19th AIAA Computational Fluid Dynamics AlAA 2009-3786

22 - 25 June 2009, San Antonio, Texas

ATA A-2009-3786

Analysis and Implementation of

Recovery-Based Discontinuous Galerkin

for Diffusion’

Marcus Lo? and Bram van Leer3

Department of Aerospace Engineering
University of Michigan

khlo@umich.edu, bram@umich.edu

Abstract

Progress in the analysis and implementation of the Recovery-based DG method (RDG-2x) for diffusion
operators is reported. Among the new theoretical insights in the method we present a general stability
proof, and an arbitrary-order penalty-term formulation in one dimension. Regarding implementation we
discuss the savings afforded by pre-computing at each interface the smooth recovery basis, which is invariant
so long as the grid remains fixed. Furthermore, we discuss various versions of the RDG scheme in standard
form (RDG-1x), and the extension of RDG to nonlinear diffusion terms such as appear in the Navier-Stokes
equations. In addition we discuss recovery based on more than two neighboring cells, and not just for

diffusion. A section with numerical results compares different implementations of RDG-1x with RDG-2x.

1 Introduction

Since its introduction at the 17th ATAA Computational Fluid Dynamics Conference, Toronto,
2005[1], and further reporting at the 18th conference in Miami, 2007[2], the development of
the Recovery-based Discontinuous Galerkin (RDG) method has led to further theoretical
and practical insights, in part owing to the opportunity we had to port RDG into the CFD
software package HOME of HyPerComp (Westlake, CA) under an AFOSR-funded STTR
contract, but also to the analysis, testing and applications contributed by other researchers
3, 4, 5].

In this paper we report the latest developments in RDG. We first review the definition and
chief properties of RDG (Sec. 2). Then follow separate sections on progress in the analysis
(Sec. 3) and the implementation (Sec. 4) of the method. Of particular importance are the
availability of at least an Ansatz to a general stability proof (Sec. 3.1), and various ways to
implement recovery in the “standard” DG form resulting after partially integrating only once
(RDG-1x, Sec. 4.1). Next, a separate section (Sec. 5) is devoted to recovery based on more

L©2009 by Marcus Lo and Bram van Leer. Published by the American Institute of Aeronautics and
Astronautics, Inc., with permission.

2Doctoral candidate, member ATAA

3Professor, Fellow ATAA

1

Copyright © 2009 by Bram van Leer and Marcus Lo. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



than two neighboring cells, and not just for diffusion. The last section contains a numerical
comparison of different implementations of RDG-1x with RDG-2x; the computations are
done on a Cartesian grid, which brings out the accuracy differences most clearly.

2 Recovery and Discontinuous Galerkin

Recovery is a name we gave* to a weak interpolation technique for locally reconstructing, as
well as possible with the available degrees of freedom, a function of which an Ly-projection is
known on the meshes of a computational net; the recovered function must have the same Lo
projection. The latter property provides the “quality control” of the interpolation, just as in
strong interpolation function- and/or derivative-values must be matched by the interpolant
in points.

Recovery is especially useful when including diffusion in a DG discretization, as the
solution and its gradient are discontinuous at the interfaces where diffusive fluxes must be
computed. In the RDG approach the diffusive fluxes are computed from a smooth, locally
recovered solution that in the weak sense is indistinguishable from the discontinuous discrete
solution[1, 2]. This eliminates the introduction of ad hoc penalty or coupling terms found
in traditional DG methods; in the simple case of 1-D diffusion the recovery principle can be
shown to generate a string of penalty-like terms not encountered in standard DG methods
(see Section 3.2).

