
A Discontinuous Galerkin Method for Diffusion

Based on Recovery

Bram van Leer
∗

and Marcus Lo
†

University of Michigan, Ann Arbor, MI 48105-2140, USA

Marc van Raalte
‡

Centrum voor Wiskunde and Informatica, Kruislaan 413, 1090 GB Amsterdam, The Netherlands

We present the details of the recovery-based DG method for 2-D diffusion problems on

unstructured grids. In the recovery approach the diffusive fluxes are based on a smooth,

locally recovered solution that in the weak sense is indistinguishable from the discontinuous

discrete solution. This eliminates the introduction of ad hoc penalty or coupling terms found

in traditional DG methods. Crucial is the choice of the proper basis for recovery of the

smooth solution on the union of two elements. Some results on accuracy, stability and the

range of eigenvalues are given, together with numerical solutions on rectangular grids.

I. Introduction

At the 17th AIAA Computational Fluid Dynamics Conference, Toronto, 2005, we presented the “recovery

method” for computing the diffusive fluxes in a Discontinuous Galerkin (DG) scheme.1 In this approach

the fluxes are based on a smooth, locally recovered solution that in the weak sense is indistinguishable

from the discontinuous discrete solution. This eliminates the introduction of ad hoc penalty or coupling

terms found in traditional DG methods; recovery automatically generates a string of such terms, each with

its optimal coefficient.1–3 Analysis and applications of the recovery method were restricted to the case of

one space dimension. It was found that the order of accuracy increased under p-refinement as 2p+1, hence

exponentially, and that steady solutions became exact in all but the highest two derivatives.

In the present paper the recovery principle is used to develop a full-blown two-dimensional, basis-

independent DG method for diffusion. In the part devoted to analysis we present evidence of stability

and accuracy in special cases; a general stability proof and a general accuracy estimate are still missing.

However, the natural simplicity and the observed accuracy and robustness of recovery-based methods lead

us to believe these have the potential to replace the traditional DG diffusion methods.
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II. Integrating the diffusion equation

We shall develop the DG recovery method for the 2-D diffusion equation

Ut = D(Uxx + Uyy) + s(x, y), (1)

where D is the positive diffusion coefficient, assumed to be constant in space and time, and s(x, y) represents

a source. To obtain the update formulas for element Ωj (triangle or quadrilateral) we begin by multiplying

Eqn. (1) with a sequence of test functions (vk)j , k = 1, ..., K, that are polynomial on Ωj and zero elsewhere.

In a Galerkin method these also serve as the basis for the element-wise continuous approximate solution u.

We then integrate the equation over the interior of the element and integrate by parts twice, yielding

∫ ∫

Ωj

(vk)jutdΩ = D

∫

∂Ωj

{(vk)j n̂ · ∇u − u n̂ · ∇(vk)j}d∂Ω

+ D

∫ ∫

Ωj

u∇ · ∇(vk)jdΩ +

∫ ∫

Ωj

(vk)js dΩ, k = 1, ..., K. (2)

The second integration by parts, an obvious choice for a second-order PDE, is not standard in DG methods,

but is crucial to achieving optimal accuracy; we shall explain this toward the end of this section. For the

sake of comparison we also give the formula resulting after integrating by parts once:

∫ ∫

Ωj

(vk)jutdΩ = D

∫

∂Ωj

(vk)j n̂ · ∇u d∂Ω

− D

∫ ∫

Ωj

∇u · ∇(vk)jdΩ +

∫ ∫

Ωj

(vk)js dΩ, k = 1, ..., K. (3)

Eqn. (2) is not usable as a DG scheme: the boundary integral is not defined because the solution is

discontinuous at the element boundary. If we assume the boundary integral to be evaluated on the inner

side of the boundary, the element will not be coupled to its neighbors, rendering the space-time scheme

inconsistent. In Van Leer and Nomura1 we demonstrated that coupling to a neighboring element Ωj+1 can

be achieved naturally by recovering from the discontinuous discrete solution a smooth solution on the union

of the element and its neighbor. The recovered solution is expressed in terms of basis functions (wk)j,j+1,

k = 1, ..., 2K, that are polynomial on the union of the two elements and zero elsewhere; this basis is twice as

large as the basis used within a single element, as it must accommodate information from two elements. By

demanding that the recovered solution “tests out the same” (see Eqs. (5, 6) below) as the original solution

on both elements, we make the recovered solution, in the weak sense, indistinguishable from the original

solution. Figure 1 illustrates the recovery procedure in one dimension.

