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Abstract 

In a previous paper, we addressed the problem of 
choosing constant values of altitude, speed, and angle of 
attack such that the plane change during hypersonic flight 
is maximized for a fixed amount of propellant 
consumption. In the present paper. the assumptions of 
constant speed and angle of attack are removed. 
Necessary conditions for solutions to the resulting optimal 
control problem are derived, and the general 
characteristics of the optimal controls are described using 
the domain of maneuverability. Numerical solutions are 
obtained for several specific cases. We find that, under 
the condition of constant altitude flight. it is not in general 
optimum to fly at constant angle of attack. The reduction 
in plane change capability resulting from a constant angle 
of attack program increases as the the range over which 
the flight takes place increases. On the other hand, the 
optimum speed is nearly constant. 

Introduction 

Future spacecraft operating in the vicinity of the Earth 
may use the atmosphere as an aid in changing orbits. The 
pioneering work of ~ondonl  established that significant 
propellant savings are achievable, for certain orbital 
transfers. by employing a combination of aerodynamic 
force and propulsive force, rather than relying on 
propulsive force alone. One example of an "aeroassisted 
transfer" is the synergetic plane change, in which 
aerodynamic force is used in part to change the orbital 
plane of a spacecraft. Two possible flight modes for the 
atmospheric portion of a synergetic plane change are 
aeroglide and aerocruise. Aeroglide implies that there is 
no thrusting. Aerocruise implies that there is thrusting within 
the atmosphere. Moreover, steady aerocruise implies 
that the component of thrust along the velocity vector is 
adjusted to cancel drag and thereby hold the velocity 
constant and that the vertical components of thrust and lift 
are used to maintain constant altitude. The lateral 
components of lift and thrust change the orbital plane. A 
previous study2 determined how the orbital plane 
changes during aerocruise and what values of the 
parameters, that define aerocruise, maximize the plane 
change. It was assumed that the angle of attack was 
constant, as were the altitude and velocity. Thus the 
optimization was of a parametric nature. While the 
consideration of constant angle of attack. constant 
velocity, constant altitude flight simplifies the 
mathematical analysis. there is no physical reason for 
insisting on this program. It may well be that larger plane 
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changes for a given amount of propellant are possible, if 
these parameters are allowed to vary. 

In the present paper, an intermediate case is 
considered, namely, constant altitude, variable velocity, 
and variable angle of attack flight. With this 
generalization, we are faced with a optimal control 
problem. The controls are taken to be the angle of attack. 
angle of bank, and thrust magnitude. The problem is to 
determine the control programs that maximize the plane 
change achieved for a given amount of propellant. Since 
the controls are bounded, the maximum principle is used 
to derive necessary conditions for the optimal controls. 
Based on the necessary conditions, a qualitative 
discussion of the types of optimal control solutions is given. 
In particular, the domain of maneuverability shows clearly 
the possible behaviors of the optimal bank angle. 
Numerical results are obtained for several specific cases. 

Constant Altitude Optimal Control Problem 

We shall consider the constant (high) altitude flight 
of a thrusting, lifting vehicle of mass m around the Earth. For 
the purpose of showing clearly the qualitative behavior of 
the optimal controls, a number of mathematically 
simplifying assumptions are made. The Earth is assumed 
to be nonrotating with a gravitational field and a stationary 
atmosphere that depend only on the radial distance from 
the center of the Earth. The trajectory variables ( r. 0,$,  V. 
y, v ) are defined in Fig. 1, where r is the radial 
distance, 8 is the longitude, $ is the latitude. V is the 
velocity magnitude, y is the flight path angle relative to 
the local hofbontal, and v is the heading angle relative 
to the local latitude line. We assume that the thrust is 