The most attractive feature of RDG is the simplicity and generality of the recovery
principle, which immediately allows one to create and further develop DG diffusion schemes.
In addition, these schemes are of higher accuracy than any other DG diffusion schemes
currently in use, while boasting the smallest eigenvalues, hence the largest stability range for
explicit time-marching; see Huynh, 2009 [3]. This is particularly clear when comparing the
methods on a uniform Cartesian mesh - Huynh analyzed and tested 16 of them. For example,
if the numerical solution u lies in a piecewise polynomial space that is the tensor product of
one-dimensional polynomial spaces of degree p, then the order of accuracy of RDG is 3p + 2
or 3p + 1 for p even or odd, respectively®. The largest negative-real eigenvalue for p = 3,
when RDG is 10th-order accurate, equals -134, to be compared with -340 for Bassi-Rebay-2
(6th-order accurate)[7], and -878 for CDG (8th-order accurate)[8]. While all these methods
revert to the order of accuracy p 4+ 1 on an irregular grid, the pedigree of RDG remains
visible in the lower error coefficient and smaller eigenvalues.

There are two basic versions of RDG: RDG-2x and RDG-1x. RDG-2x is the original
version and starts from a weak form of the diffusion equation®,

U, = DV - VU, (1)

4The use of the term “recovery” in CFD is due to Bill Morton [6], who indicated with it the reconstruction
of a shock discontinuity from the structure of a “captured” numerical shock. This is truly the opposite of
what we are doing in RDG for diffusion: recovering a smooth function from a discontinuous solution.

®An earlier supposition[2] that the order might be exponential (2,4,8,... for p=0,1,2,...), turned out to be
false.

6The diffusion equation is taken linear in this and other sections; Sec. 4.2 deals with the nonlinear-system
case.



obtainable after multiplication with a test function and integration by parts twice over the
interior of an element ); with boundary 02;:

///Qj(vk)jUtdQ = D//BQj{(Uk)jVU_UV(’Uk_)j}.fLdaQ
+ D///Q.UV-V(vk)de, k=1,.., K. (2)

Here U is the true solution, D is a constant scalar diffusion coefficient and the v, are the test
functions, also used as the basis functions; these are polynomial on 2; and zero elsewhere.
In a DG method U is replaced in the above equation by a numerical approximation u that in
each element lies in the span of the basis {vx}. This numerical solution is discontinuous at
09);; if the boundary integral in (2) is evaluated on the inside of the boundary, the method
will be inconsistent since there will be no coupling with the neighboring cells.

In RDG the coupling is provided by replacing u on a facet of the boundary by f, a smooth
solution recovered from the information in the two abutting elements. The recovered solution
fj.j+1, centered at the interface between elements 2; and €2, is uniquely determined by
making it indistinguishable from v in the weak sense in the contributing elements, that is,

///Qj(vk)jfj,md@ - //Qj@k)ju d0, k=1,..,K. 3)
//Qj+1<vk)j+lfj,j+1d9 = //Qj+l(vk)j+1u aQ, k=1,.. K. (4)

In order to satisfy these equations, f must lie in the space of the recovery basis wy, with
k=1,.,2K; for a detailed description of this basis see [2].

Each face of ); generates a different recovered solution f; ; thus, there are as many
surrogates for u or U as there are faces to the element. Inserting these into the boundary
integral yields the RDG scheme:

///Qj(vk)jutdQ = D//(,m{(”k)jvfj,‘.—fj,..v(vk)j}-ﬁd@Q
+ D///Q_UV-V(vk)de, k=1,.. K. (5)

It is worth noticing that replacing v by any of the f; , or an average of these, in the volume
integral on the right-hand side does not change the value of the integral (see [2]).

For future reference we also give the weak form of the diffusion equation resulting after
integrating by parts once:

///Qj(vk)jUtdQ = D//mj(vk)jVdeaQ
B D///QIVU'V(Uk)de, k=1,..,K; (6)

all traditional DG diffusion schemes are based on this form, which is why we have called
it “standard.” In [9] we indicated how to implement the DG form (6) using recovery, and

called the resulting discretization RDG-1x. We will discuss several implementation options
in Sec. 4.1.



3 Theoretical results

3.1 A stability proof

To assess the stability of RDG schemes, RDG-2x in particular, we replace the test function
vk in Eqn. (5) by the solution u, which combines all test functions, and integrate over the
entire computational domain V with boundary S; this yields an equation for the evolution
of the energy of the solution on the domain:

///Vaat(i)d" = D//S(uvf—fVu)-ﬁdS

D//g[qu—fVu]-ﬁdé’
+ D///VUV-VudV. (7)

Here € represents the union of all interior cell faces; the jump [-] and normal 7 at an interface
are matched such that if 72 is chosen to point from cell j; to cell jo, [-] is defined as (-);, —(+);,-
Note that we have replaced U and VU on the domain boundary by their recovered values f
and Vf; it is f, not u, to which the boundary condition must be applied.