Using the recovered solution, denoted by f , to calculate the boundary integral, we achieve that Eqn. (2)

becomes a valid DG scheme:

∫ ∫

Ωj

(vk)jutdΩ = D

∫

∂Ω

{(vk)j n̂ · ∇f − f n̂ · ∇(vk)j}d∂Ω

+ D

∫

Ωj

u∇ · ∇(vk)jdΩ +

∫ ∫

Ωj

(vk)js dΩ, k = 1, ..., K. (4)
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Figure 1. Recovery in one dimension, K=2. Shown are, from left to right, the original quartic initial values U (dashed),

the piecewise linear discretization u (bold) together with U, and the cubic recovered distribution f (thin) together with

u and U, on the adjacent intervals (−1, 0) and (0, 1). All three distributions yield the same value when taking their inner

product with either test function on either interval, making them indistinguishable in the weak sense.

We must emphasize here that the values of f and its normal derivative at the element boundary follow from

3 or 4 separate recovery procedures, each centered on a different element face. Following are the formulas

for recovering the smooth solution fj,j+1 on the union of neighboring elements Ωj and Ωj+1:

∫ ∫

Ωj

(vk)jfj,j+1dΩ =

∫ ∫

Ωj

(vk)ju dΩ, k = 1, ..., K, (5)

∫ ∫

Ωj+1

(vk)j+1fj,j+1dΩ =

∫ ∫

Ωj+1

(vk)j+1u dΩ, k = 1, ..., K. (6)

Expanding u in terms of the basis functions vk on both elements,

u(x, y) =

K
∑

k=1

(ak)j(vk(x, y))j , (x, y) ∈ Ωj , (7)

u(x, y) =
K

∑

k=1

(ak)j+1(vk(x, y))j+1, (x, y) ∈ Ωj+1, (8)

and fj,j+1 in terms of the basis functions wk ,

(f(x, y))j,j+1 =
2K
∑

k=1

(bk)j,j+1(wk(x, y))j,j+1, (x, y) ∈ Ωj

⋃

Ωj+1, (9)

and inserting these into Eqs. (5,6) yields the following linear system for the coefficients defining f :

Rj,j+1bj.j+1 = Mj,j+1aj.j+1, (10)

aj,j+1 = ((a1)j , ..., ((aK)j , (a1)j+1, ..., (aK)j+1)
T

, (11)

bj,j+1 = ((b1)j,j+1, ..., ((b2K)j,j+1)
T

, (12)
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(Mkl)j,j+1 =



































∫ ∫

Ωj
(vk)j(vl)jdΩ, k = 1, ..., K, l = 1, ..., K,

0, k = 1, ..., K, l = K + 1, ..., 2K,

0, k = K + 1, ..., 2K, l = 1, ..., K,

∫ ∫

Ωj+1
(vk−K)j+1(vl−K)j+1dΩ, k = K + 1, ..., 2K, l = K + 1, ..., 2K,

(13)

(Rkl)j,j+1 =











∫ ∫

Ωj
(vk)j(wl)j,j+1dΩ, k = 1, ..., K, l = 1, ..., 2K,

∫ ∫

Ωj+1
(vk−K)j+1(wl)j,j+1dΩ, k = K + 1, ..., 2K, l = 1, ..., 2K.

(14)

Thus, at each element face we find f from

b = R−1Ma = Qa; (15)

the element mass matrix M, the recovery mass matrix R and the recovery operator Q can be computed and

stored at the start of a computation.

How to construct the basis {wk}j,j+1 defined on Ωj

⋃

Ωj+1 is not trivial and will be addressed in the

next section.

At this point it is fitting to clarify our earlier choice of integrating by parts twice rather than once. The

extra integration has two effects. To begin with, it doubles the number of boundary terms, a liability for

traditional DG methods but of no concern when recovery is used. On the contrary, boundary terms obtained

from the recovered solution are an asset: they have superior accuracy, being based on 2K rather than K

basis functions.

In addition, the second integration changes the interior integral on the right-hand side of the scheme.