Fig. 1 State Variables and Bank Angle Defined with 
Respect to Inertial System OXYZ 
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aligned with the velocity vector V. Under these 
assumptions. the equations of motion for the vehicle are 

z = ~ s R c ~ ' / ~ ~ ~  

c = lsp ( g/R ) I f2  : dimensionless specific 
impulse 

R= cL / C; : normalized lift coefficient 
~ = T / m o g  : dimensionless thrust (5) 

d  r - -  - V sin y 
d t  

Z is proportional to the density p and hence it is a 
parameter defining the flight altitude. c ~ '  is the lift 
coefficient corresponding to the maximum lift-to-drag 
ratio. From the parabolic drag polar relation. we can 
calculate 

d  e - - -  V cosy cosy 

d t  r coso 

d  9 - V cosy siny - -  
d t  r 

CD*= 2 Cm : drag coefficient 
corresponding to the 
maximum lift-to-drag ratio 

d  r m v2 mV - = L coso - mg cosy + - 
d t  

cosy 
r 

: maximum lift-to-drag ratio 
d y  - L sin0 m V' mV---- 
d t  

- cosy cosy tan+ 
cosy r Since dy ldt = 0 .  we have the relation 

which expresses that the vertical component of the lift 
force is used to balance the weight minus the 
centrifugal force. Thus, the lift coefficient, or equivalently, 
the angle of attack, and bank angle controls are not 
independent. Using Eq. (61, we eliminate h in the equations 
of motion, leaving the choice of o as the sole means of 
controlling the aerodynamic force. 

By substiiuting the relations and parameters stated 
above into Eq. (1). we obtain the dimensionless state 
equations 

where T is the thrust, D is the drag force, L is the lift 
force. o is the bank angle relative to local vertical 
plane (see Fig.1). Isp is the specific impulse, and g is 
the gravitational acceleration. Consistent with the 
assumption of constant altitude flight, we have 

r = R = constant y = 0 

In addition, the gravitational acceleration is assumed to 
be constant. The dimensionless arc length s will replace 
the time as the independent variable, where 

d  e - cosy 

d  s coso 

d  $ - = siny 
d  s 

d  u - 2 T u z  - - - - -  ( 1  - u f , 1 2  

d  s P 2  2  2  
I 

E* ll z u cos o 

We shall assume a parabolic drag polar for the 
vehicle 

where CDO and K are assumed constant for hypersonic 
velocities. The following dimensionless variables are 
introduced 

The controls are the bank angle a and the 
dimensionless thrust 7 ,  subject to the inequality 
constraints 

and The variable u is a measure of the velocity magnitude. 
The variable p is the ratio of the actual mass to the 
initial mass. Also, we define the dimensionless 
parameters and controls 

-1 ( 1 - u ) p  
lo1 I cos ( 1 

'mu. 



d P  cosyr 
" = - p -  

d s e 2  cos 

dPU - puz 
2  P  P T 

--- ( 1-Ll 1 ,L2 

[ I -  2 2 2 1 ++tam-,Y--- 
d s  E*,L Z u cos o u  2 c u  

312 

d P  P u u Z  2 T P u  
U = -- ( 1-u )2 F2 

d s [ I -  2 2 2 
I + 

E* p2 Z u cos 0 p2 
(15) 

Because of the fact that dH/ds = aH/as = 0 and sf is 
free, we have the Hamiltonian integral 

Fig. 2 The Inclination Angle if 

At the initial time 

s=o, o=o, 4=0. v=o, p=1.  u=ug 
As a consequence of the assumed spherical symmetry. 
we have the integrals3 

At the final time 

sf = free, Bf = free, pf = given, uf = given (1 1) 

Since we want to maximize the inclination angle if (Fig. 
2). we use the performance index 

From the end condition that €+ is free, it follows thol 

With respect to the bank angle, the Hamiltonian is 
maximized when o = &om,, or at an interior point. The 
first order necessaly condition for an interior maximum is 