We now undo the second partial integration so as to arrive at the following equation:

//L;(f)dv - D//S{Wfﬂu—f)vfu}-ﬁds

+ D//g[qu+(u—f)Vu]-ﬁd€

_ D///VVU-VudV. (8)

If the energy can be shown to decay in time, this is proof of global stability. It generally
means proving that the last term on the right-hand side of Eqn. (8), i. e.,the volume integral,
which is negative and of magnitude O(1), dominates the other terms. For p = 0 the volume
integral vanishes, and a separate proof is needed,

We assume that V and S are both of magnitude O(1), and h is a measure of the average
element size. Furthermore, we assume u lies in a polynomial space of order p and the solution
is smooth to begin with (discontinuous initial values are excluded). This allows us to estimate
the boundary- and interior-face terms.

The integral over the interior faces is larger than the integral over the domain boundary,
because the area of £ is 1/0O(h), as compared to O(1) for S. Using angled brackets to indicate
the interface average of a function, the integrant of the former integral can be reduced as
follows:

+

WV f+ = )Vu -2 = {[uVf+[u—f{Vu)+(u=f)[Vu]} -7
= AWV + (V) + ({u) = ))[Vul} - 7. (9)

Here [u] and (u) — f are both of order O(h**!), while [Vu] = O(h?) for p > 1 and 0 for
p = 0. Hence, the two terms on the final right-hand side of (9) are O(h?*!) and O(h?**1),

4



respectively, for p > 1. The first term dominates, so the integral over £, with total area
~ 1/h, becomes O(h?) for p > 1. On a sufficiently fine grid this integral therefore becomes
negligible compared to the negative volume integral.

Now consider the domain-boundary terms. Let us first assume that the boundary is
adiabatic, i. e., the diffusive flux DV f - n vanishes at the boundary. This removes the first
term of the boundary integral in (8). By realizing that u = f + (u — f) we may reduce the
integral to

D//SV(u;f)Q-ﬁ dS, = O(h?*), (10)

which is small on a sufficiently fine grid, for all p. Thus, on a sufficiently fine grid the negative
volume integral dominates both boundary- and interior-face integrals for p > 1; the solution
energy decreases in time, implying stability.

For a Dirichlet boundary condition, e. g., f = 0 on &, the integrant in the domain-
boundary term reduces to

uVf+ (u— f)Vu= (u— f)V(u+ f) = O(h**h), (11)

which vanishes with A for all p. Again, for p > 1 the negative volume integral dominates
both boundary- and interior-face integrals on a sufficiently fine grid, causing the solution
energy to decay.

For p = 0 we have Vu = 0, so the volume integral in (8) vanishes; the integral over &£
now takes over its role. The integrant (9) reduces to [u|V f - 7; in this case [u] = O(h) and
the recovery procedure yields

Vf-n= —M, (12)
hcn
where h., is the distance between the centroids of neighboring elements measured along their
interface-normal. Therefore,
[u]?

WV F = = == o) (13)

and the integral over £ becomes negative of order O(1). This dominates the domain-
boundary integral in both Neumann and Dirichlet cases, so stability is ensured.

Note that (13) may be interpreted as stemming from the Baker[10]-Arnold[11] penalty
term —pD[v|[u]/h, with positive u = O(1); cf. Sec. 3.2. For p = 0 this term has to provide
the physical content of the diffusion operator, so the value of y must be chosen correctly
with regard to consistency [1]. The recovery procedure automatically generates the term
with the proper value.

This completes the stability proof for RDG-2x; the proof for the “naive” form of RDG-1x
(see Sec. 4.1) is obtained by omitting the terms proportional to u — f in the integrals over
€ and S in Eqn. (8).