The interior integral in Eqn. (2) is preferable over the one in Eqn. (3), because the numerical solution u itself,

rather than its gradient, appears. The weight ∇·∇vk , can be expressed in terms of the {vk}, thus the integral

is a linear combination of the integrals appearing on the right-hand side of the recovery equations (5,6)). In

consequence, it makes no difference whether u or any one of the recovered solutions is used to evaluate the

interior integral. This is not true for the interior integral in Eqn. (3); obtaining ∇u by differentiating the

discrete solution causes a loss of accuracya.

Finally, we have found that the use of Eqn. (2) leads to an almost exact solution to simple steady-state

problems; this will be discussed further in Sec. VI.

It is worth observing that there is a superficial similarity between our recovery procedure and Brezzi’s4

lifting operation. In both procedures a function is generated on neighboring elements using information

from the discontinuous solution. In Brezzi’s procedure, the only information used is the solution jump at the

interface; in our recovery procedure all data defining the solution on adjacent elements are used. Specifically,

the jumps and averages of higher derivatives contribute to f . Brezzi’s operator vanishes if the solution does

not jump, just as does its predecessor, Arnold’s5 interior penalty term. Brezzi constructed the operator in

order to prove stability of the scheme in the DG norm; the recovery procedure is motivated by accuracy as

well as stability. We hope that stability in the DG norm will eventually be proven.

aThe loss could be prevented by replacing ∇u with ∇f̄ , where f̄ is an average of the recovered solutions used for the element

under consideration. But avoiding the integration of ∇u is far more practical.
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III. The polynomial basis for recovery

In our paper on 1-D recovery we used Legendre polynomials for the basis {vk} in each interval, because of

their orthogonality, and non-orthogonal Taylor polynomials for {wk} on the union of two intervals, because

orthogonality relations on the double interval do not come into play. Obviously, any bona fide basis will do

on either domain.

From the point of view of numerical analysis the ideal basis for the double interval results from applying

the recovery procedure to all 2K original basis functions used on the separate intervals; we call this the re-

covery basis. If the original basis is orthonormal on each interval, and the recovery basis is made orthonormal

with respect to the original basis, then the expansion of the smooth recovered solution in terms of the smooth

recovery basis is identical to the expansion of the discontinuous solution in terms of the discontinuous basis:

their coefficients are identical. For details the reader is referred to Van Raalte and Van Leer.2, 3 Whether

the use of the recovery basis leads to computational savings is not yet clear, but it greatly simplifies analysis.

We used it to our advantage when deriving the expansion in bilinear terms (“penalty terms”) equivalent to

a recovery-based method.2, 3

In two dimensions a new phenomenon enters: directionality. This makes the choice of the recovery basis

nontrivial; a naive choice may fail. For example, assume that in each element a linear basis is used; in

element Ωj we might choose

{1, x − xj , y − yj}, (16)

where (xj , yj) is, say, the center of mass of the element. The basis for fj,j+1, defined on Ωj

⋃

Ωj+1, will

consist of 6 polynomials; an obvious choice would be the full quadratic basis

{1, x − xj,j+1, y − yj,j+1, (x − xj,j+1)
2, (x − xj,j+1)(y − yj,j+1), y − yj,j+1)

2}, (17)

where (xj,j+1, yj,j+1) is, say, the midpoint of the interface. This choice, it turns out, makes the system (5,6)

singular.

To understand this, consider first obtaining f by strong interpolation, viz., by assuming f , fx and fy

are given in both (xj , yj) and (xj+1, yj+1); see Figure 2. In this case it quickly becomes clear there is an

embedded 1-D interpolation problem requiring a cubic basis. Introduce a rotated coordinate system (ξ, η)

with the ξ-axis through (xj , yj) and (xj+1, yj+1); from fx and fy we obtain fξ and fη in both interpolation

points. To interpolate f along the ξ-axis we already need 4 basis functions, e. g.,

1, ξ, ξ2, ξ3; (18)

this leaves two basis functions, e. g.,

η, ξη, (19)

to be used for matching fη in the two points.

With weak interpolation as used in the recovery procedure (5,6), the ξ-axis must be chosen normal to the

interface and the η-axis along it; see Figure 2. Otherwise, the argument goes the sameb.

bAssume the solution on both elements is constant in the η-direction, then the 1-D recovery procedure of Van Leer and
Nomura1 reappears.
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Figure 2. Strong and weak interpolation. (a) Strong interpolation using data in two points; (b) weak interpolation

using inner products with test functions on two elements. In both cases the basis for the interpolant is best expressed

in a rotated coordinate system (ξ, η).