Analytic and Geometric Characterization 
of the Optimal Controls 

Introducing the adjoint variables (Po. Pa. Pus Pw P$. 
the Hamiltonian for the control problem is 

cos'q Pu u  z 
H = P -+ P  sinv- - [ I +  

( 1 - U > 2 , L 2  
e cow o 2 2  2  

I 
E ,L Z  u cos a 

which leads to 

(I3) This general formula is valid for all 6-arcs. C-arcs and 
S-arcs. For H to be a maximum at a particular bank 
angle satisfying Eq. (191, we must have 

Defining the switching function as 

the Hamiltonian as a function of z is maximized This requires that Pu > 0. 
according to the rules: It Is enlightening to discuss the optimal bank angle 

control using the domain of maneuverability. For this 
S > 0, 7 = zmax (Boosting-arc) purpose. we consider the reduced Hamiltonian 

If S= 0, then z=variable (Sustaining-arc) containing the bank angle 
S < 0, z=O (Coasting-arc) 

P ( 1 -u )  2 
The adjoint variables satisfy the following pu ( 1-u 1 P 1  

differential equations = -tan0 - ,. 
U E * Z U  

2  
COS 0 



We write it in the form of the dot product of two 
vectors 

where 

1 
n1 = tam Q = -  2 2 

cos 0 
Fig. 3 Domain of Maneuverability for the Bank Angle 

The chattering arc is a portion of a great circle, defined 
by the intersection of the plane defined by Eq. (27) and 
the sphere with radius R. The chatteringarc is 
encountered in the case of minimum time deceleration 

The control domain described by the terminus of the 
vector C2 is a parabola with equation (Fig. 3) 

control. 
Assuming a C-arc or an S-arc, with the last term in 

the Hamiltonian vanish in^, we can combine Eqs. (16)- 
At each instant, we consider the vector P. To maximize 
H, the optimal vector R must be selected such that its - 
projection onto P is maximized. If P is outside the angle 
A 1 0  A2 , the optimal bank angle is a = omax or o = - 

omax , according to whether P l  > 0 or P1 < 0 .  The rays 

(19) to obtain t h e f o ~ l o w i ~ ~  equation forthe optimal bank 
angle along these arcs 

0 A 1  and OA2 are respectively the perpendiculars to 
the tangents to the parabola at the points where o = - 
omax and a =  omax If the vector P is inside the angle 
A 1 0  A2. the optimal bank angle is an interior bank, at the 

where 

point where the tangent to the parabola is orthogonal 
to the vector P. The condition of orthogonality is 

and 

A = ( kcose + sin0 ) case 

B = (kcose+sine) cosv sine +(case-ksine)  sin^ (30) 

z2 c = -- ( 
[ 1+ ] ( k cose + sine ) cosg 

2 
P z2 u2 

Using the definitions, (22). we obtain the optimal law (19). 
It is clear that a necessary condition for an interior 
optimum bank angle is that P2 < 0, and hence Pu > 0. As 
a particular case, when Pu > 0 and P1 = 0, that is P,,, = 0, 
the bank angle passes through zero and reverses its 
direction. This will be the case frequently encountered 
in optimal constant altitude flight at very high altitude. 
Another interesting case of a bank reversal is the case 
where Pu < 0 ,  that is P2 > 0, and Pv= 0 In this case, the 
bank angle control is bang-bang; the bank angle 
changes from omax to -omax, or vice-versa. A singular 
case occurs, when Pu < 0 and P,,, = 0 for a finite time 
interval. This is the case of chattering bank control 
where the bank angle switches rapidly between -omax 
and Omax From the solution (17) for the adjoint P,,,, we 
have 

where 

is a constant to be determined. 
Along a sustaining-arc, which is a singular arc in the 

terminology of optimal control theory, we have. for a 
finite time interval. 