The global RDG form (8) is not just useful in a stability proof, but, as pointed out
by Marshall Galbraith (University of Cincinnati), it actually suggests an excellent local



implementation formula that is equivalent to RDX-2x:

///Qj(vk)jutdQ = D//mj{(vk)ijjL (u— f)V(v);} -7 dOQ
- D///Q_V(vk)j-w dQ, k=1,.., K. (14)

The formula looks like a hybrid of RDG-1x and RDG-2x: it has the volume integral of
RDG-1x but shows two boundary terms as in RDG-2x. The great advantage is that one does
not have to use recovered information in evaluating Vu in the volume integral; one may use
u “as is.” The second boundary term looks somewhat like a penalty term; it contains the
information to elevate the accuracy of naive RDG-1x (without recovered volume integral) to
that of RDG-2x, most noticeable on a Cartesian grid. See further Secs. 4.1 and 6.

3.2 Penalty-term expansion in one dimension

We have succeeded in writing the 1-D form of the RDG-2x scheme of arbitrary order as an
expansion in penalty-like terms. On a uniform grid it reads:

11) /| vwrde = = () o] |y + () (115 y) = (@ foal g + (@ ol |j-y) = /Q]_ Vsl da
o (1 o]y + [ 1 ,-y)
+ R Az (] [va] 41 + [a] [a] |1 )
R ([taa] 0] 44 + ] [0] |- 3)
+ Rz ([t [V [ 3 + [tos] [0] ;1)
+RAZ ([tsao] [0] |44 + [tease] [0]|;-1)
+R5A2% ([tgasea) [Va] |41 + [teasse] [0a] ;1)
+Ro A ([tamasa] [0] 43 + [awazas) [0] ;1) +
(15)

here the jump of a function at an interface is always computed as right value minus left
value. It is seen that the i-th bilinear “penalty” term, with coefficient R;, contains the jump
in the ¢-th derivative of u and the jump in either v or v,, depending on whether the index i
is even or odd, respectively. For an RDG scheme based on a polynomial space of degree p,
the index runs from 0 to p. The coefficients R; are given in Table 1 for schemes up to p = 5.

Note that for p > 1 the spatial operators are not symmetric; however, the real part
of their eigenvalues is found (by numerical evaluation) to be negative, allowing for stable
update schemes. These discretizations are also highly accurate: the truncation error is of
the order 3p + 2 or 3p + 1 for p even or odd, respectively.



0 1
9 1
1 1 12
15 3 _3
2 1 64 80
3 175 1 _ 5 _ 1
32 32 192 6720
4 945 35 _ 5 __9 )
128 1536 256 86016 129024
5 4851 9 _ 63 1 7 1
512 512 4096 36364 369640 9461760

Table 1: Coefficients of the penalty-like terms in 1-D RDG for p < 5.

4 Progress in implementation

4.1 RDG schemes in standard form

As reported in [9], it is possible to insert the information obtained in the recovery procedure
into the standard DG form (6) so as to arrive at an RDG-1x discretization that competes in
accuracy with the RDG-2x discretization with equal p. In this section we review a hierarchy
of three RDG-1x implementations based on (6), and one based on the quasi-standard form
(14), which is really equivalent to RDG-2x.

The most naive form of RDG-1x has u replaced by f in the boundary term, but Vu in
the volume integral computed “as is;” this leads to an accuracy that is considerably lower
than that of RDG-2x with equal p. For instance, for p = 1 on a 2-D Cartesian grid, “naive”
RDG-1x is only second-order accurate, while RDG-2x is fourth-order accurate. The loss of
accuracy is solely caused by the absence from Eqn. (6) of the O(h**3, h?*?) second boundary
term present in Eqn. (14).

Next, we consider replacing Vu in the volume integral by Vf, where f is the average of
the solutions recovered on cell 2; and each of its neighbors. The accuracy resulting from this
procedure is expected to be better than that of naive RDG-1x, but only by a factor. The
reason is that the recovered solutions are particularly accurate only in their dependence on
the coordinate normal to the interface of the two participating cells [2]; their representation
of the solution in the direction parallel to the interface is not better than order p, as for u
itself.