If the basis {vk} is complete up to order p, requiring K = 1
2 (p + 1)(p + 2), the recovery basis {wk} will

contain 2K = (p + 1)(p + 2) basis functions. The embedded 1-D problem requires a basis of order 2p + 1,

or 2p + 2 basis functions, in terms of ξ alone. In the remaining (p − 1)(p + 2) basis functions, powers of η

occur; for every factor η the maximum allowed power of ξ drops by 2. An example with p = 3, K = 10

is given in Table 1. That the accuracy of the recovery is greatest in the ξ-direction is a desirable property,

1 x x2 x3 1 ξ ξ2 ξ3 ξ4 ξ5 ξ6 ξ7

y yx yx2 [yx3] η ξη ξ2η ξ3η ξ4η ξ5η [ξ6η] [ξ7η]

y2 y2x [y2x2] [y2x3] η2 ξη2 ξ2η2 ξ3η2 [ξ4η2] [ξ5η2] [ξ6η2] [ξ7η2]

y3 [y3x] [y3x2] [y3x3] η3 ξη3 [ξ2η3] [ξ3η3] [ξ4η3] [ξ5η3] [ξ6η3] [ξ7η3]

Table 1. Example of solution and recovery bases for p = 3, K = 10. Left: Complete cubic basis for use in a single element

(non-bracketed entries) and related tensor-product basis (all entries); x and y represent local Cartesian coordinates.

Right: incomplete 7th-degree basis used for the recovered solution on the union of two elements (non-bracketed entries)

and tensor-product basis (all entries); ξ and η are coordinates normal to and aligned with the interface, respectively.

since computing the diffusive flux requires differentiation of f in that direction.

Once the basis functions have been determined in the rotated frame, they may, for other purposes, be

expressed again in the original coordinate system.

We wish to point out that, on a grid of quadrilaterals, tensor-product bases may be used to represent

the solution on each element as well as the recovered function on a pair of elements.

6 of 12

American Institute of Aeronautics and Astronautics



IV. Stability

In one dimension we have shown analytically for p = 1 that the eigenvalues of the DG operator approxi-

mating Uxx are nonpositive; we have checked it numerically up to p = 5. A general stability proof, based on

classical finite-element arguments, is still being sought.

We note that 1-D stability implies 2-D stability if tensor-product bases are used, as can be done on

quadrilateral meshes.

The range of the eigenvalues increases with the order p of the basis; a conservative estimate is:

max
k

|λ|k ≤ 4(p + 1)2. (20)

This is comparable to the eigenvalue range found for most DG diffusion schemes. With regard to stability

it shows that p-refinement, which introduces p + 1 independent solution parameters per mesh, is equivalent

to dividing the mesh-size by p + 1.

In two dimensions we have numerically obtained the operator’s eigenvalues for p = 1 on a grid of right

triangles; these are nonnegative. Stencil and and spectrum are shown in Figure 3. So far, all our 2-

D numerical experiments on rectangular grids have been stable for p up to 2 and a variety of boundary

procedures. We do expect that a general stabilty proof of recovery-based schemes on an unstructured

triangular mesh will eventually be found.

Figure 3. Stability on a triangular grid, p = 1. Left: stencil of right triangles used in the Fourier analysis of the

recovery-based scheme. Right: eigenvalues in the complex plane.

V. Boundary procedures

When an element face lies on the domain boundary, the recovery procedure must be modified. Assume

we use a complete basis of order p in the element. Along the boundary only η varies, so the number of basis

functions needed to accomodate the boundary data is only p+1, making the total number of basis functions

available for recovery 1
2 (p + 1)(p + 4). Table 2 lists the basis functions for recovery at a boundary for p = 3,

as in Table 1.