By taking the derivative of this equation, using the state 
and adjoint equations, we have Using Cartesian coordinates, with 

x = R co@ cos0 
y = R cose sine 
z = R sine 

P tan0 
&=-  

2 2 E* Z 2 2  u cos 2 (3 c 
6 (1-u)p2 [(u+3)+(1-u)-] 

U 

we have 



Substituting Eq. (19) into Eq.(33), we obtain the optimal 
bank angle control for the sustaining-arc "( - l2 [ A siny tan+ + ( k sine - cose ) cosu 1 

2w(AX-B) 

( 1-u ) -[(u+3) + ( 1-u)- 
2 

J " 1 (34) 
c and 

U 

There are always two solutions to Eq. (34): one positive 
and one negative. Going back to Eq. (19). because p 
and adjoint Pu are positive for an interior optimal bank 
angle, it follows that X should always have the same 
sign as the adjoint P,,,. Therefore, in numerical 
calculations, the sign of adjoint P,,, should always be 
checked, at each time, to ensure that the vehicle is 
banking in the correct direction. 

If we eliminate the bank control X between Eqs. 
(28) and (34). we have an equation relating the state 
variables along a sustaining arc 

In the 5-dimensional state space ( 0, $, v. u. p ), this 
equation represents a surface on which the sustaining 
arc lies. By taking the derivative of this equation and 
using the state equations (7) and the control law (34) 
for the bank angle, we obtain an equation for the 
variable thrust control 

where 

+(l-u)S]) [S- "( ) ( 6+ 1 )] 
z2 u2 

In this expression X = (1-u)tano/u is computed from Eq. 
(34) and we see that the variable thrust is function of 
the state variables and the as yet unspecified constant 
k=C2/C3. 

Application to Synergetic Plane Change 

We are now ready to consider a synergetic plane 
change. In such an orbital transfer, the vehicle deorbits 
and enters the atmosphere at supercircular velocity. In 
order for the formulation and results presented above to 
be applicable, we consider the atmospheric trajectory to 
be composed of descent. constant altitude. and ascent 
segments. During the initial segment, the vehicle 
descends to the cruise altitude. During the constant 
altitude segment, the plane of the orbit is changed. At the 
end of the constant altitude segment, the vehicle is 
boosted to the desired orbital altitude. A circulariiation 
burn at orbital attitude completes the transfer. This form of 
a synergetic plane change, in which there is a constant 
altitude segment. corresponds to the case in which a 
heating rate inequality constraint limits the penetration into 
the atmosphere. More general treatments of the 
synergetic plane change4s5 show that, when the 
unconstrained optimal trajectory violates the heating rate 
constraint, the constrained optimal trajectory has a finite 
segment along the constraint boundary. during which the 
altitude is approximately constant. 

Previous results2 have shown that the plane change 
is maximized, during constant altitude, constant velocity 
cruise, for a given amount of propellant, if the velocity is 
nearly circular. Thus, we expect that most of the optimal 
constant altitude segment will be a sustaining-arc. If the 
vehicle reaches the cruise altitude with supercircular 
velocity, the optimal trajectory will begin with a coasting- 
arc. If the velocity at the end of the sustaining-arc (when p 
= pf) is less than the prescribed final velocity. the optimal 
trajectory will end with a boosting-arc. 

These considerations lead us to consider initially 
the constant altitude segment as a pure sustaining-arc. 
Without any loss of generality, we can set the initial 
conditions to be 

Q=o,  € Q = @ = l + Q = O ,  m = 1  

from which it follows that 

Moreover, using the transversality condition at the final 
time, namely, 

Pg (sf) = sin* cos~ f  
Pv (sf) = COS* sinyrf 



and Eqs. (17) and (18). we obtain 

sin$f cowf k sine, - cose, 
- - 

cow, sinvf case, ( k cosef+ sine, ) 

from which it follows that 

Bf=O 

So. at both ends. Eq. (28) gives the relation 

Substituting (46) into the equation for the optimal bank 
angle control. Eq. (34). gives the relation to be satisfied 
at the two ends of the sustaining-arc 

By setting p = 1, we obtain a relation for computing the 
initial dimensionless velocity for the sustaining-arc 

Similarly, the equation for the final dimensionless 
velocity is 

We see that uo and uf are functions of the given 
parameters Z, c, and pf. Moreover. combining Eqs. (29). 
(41). (46). and (48) gives the initial bank angle for the 
sustaining-arc 

Eq. (48) shows that for high altitude cruise, corresponding 
to small Z, uo is nearly unity; hence, the initial bank 
angle is nearly 90". 