Aware of the anisotropy in the accuracy of the recovered solutions, we recommended
in [9] to evaluate Vu using only the interface-normal derivatives 0f;;/0n;;,of the solutions
recovered on €2; and €2, where [ cycles through all neighbors of element j. Since there are
more neighbors than dimensions, even for a simplex cell, this leads to a small least-squares
problem that is always well conditioned; note that its size is independent of p. With the



gradient thus recovered, which we shall call V fj, the accuracy of RDG-1x competes with that
of RDG-2x on a Cartesian grid. But the implementation is more involved than the quasi-
standard implementation (14), which we expect to become the standard of implementation
of RDG for diffusion.

It is worth reiterating from [9] that in our first paper on RDG [1] we derived, by
truncation-error minimization, a remarkably accurate member of the classical DG family
12]

/Ij vudr = —D (< Uy > [V] ‘j+% + < ug > [v] ‘j_%) — D/I]- VU dx
+ JD(<U,,3>[u]‘j+%+<vx>[u]‘j_%)
— L2 ([l g + 010y ) (16)
with . 9
o=1 k=7 (17)

This scheme turns out to be an RDG-1x scheme with Vu in the volume integral evaluated
as V f or Vf (these are equal in one dimension).

In Sec. 6 the above discretizations are numerically tested and compared on a Cartesian
grid. Note that even on a regular triangular grid, let alone on an on an irregular grid, all
RDG-1x and RDG-2x schemes reduce to the order of accuracy p + 1 [9]; differences in error
level and in eigenvalue magnitude may still remain. In particular, the eigenvalues of RDG-1x
with recovery of Vu appear to be more than 50% larger than those of RDG-2x for p = 1
and 2.

4.2 RDG for a nonlinear diffusion system

While the twice-integrated form (2) was essential for the development of the RDG approach,
and leads to the simplest discretization of a linear scalar diffusion equation, it may not
necessarily be the preferred choice when considering the DG discretization of a nonlinear
system of diffusion operators, such as contained in the Navier-Stokes equations. Below the
two weak nonlinear forms are displayed as they would appear in DG discretizations of the
Navier-Stokes equations in conservation form (Euler terms suppressed); bold face indicates
a vector or matrix in the 5-dimensional space of state variables, wheras an arrow indicates a

vector in 3-D physical space. For instance, D indicates an 3 x 3 array of 5 x 5 matrix-valued

diffusion coefficients corresponding to diffusive fluxes of all state quantities in all coordinate

directions. Both the dot product and the gradient operator refer to physical space.
Differential form:

U, =V -DVU; (18)
Weak form once partially integrated (RDG-1z):

///Qj(vk)jutdQ = //asz (vi);( Bﬁf -7 dOSY
/// Bﬂf (vg,);dQ, k=1,.., K; (19)

8



Weak form twice partially integrated (RDG-2z):

///Qj(vk)jutdg = //89 Vk); [:) {f) V(vg); Y] - 7 dOQ
+ /// DV (u)udQ, k=1, K (20)

The first weak form has the advantage that we may use the discrete solution u; “as is” to
compute the volume integral, rather than the set of recovered solutions f; = as recommended
for the first form. This advantage, though, disappears when computing on irregular, un-
structured grids, where all DG methods with a basis of order p have their accuracy reduced
to the order p+ 1, so f in the volume integral of Eqn. (19) may as well be simplified to u.

Moreover the ﬁrst form includes u or f on the right-hand side solely in the combination

DVu or DVf this expression greatly simplifies when switching to the primitive variables
w = (p,u,v,w,T)T favored for the Navier-Stokes equations. We have

DVu = MVw, (21)

where the blocks of M are Very sparse.
In contrast, the second weak form also contains the combinations {DV(vj);}u and

{DV (v) ; 1, which do not benefit from simplification by switching to primitive variables.
Even the quasi-standard form (14) extended to a nonlinear system, retains the expression in
the second boundary term:

///Q] (vg); 0 dQY = //aQ Uk)]f’jﬁ {ﬁﬁ(vk)j}(u —£)] - 7 dOS)
///9(6611) : V(Uk)de, k=1,.. K; (22)

Summarizing: RDG-1x, with the simplest possible evaluation of the volume integral, may be
the most effective choice for use with the Navier-Stokes equations. However, there is no body
of practical numerical evidence yet to support this presumption; furthermore, the aspect of
a possibly reduced stability range associated with larger eigenvalues needs to be weighed in.
The quasi-standard scheme (14) remains a strong contender.