The loss of information in the direction normal to the boundary reduces the order of accuracy of the

boundary scheme with respect to that of the interior scheme. This can be avoided rather easily on a
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1 1 x x2 x3 1 ξ ξ2 ξ3 ξ4

η y xy x2y [x3y] η ξη ξ2η ξ3η [ξ4η]

η2 y2 xy2 [x2y2] [x3y2] η2 ξη2 ξ2η2 [ξ3η2] [ξ4η2]

η3 y3 [xy3] [x2y3] [x3y3] η3 ξη3 [ξ2η3] [ξ3η3] [ξ4η3]

Table 2. Example of boundary, element and recovery bases for p = 3. Left: Cubic basis needed for representing the

boundary data; ξ and η are coordinates normal to and aligned with the boundary, respectively. Middle: Complete

cubic basis for use in a single element (non-bracketed entries) and related tensor-product basis (all entries); x and y

represent local Cartesian coordinates. Right: incomplete 4th-degree basis used for the recovered solution on the union

of domain boundary and element (non-bracketed entries), and related tensor-product basis (all entries).

quadrilateral mesh by supplementing information from the next inward element; see Figure 4. When adding

information from this element one must start with the lowest-order basis functions. Table 3 shows which

functions must be contributed by the farthest element for p = 3.

1 1 x x2 x3 1 ξ ξ2

η y xy x2y η ξη

η2 y2 xy2 η2

η3 y3

Table 3. Example of boundary, element and recovery bases for p = 3. Left: Cubic basis needed for representing the

boundary data; ξ and η are coordinates normal to and aligned with the boundary, respectively. Middle: Complete

cubic basis for use in the element abutting the boundary; x and y represent local Cartesian coordinates. Right: Basis

functions in the next cell used to make recovery at a domain boundary as accurate as at an interior boundary.

The 2-D results in Sec. VII on rectangular meshes were obtained with the boundary treatment of Figure

4.

Figure 4. Recovery at the boundary, p = 1. Indicated are the basis functions used at the boundary, in the element

abutting the boundary and the next element inward.

The same technique can be used on a triangular grid, as long as the adjacent elements providing the

extra information extend sufficiently far inward. We have no experience yet with this implementation.

If no extra information is provided from inward cells, the boundary scheme may trail the interior scheme
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by one or more in order of accuracy. The error shows up undiluted in the L∞ error norm, but is watered

down in the L2 norm, and even more in the L1 norm; see Van Leer and Nomura.1 Note that the accuracy

at the boundary will still be greater than in traditional DG diffusion methods.

The above boundary procedure, whether involving one or more interior elements, creates some complex-

conjugate eigenvalues; these may increase the spread of the eigenvalues, thus reducing the stability range.

VI. Accuracy

In one dimension, numerical results suggest the order of accuracy of recovery-based schemes is 2p+1, that

is, exponential. In addition we found that any steady solutions obtained were “almost” exact, starting from

p = 2. We shall explain this below.

Assume we wish to solve a boundary-value problem for the 1-D Poisson equation

Duxx + s(x, y) = 0, x ∈ (0, 1), (21)

with a Dirichlet boundary condition at x = 0 and a Neumannc condition at x = 1. For the solution we use

an orthogonal polynomial basis of order p, with each vk, k = 1, ..., p + 1, a polynomial of degree k − 1. We

may find the solution to this problem by marching the associated time-dependent problem to a steady state.

The DG equations describing the steady state read

D {vkfx − f(vk)x}|
x

j+ 1
2

x
j− 1

2

+ D

∫

Ωj

u(vk)xxdx +

∫

Ωj

vksdx = 0, k = 1, ..., p + 1. (22)

Consider the first equation (k = 1, v1 a constant); it reduces to

D v1fx|
x

j+ 1
2

x
j− 1

2

+

∫

Ωj

v1sdx = 0. (23)

This equation is in conservation form; it relates the change of the diffusive flux fx across a mesh to the source-

term integral over the mesh. Since fx is known exactly at the Neumann boundary, and the source-term

integral can be computed exactly, we may sweep through the mesh starting from the Neumann boundary,

and one by one obtain all face values of fx exactly.

In the next equation (k = 2, v2 linear) the values of f itself appear:

D {v2fx − f(v2)x}|
x

j+ 1
2

x
j− 1

2

+

∫

Ωj

v2sdx = 0. (24)

Thus the values of fx and f at the two mesh faces are coupled to a weighted source integral; the latter

may again be computed exactly. With all face values of fx already known, and the value of f known at the

Dirichlet boundary, we may now sweep through the mesh starting from that boundary, and obtain one by

one all face values of f exactly.

In the third equation (k = 3, v3 quadratic) the interior integral

D

∫

Ωj

u(v2)xxdx (25)

cThe argument goes through as well for a pure Dirichlet problem, but is more involved.
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kicks in. With (v3)xx a constant, this integral is proportional to the mesh average ūj of the solution (≡ a1).