Determining the optimum controls for the sustaining- 
arc. although the constant k is all that remains to be 
determined, requires numerical computation. We select 
a reference altitude by selecting a value of Z, an engine 
characteristic by seclecting a value of c, and the 
vehicle's aerodynamic characteristics by selecting a 
value of the maximum lift-to-drag ratio E*. We choose 

which are the same values as used in Ref. 2. From the 
definition of Z (see Eq. 5). the value of Z selected 
corresponds to an altitude of about 75 km for a typical 
hypersonic vehicle, but it can be a higher altitude for a 
vehicle with lower wing loading mgg/S, or conversely. 
a lower attitude for a vehicle with higher wing loading. 
With these data, we compute the initial velocrty for the 
constant altitude sustaining-arc from Eq. (48) and obtain 
un = 0.996779. The integration of the state equations (7) 
can be performed using the initial condition (40). The 
bank angle control is given by Eq. (34); while, the thrust 
magnitude is given explicitly by Eq. (36). Furthermore. 
we can use Eq. (35) which is essentially the Hamittonian 
integral along a sustaining-arc to check the accuracy 
of the numerical integration. It should be noted that to 
avoid numerical error in the evaluation of the bank 
angle, due to the behavior of the terms (l-u )tono and (1- 
u)/coso when o-90°, we use the definition (29) to express 
these terms in terms of the control X, in the state 
equations (7) for the integration. 

The optimum thrust control 7 is known except for the 
arbitrary constant k. According to the necessary 
conditions, the constant k should be selected such that at 
the end of the sustaining-arc, where B=0. the prescribed 
final mass ratio pf is reached. However, this criterion can 
be satisfied by a countable infinity of k values; and the 
corresponding controls lead to either locally maximal or 
minimal values of the plane change. It remains to select 
the globally maximizing solution from the set of solutions 
that meet the necessary conditions. We examine this 
process, for the particular case under consideration, with 
the aid of Figs. 4-6. 

For the selected altitude, two trajectories. 
corresponding to k=1.0 and k=0.5, are plotted in the u-p 
plane in Fig. 4. (For positive k values, the vehicle begins 
turning in the leftward direction.) Note that the velocity 
oscillates as the mass decreases; but it is never far from 
circular velocity (u=l). The local minima in the velocity 
occur at the points where a trajectory touches the curve 
labelled "A=@. This curve has the following significance. 
Referring to Eq. 30, we see that A is equivalent to the adjoint 
P,,,. Eq. (19) indicates that the bank angle iszero when 
P,,,, or A, is zero. This occurs when the vehicle is near an 
apex of the osculating orbit and the bank angle is 
midway through a continuous, but quick, transition from 
+900 to -900 or vice-versa, i.e., midway through a bank 
reversal. For o = 0. we have X = 0; and consequently. Eq. 
(34) reduces to a relation between the dimensionless 
velocity u and the mass ratio p, at the bank reversal 
points, namely 

This relation gives rise to the curve labelled 'A=O". Thus. 
intersections of this curve and a trajectory Indicate the 
occurence of a bank reversal, as well as a local minimum 
In the velocity. 

