present in case flow phenomena
are not aligned with the grid.

Additional to theoretical considerations and the gain
in' performance shown here compared to standard 2D and
3D solvers, the decomposition in scalar waves opens also
the way for local characteristic timestepping®® and optimat
multistage timestepping for efficient multigrid smoot-
hing®!. The compact stencils may prove convenicnt for
massive parallelization and implicit schemes.
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Fig. 8. Oblique shock reflection. Iso Mach lines superimposed on the unstructured grid for model C' with
the NN scheme. Increment = .05 The grid has 1235 vertices.

v

Fig. 10. Oblique shock reflection on structured grid. Iso Mach lines for model ' with the NN scheme and
optimal choice of the diagonals. Increment = .05 The grid has 61 x 21 = 1281 vertices.

Fig. 11. Oblique shock reflection on structured grid. Iso Mach lines for a grid aligned cell centered fuite
volume Roe flux difference splitter with x = %, Increment .05 The grid has 62 x 22 — 1364 unknowns.
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Fig. 12. Parts of the grids used for the standard solver (a), and of the isotropic grid for the multidimensional
solver (b).
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Fig. 13 (a)-(d). Value of the Mach number along lines ¥ = 0.5 and Y = 0 for (a) model C with the NN
scheme on the unstructured grid, (b) mode! C with the NN scheme on the structured grid using optimal
dingonals, (c} the standard solver on the structured grid, (d) the characteristic decomposition used with the
NN scheme on the isotropic grid.
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. ' Fig. 13 (¢)-{g). Value of the Mach number along lines

= 0.5 and Y = 0 for {e) model B with the NN scheme
on the isotropic grid, (f) model C with the NN scheme on
the isotropic grid, (g) model C with the N scheme on the
isotropic grid.
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Fig. 14. Convergence history for the solution of fig. 13 b
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Fig. 15. Supersonic channel flow with inlet Mach number of 1.4. Isolines of the Mach number with an
increment of 0.05 for Model C with the NN scheme superimposed on the unstructured grid.
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Fig. 16. As fig. 15, but on the structured grid of fig. 18 with the optimal choice of the diagonal.

Fig. 17. Iso Mach fines for the standard solver on the grid of fig. 18.



Fig. 18.

14
o 1
. ge==z== g g
0.0

1.5

P oo oo aassseon

1o|

20

Fig. 19. The value of the Mach number on the lower wall for the supersonic channel flow for the solutions of

figs. 15-17 respectively in (a)-(c).

The structured grid for the supersonic channel flow test case.
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ed grid for the transonic channel flow test case.
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Fig. 21.

Transonic channel Row with inlet Mach number of 0.85. Isolines of the Mach number with an

increment of 0.05 for Model C with the NN scheme on the structured grid of fig. 20 with the optimal rhnrrr
of the diagonal.
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Iig. 23. The value of the Mach number on the lower wall for the transonic channel flow for the solutions of
figs. 21 and 22 respectively in {a} and {b).
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Fig. 24. Subsonic channel flow with.iniet Mach number of 0.6. Iso lines of the Mach number with an
increment of 0.01 for Model C with the NN scheme on the unstructured grid of fig. 27.
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Fig. 25. As fig. 24 ; Iso lines for the pressure with an increment of 1000. (P 10%).
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Fig. 26. The value of the pressure on the lower wall for the subsonic channel flow for the multidimensional
solver (fig. 25) and the standard solver on a 80 x 33 grid clustered towards the center, respectively in {a)

and (b),
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Irig. 27. Unstructured grid with 3092 vertices used for the computations of fig, 24, 25 and 26(a).