4.3 Use of the recovery basis

As discussed at length in [13] and [9], the recovery procedure on €2; U 2,41 can be first applied
to the discontinuous basis functions (v);, k =1, .., K, and (vg);+1, k = 1, .., K, yielding a set
of smooth basis functions (w;);;+1, | = 1,..,2K. The principal recovery theorem says that
the expansion of u on Q;J€;1; in the discontinuous basis functions and the expansion of
f in the corresponding smooth basis functions have identical coefficients. Since the recovery
process is only influenced by the geometry of €2; and 2,4, the recovery basis will not change
if the grid stays fixed. Hence, for calculations on a fixed grid it suffices to compute the
smooth recovery bases for all pairs of neighboring elements at the start of a calculation, and



store these; no further recovery needs to be done at any later time. Recovery thus reduces
to a pre-processing step for an entire calculation, yielding large computational savings. Our
numerical experiments so far have always been based on fixed grids; for unstructured grids
our RDG schemes have indeed been coded using pre-computed recovery bases.

5 Isotropic recovery and cell-centered recovery

So far we have limited ourselves to recovering a solution on the union of two neighboring,
interface-sharing cells; we shall refer to this as a binary recovery. As pointed out before,
such a recovery is anisotropic in its accuracy [2]: its representation of the solution in the
direction normal to the interface is accurate to the order 2p + 1, while the representation in
any direction parallel to the interface is only of the order p.

The anisotropy could be remedied, if so desired, by adding some information from neigh-
boring cells that span a distance along the interface. Figure 1(a) shows, in two dimensions,
the obvious extended Cartesian stencil, while the “butterfly” in Figure 1(b) is a possible
extended stencil for an unstructured triangular grid. When recovering the solution on these
stencils it makes sense to match fewer data in the more remote cells than in the principal
pair.

C D
! ' A
E F l

(a) (b)

Figure 1: Extended Cartesian (a) and triangular “butterfly” (b) stencils for more isotropic
interface-based recovery.

For instance, with p = 1 the principal cells A and B each carry three independent data
(defining a linear function) that must be matched by the recovered solution; in each of the
four remote cells C-F we shall only match the cell-average. Thus, the number of recovery
equations increases from 6 to 10. The latter is the correct number of data for a complete cubic
basis, but the collection of basis functions representable on the rectangle or “butterfly” is
not quite right. Calling the coordinate normal to the principal interface r and the coordinate
along the interface s, it is seen that we will fail to obtain a coefficient for the function r%s;
instead, we obtain a coefficient for the function rs®, not needed for the cubic basis. In the
end, the recovery is only quadratically correct in all directions.

To reduce the “waste” we might constrain the recovered function to have the correct
average value in CUD and £|JF, rather than in each of the four cells separately. This

10



reduces the number of recovery equations to 8; the coefficients of rs? and rs® no longer can
be found. Left over is a quadratic basis augmented with r3 and s3.

Initially we asked ourselves if it would be possible to obtain the detailed s-dependence at
the interface between A and B purely from binary recoveries, i. e., from the cell pairs (A, C),
(A, €), (B,D) and (B, F). This is in the same vein as the gradient reconstruction (Sec. 4.1)
for computing the RDG-1x volume integral, say, in cell A; there we intentionally avoided
performing a new, cell-centered recovery on the union of A and its neighbors B, C and £.
As it turned out, the binary-recovery information increases the accuracy of RDG-1x only on
a Cartesian grid; even on a regular triangular grid [9] the accuracy falls back to the usual
order p + 1. So we are pessimistic about re-using binary-recovery information to enhance
RDG accuracy.

(a) (b)

Figure 2: Cartesian stencil (a) used by Park et al. [5] for cRDG, and an especially thrifty
stencil (b) for cubic cRDG.