As stated above, the constant k is selected such 
that, when B=0, the prescribed final mass ratio Is reached. 
We have also determined that B=O at the beginning of a 
sustaining-arc. Combining Eqs. (34) and (28). we obtain 

z2 l -u  f i  l ) X =  A ( - - - [ ( l + u ) + ( l - u ) -  B (-- 
C 2 2 P U 

f i  C I 1  
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Fig. 4 The Dimensionless Velocity u vs. Mass p History 
and Crossing Points ( Z = 0.080640) 

Fig. 5 The Variation of Plane Change i vs. Mass p 
(2=0.080640) 

Fig. 6 The Optimal Plane Change Angle i (2=0.080640) 

When B = 0 , A is not necessarily zero. Hence, we 
deduce that when B = 0, we have 

which is the same as Eq.(47). This relation between u and 
p corresponds to the curve labelled " B=O ' in Fig. 4. Any 
pure sustaining-arc should start and end on the "B=OU 
curve. For a long trajectory (corresponding to small pf), 
it may touch the "A=O curve a few times and cross the 
"B=0" curve a few times. For a short trajectory, however, 
it may not touch the "A=OM curve at all, i.e., there may 
be no bank reversals. 

In order to determine the value of k corresponding to 
the globally maximizing controls, we must consider the 
achieved plane change, which is our measure of 
performance. Fig. 5 shows the relation between the 
plane change i and the residual mass ratio p along the 
two trajectories k=l and k=0.5. For a given k value, we 
find that each crossing of the B=O curve in Fig. 4 
corresponds to either a peak or a valley in the 
corresponding curve in Fig. 5. Specifically, the odd 
numbered crossing points in the sequence (counting in 
the direction of decreasing mass ratio), i.e. 1, 3, 5. etc., 
correspond to local maxima. while the even 
numbered crossing points in the sequence, i.e. 2, 4, 6. 
etc., correspond to local minima. When k is larger than 
20, the first crossing point almost coincides with the 
initial point. For very large k, the trajectories are nearly 
the same. This is because the bank angle control, as 
given by Eq. (34 ,  does not depend on k and the only 
term in the expression for the thrust control containing k 



(refer to Eqs. (36)-(38)) is a homographic function of k 
and has the same asymptotic expression for large k. 

Now. we examine Fig. 5 to find the global 
maximum. For a small amount of fuel consumption (i.e., 
a large pf ), the first crossing point obviously 
corresponds to the optimum solution, but this is not 
necessarily true for a larger amount of fuel 
consumption. The curve labelled "1st-line" in Fig. 5 
represents the pair (pf, if) at the first crossing point. as a 
continuous function of k. We see that the k=l curve 
crosses the 1st-line, and moves above it, around pf = 

0.62. This suggests that the third crossing point may 
correspond to a larger plane change after some w . 

By plotting the 1st-line, the 3rd-line (which 
corresponds to the 3rd crossing point), and the 5th-line 
(see Fig. 61, the optimal crossing point for each value of pf 
is clearly seen. The 3rd-line crosses the 1st-line around 
pf = 0.67. Thus, when w is between 1 and 0.67, the first 
crossing point denotes the globally maximum solution; 
the corresponding k value uniquely defines the optimal 
controls. The 5th-line crosses the 3rd-line around pf = 

0.32; so. when pf is between 0.67 and 0.32, the third 
crossing point denotes the optimal solution. 

Fig. 6 is essentially the plot of the maximum plane 
change if versus the final mass ratio pf. The plot is 
continuous but its slope is discontinuous at the junction 
points of the different lines. This is because we have 
assumed that the optimal trajectory is a pure sustaining- 
arc. and consequently the final velocity, uf, is determined 
from Eq.60) and in general does not satisfy the prescribed 
end condition (1 1). If we require uf to be the same value for 
each trajectory. then if, as a function of pf, will have a 
continuous first derivative. If the specified common value 
of uf is higher than the value achieved on the pure 
sustaining-arc. for a particular trajectory, then a final 
boosting-arc is required. If the specified value of uf is 
lower. then a final coasting-arc is required. The 
transversality condition, to be satisfied at the final time 
is still Bf = 0, but as given by Eq.(45), rather than by 
Eq.(49) which was derived for a sustaining-arc. 