Since all face values of fx and f are known by now, and the weighted source integral can be computed

exactly, the third equation yields the exact value of ūj , for all j.

In each of the following equations, k = 4, ..., p + 1, the interior integral includes the next higher moment

of the solution on the mesh, equivalent to the (k − 3)rd solution derivative, and its value is found exactly.

Only the (p−1)st and pth moment get no special equation; these will carry numerical errors of order 2p+1−1

and 2p+1 − 2, respectively.

Figure 5 shows the mesh convergence of solution properties for a 1-D Poisson problem, with p = 2. The

error norms of the solution coefficients a3 ≡ ∆2u and a2 ≡ ∆u indicate 6th- and 7th-order accuracy; for

a1 ≡ ū we would expect 8th-order accuracy, but the errors are computer-zero for all mesh-sizes.

Figure 5. Mesh convergence for 1-D Poisson problem; p = 2. Left: convergence with mesh size of error norms of

solution coefficients ∆2u and ∆u. Right: convergence of ū.

While the above property of (p − 2)-exactness may never play a role in practical problems, it shows the

distinguished pedigree of the recovery method. Note that in the proof we have not made use of the details

of recovery; what matters is: (1) a unique, differentiable function replaces the discontinuous solution at each

element face; (2) the DG equations used are those resulting from integration by parts twice.

Note that if the source integral is evaluated with a numerical error, the solution coefficents will inherit

that error.

Exponential accuracy (p−2)-exactness are is lost in two dimensions. Numerical solutions with p = 1 and

2 to 2-D Poisson problems on rectangular domains and meshes indicate the order of accuracy of the recovery

method is 2(p + 1). This relates to the order of accuracy of the recovered solution in the direction normal

to the element boundary: the number of solution parameters doubles.

10 of 12

American Institute of Aeronautics and Astronautics



VII. Numerical results

Figure 6 shows properties of the solution to the following 2-D Poisson problem on [0, 1]× [0, 1]:

U(x, 0) =
1

2
cos(2πx), (26)

U(x, 1) =
1

2
cos(2πx), (27)

U(0, y) =
1

2
cos(2πy), (28)

U(1, y) =
1

2
cos(2πy), (29)

s(x, y) = 2π2{cos(2πx) + cos(2πy)} (30)

The exact solution of the problem is

U(x, y) =
1

2
{cos(2πx) + cos(2πy) − 1}. (31)

The numerical solution was taken to be piecewise linear (p = 1, K = 3) on square meshes, and obtained by

marching the associated unsteady problem till convergence. The boundary treatment was as in Figure 4.

Figure 6, left plot, shows that the piecewise linear recovery-based DG method is 4th-order accurate, even

when measured in the maximum norm. The solution coefficients and errors shown on the right are for the

16 × 16 mesh. It is worth mentioning that the numerical solution exhibits all 4 symmetry axes of the exact

solution.

Figure 6. Mesh convergence for 2-D Poisson problem; p = 1. Left: convergence with mesh size of error norms of the

mesh average a1 ≡ ū. Right: computed solution coefficients a1 (average value), a2 (∼ average x-derivative) and a3 (∼

average y-derivative); exact solution coefficients; coefficient errors.

An intriguing aspect of the 2-D recovery method for p = 1 is that the solution gradient is calculated with

higher precision than the solution average: the coefficients a2 and a3 show 5th-order mesh convergence in

the L1 norm. For p = 2 the method behaves again as expected, with 6th-, 5th- and 4th-order accuracy for

the solution average, gradient and second derivatives, respectively.
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VIII. Conclusions and perspective

We have presented the details of the recovery-based DG method for 2-D diffusion problems, including

the treatment of domain boundaries. The information provided is sufficient for programming the recovery

scheme on an unstructured triangular grid. We expect the recovery scheme to remain stable and accurate

on such a grid, although general proofs of stability and accuracy are missing.

Numerical experiments on a 2-D rectangular grid show stability and suggest an order of accuracy of

2(p + 1); we expect the order to degrade on an unstructured grid. We further have shown stability of the

method for p = 1 on a structured triangular grid.

We are currently gathering experience with including the recovery method in DG codes for linear and

nonlinear advection-diffusion.
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