Nourgaliev et al. [4, 5], though, have begun to explore cell-centered recovery to enhance
the accuracy of DG; we shall refer too this as cRDG, to contrast it with interface-centered
recovery-based DG or iRDG. Rather than removing an interface discontinuity, the goal of
cRDG is to increase the order of the solution basis in the central cell by weak interpolation.
The increase could of course simply be achieved by starting out with a higher-order DG basis;
the advantage of increasing the order by recovery is that the number of unknowns does not
increase. For Nourgaliev et al. this is the prime motivation, as their temporal discretization
is implicit and treated with a Newton-Krylov solver. The computational expense of cell-
centered recovery is small change compared to the expense of the implicit solver further
down the line.

The 2-D numerical example of cRDG given in [5] is based on a manufactured traveling-
wave Navier-Stokes solution; it starts from a p = 1 basis and uses the stencil and basis
functions displayed in Figure 2(a) for the cell-centered recovery. This recovery-enhanced
solution provides the input for the Riemann solver used to obtain the inviscid interface fluxes.
Diffusive interface fluxes are computed on the stencil shown in Figure 1(a); not mentioned
in the paper is whether cRDG and iRDG are applied in parallel, or cRDG pre-processes the
data used in iRDG.

The cRDG-enhanced solution has 15 parameters but is not fully quartic; two mixed
terms, 23y and y?z, are missing, while 2° and 73® are included. The numerical results show
an increase from 2nd-order accuracy without cRDG to 6th-order accuracy with cRDG. The

11



former result is puzzling, as a Navier-Stokes DG calculation with upwind Euler fluxes and
diffusive fluxes from binary recovery should yield third-order accuracy; the latter result may
be flattered because the test problem could be too simple. Nevertheless, the increase in
accuracy is impressive and suggests iRDG was applied on top of cRDG.

With regard to cutting waste we offer the observation that the combination of the Carte-
sian stencil and basis functions shown in Figure 2(b) is about as thrifty as it gets: from a DG
basis with p = 1 it recovers a complete cubic basis, with only one parameter to spare. The
extra parameter results from the fact that there are two ways to obtain the coefficient of the
function zy in the central cell: by using horizontal neighbors or by using vertical neighbors.
The difference between the two is a combination of 4th-order terms.

Based on our experience with iRDG, though, we expect the gains on an unstructured
triangular grid to be rather modest. For instance, when enhancing a p = 1 basis in cell
A, using all the information from its neighbors B, C and £ (12 data in total), still only a
quadratic basis can be recovered without overly constraining the grid. In particular, if the
centroids of 3 triangles line up, as in Figure 3, there is insufficient coverage of 2-D space. In
the displayed stencil no coefficient can be found for the function xy?. Similarly, if only the
solution-averages are matched in the neighboring cells (6 data in total), the same degenerate
geometry even prohibits going beyond a p = 1 basis. In this case no coefficient of xy can be
found.

Figure 3: Degenerate triangular stencil: three centroids are aligned along the z-axis, spoiling
the potential for cubic recovery.

We may regard cRDG as a cross between a finite-volume and a finite-element method; in
fact, a finite-volume Euler method such as MUSCL may be interpreted as a cRDG method
with p = 0, where the recovery aims at increasing the order of the solution representation to
p = 1. The use of cell-centered recovery as a pre-processing step to enhance a DG solution
offers a wealth of possibilities, especially when combined with interface-based recovery. We
are bound to see more of this approach.

12



6 Numerical results

In order to demonstrate the differences in accuracy among the various versions of RDG-1x,
and with respect to RDG-2x, we solved a Dirichlet problem on the square [0, 1] x [0, 1] with
exact steady solution

U(z,y) = cos(2mx) + cos(27y). (23)

For our purpose it sufficed to study the case p = 1. At the boundary, recovery in the normal
direction involved the next cell inward to make it cubic [2], as needed to match the accuracy
at interior interfaces. We tested three RDG-1x schemes, with the following features (cf.
Sec. 4.1):

(A) volume integral computed with Vu,
(B) volume integral computed with V f,
(C) volume integral computed with V f:

for comparison, results were also obtained with RDG-2x cast in

(D) quasi-standard form (14).