To illustrate the point made in the previous 
paragraph. we select a common value of uf = 0.95. Then 
for each specified W, we guess the value of k and 
integrate the equations for a pure sustaining-arc as 
before. When p attains pf with u > 0.95, the switch is 
made to coasting flight, i.e., to z = 0, but now with the 
bank control X obtained from Eq.(28). At the final 
velocity uf=0.95, the transversality condition (45) is 
checked. This procedure is repeated until the value of k 
that satisfies the transversality condition is found. Carrying 
out the computations, we find that the total plane change 
if is now higher as shown by the dashed line in Fig. 6; 
and there are no discontinuities in the slope. 

Similarly. the initial velocity for the sustaining-arc 
does not in general satisfy the prescribed initial condition 
(10). So it follows that a boosting-arc or a coasting-arc 
would preceed the sustaining-arc. 

We are now in a position to compare the sustaining- 
arc solution, in which the bank angle (or equivalently. the 
angle of attack) and the thrust are modulated. to the 
steady cruise solution, in which the angle of attack and the 
thrust are constant. We consider the same altitude as 
above, for which Z = 0.080640, and specify that pf = 0.6. 
The sustaining-arc solution gives a plane change of if = 
19.7"; the highest lift coefficient required is about h = 1.2. 
For the steady cruise case, the bank angle is given by 
the equilibrium condition (6); while, the thrust is set to 
cancel the drag. Solving the parametric optimization 
problem to obtain the optimal velocity and lift coefficient. 
we obtain the optimum values u = 0.998 and h = 1 .8. The 
bank angle increases from the initial value of 89.2" to 

the final value of 89.5". The time of flight is shorter. The 
resulting plane change is if = 17b0. 

However. the comparison is not complete since 
the steady cruising velocity is slightly higher than both 
the initial velocity uo = 0.9968 and the final velocity uf = 

0.9912 for the sustaining-arc. These differences are 
adjusted by adding an initial coasting-arc to the 
sustaining-arc and prolonging the steady turn by a final 
coasting-arc. Consider the two equations for u and y .~  in 
the new form 

d y  - z h - - -  sin0 - cosy tan$ 
d s P 

Neglecting the small term in tan@, we combine these 
eauations to obtain 

The most favorable turn is conducted with h=  1 and o 
= 90". Then by integrating from ul  to u2, we have 

According to this formula, for a turn from u=0.998 to 
u=0.9912, the sustaining-arc provides a plane change of 
if = 19.7" + 0.08" = 19.78"; while, the steady turn yields a 
plane change of if = 17.6" + 0.47' = 18.07". Although the 
improvement in plane change capability, attainable 
through angle of attack and thrust modulation, is small for 
the altitude considered, it becomes more and more 
substantial as the altitude increases. above, increases as 
the altitude increases. 

Next we consider a sustaining-arc at a higher altitude 
corresponding to Z = 0.010913. The initial velocity for the 
sustaining-arc is uo = 0.999940, almost circular. If h is the 
altitude difference with respect to the previous flight 
level ZO = 0.080640 taken as reference, and P is the 
inverse scale height for an exponential atmosphere, 
the new value of Z satisfies the equation 

Hence the new aritude is about 15 km higher. Since the 
atmospheric density is lower. we would expect a longer 
range trajectory, for a given amount of fuel 
consumption, in comparison to the lower attitude case 
considered above. 

Fig. 7 shows that there is even less deviation from 
circular velocity than there was at the lower altitude. 
namely. 0.1% versus 3.0%. From the number of 
intersections with the A=O line, it is clear that, for a given 
amount of fuel consumption, more revolutions are 
required at higher altitude to achieve the plane change, 
as expected. Fig. 8 shows that the optimal number of 
revolutions increases as the propellant mass, one is willing 
to expend, increases. 

Representative plots of the optimal controls for the 
higher altitude case are shown in Figs. 9-1 1. The value of pf 
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Fig. 7 The Dimensionless Velocity u vs. Mass p History 
and Crossing Points (2=0.010913) 

is 0.6. For this case, it takes about five revolutions to 
achieve the optimal plane change. The optimal plane 
change is 17.8~. which is less than the 19.7' achievable in 
the lower altitude case, for the same fuel consumption. 
The optimal controls are nearly periodic. In Fig. 9. the 
latitude and the optimal bank angle are plotted against 
the longitude. The longitude is reset at 8 = 0 at the 
ascending node. @ = 0, for a typical revolution. The 
increase in the absolute values of the maxima and minima 
of the latitude shows that the inclination is increasing. The 
optimal bank angle is nearly bang-bang. The optimal 
bank angle switches values at the apexes of the orbit. It is 
+90 degrees on the side containing the ascending node 
and -90 degrees on the side containing the descending 
node. A bank angle magnitude of 90 degrees assures that 
all the lift force is used for turning. The switching of the sign 
assures that the inclination continues to increase. 

Fig. 10 shows the optimal normalized lift coefficient 
(which is directly related to angle of attack), along with the 
optimal bank angle, as functions of the longitude. It has 
been noted that the lift coefficient and the bank angle are 
related (see Eq. (6)). Previous wolk2.6 has shown that. for a 
given heading angle change, the corresponding 
inclination change is maximized, if the heading change is 
made at a node. The behavior of the normalized lift 
coefficient is consistent with this finding. We see that the lift 
increases to its maximum at the nodes. The reason the lift 
is not always at its maximum is indicated in Fig. 11. Fig. 11 
shows the normalized thrust magnitude as a function of the 
longitude. Since the lift vector is essentially always in the 
horizontal plane, the altitude is kept constant by flying at 
circular velocity. The control for maintaining nearly 
circular velocity is the thrust magnitude. Although 
maximum lift is good for turning, high lift means high drag. 
Consequently, the thrust magnitude is seen to peak in 
phase with the lift. The lift decreases to a minimum at the 
apexes of the orbit because heading changes lose their 
effectiveness in changing the inclination and because 

Fig. 8 The Optimal Plane Change Angle i (2=0.010913) 

propellant can be saved. In contrast, the steady cruise 
turn, because the lift coefficient (angle of attack) and 
velocity are constrained to be constants. does not 
provide the freedom to compensate for the spatial non- 
uniformity in the effectiveness of out-of-plane forces to 
change the orbital plane; and consequently. the 
performance of the steady cruise turn deteriorates at high 
attitude. 

As a final note. Fig. 1 1  shows that only a low thrust 
capability is required to fly the sustaining-arc at high 
attitude and accomplish a substantial plane change. 

Conclusions 

The problem of maximizing the orbital plane change 
during constant altitude flight has been formulated; and 
necessary conditions for the optimal trajectories and 
controls have been derived. The optimal trajectories are 
composed of boosting, coasting, and sustaining arcs -- 
the latter being a singular arc. Our interest in synergetic 
plane changing, with a constrained heating rate, led us to 
consider primarily the sustaining-arc. For the sustaining- 
arc, the optimal controls could be determined in 
feedback form, i.e., in terms of the states, except for a 
constant parameter. A combined numerical/graphical 
procedure was used to determine the globally maximizing 
solution from a family of extremals. 

The primary physical conclusion of this paper is that, 
during constant altitude flight. the maximum plane 
change is not in general achieved by flying d a constant 
angle of attack, i.e., with a constant lift coefficient. The 
additional propellant consumption incurred by 
maintaining constant angle of attack grows as the range 
over which the flight takes place increases. Thus, the 
advantage of variable angle of attack flight increases as 
the flight altitude increases. For very high altitude flight, 



which might be chosen to reduce the heating rate, the 2. 
aerodynamic force is small. and it may take a substantial 
portion of a revolution, or even several revolutions, to 
effect the required plane change. In this case, the optimal 3. 
angle of attack control becomes near-periodic. On the 
other hand, the velocity, although it has not been 4. 
constrained to be constant. is nearly constant and 
approximately circular. 
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