107

1072
< 1078 Slope=2 —
g
-
[€a]
~ 10_4 L
10°F
—&— RDG Version A
—+&— RDG Version B
—A— RDG Version C
& —6— RDG Version D
10 !

Figure 4: Grid-convergence study: Ly error in cell-average versus mesh width for three
RDG-1x schemes and the RDG-2x scheme (14). Dirichlet problem on Cartesian grid; p = 1.

The convergence results displayed in Figure 4 (Lg-error in cell-averages versus mesh-width
h) confirm the theory-based prognosis made in Sec. 4.1. Versions (A) and (B) both are

13



second-order accurate, but (B) has about half the error of (A) owing to the averaging of
accurate with inaccurate information in f. Version (C) is fourth-order accurate, though its
error coefficient is more than twice that of the RDG-2x version (D). Not shown is that for
(C) and (D) the other solution coefficients, @, and %, are converging faster than u, possibly
heading toward 5th-order accuracy on still finer grids.

7 Conclusions

During the past year Recovery-based Discontinuous Galerkin methods have been put on a
firm footing. There now is a sufficiently general stability proof based on an energy argu-
ment, and in one dimension we also know the precise string of penalty terms and coefficients
that generate RDG for any order of the DG basis. Users can choose between various imple-
mentations in the standard, once-partially-integrated form RDG-1x, and the twice-partially-
integrated form RDG-2x, which is more accurate and stable. The latter scheme can again
be rewritten in the standard form, with a small but significant extra boundary term remain-
ing. When implemented on a Cartesian grid, RDG-2x is the most accurate and most stable
among all known DG diffusion methods, for a given order p of the basis (Huynh, 2009).
Nevertheless, for a system with nonlinear diffusion terms like the Navier-Stokes equations,
RDG-1x has the advantage of being somewhat easier to implement than RDG-2x.

Besides interface-based recovery (iIRDG) for DG diffusion fluxes, there is now also cell-
centered recovery (cRDG), developed by Nourgaliev et al. to enhance the DG basis; it is still
restricted to Cartesian grids. This technique increases the accuracy of upwind advection
fluxes and may also be used as a preprocessor for iRDG.

One may regard cRDG as a cross between DG and the Finite-Volume method. We
expect to see much more of this, once a robust formulation for unstructured grids has been
established.

Altogether, RDG appears to have a bright future.

8 Acknowledgement

This work was supported by AFOSR, Grant Nr. FA9550-08-1-0307.

References

[1] B. van Leer and S. Nomura, “Discontinuous Galerkin for diffusion,” ATAA Paper 2005-
5108, 2005.

[2] B. van Leer, M. Lo, and M. van Raalte, “A Discontinuous Galerkin method for diffusion
based on recovery,” ATAA Paper 2007-4083, 2007.

[3] H. T. Huynh, “A reconstruction approach to high-order schemes including Discontinuous
Galerkin for diffusion,” AIAA Paper 2009-0403, 2009.

14



[4]

[5]

[10]

[11]

[12]

[13]

R. Nourgaliev, T. Theofanous, H. Park, V. Mousseau, and D. Knoll, “Direct numerical
simulation of interfacial flows,” AIAA Paper ATAA-2008-1453, 2008.

H. Park, R. Nourgaliev, V. Mousseau, and D. Knoll, “Recovery Discontinuous Galerkin
Jacobian-free Newton Krylov method for all-speed flows,” Tech. Rep. INL/CON-08-
13822, Idaho National Laboratory, 2008.

K. W. Morton and M. A. Rudgyard, “Shock recovery and the cell-vertex scheme for the
steady Euler equations,” Lecture Notes in Physics, vol. 323, pp. 424-428, 1989.

F. Bassi and S. Rebay, “High-order accurate discontinuous finite element solution of the
2D Euler equations,” Journal of Computational Physics, vol. 138, pp. 251-285, 1997.

J. Peraire and P. O. Persson, “The compact discontinuous Galerkin method for elliptic
problems,” SIAM Journal on Scientific Computing, vol. 30, pp. 1806-1824, 2008.

B. van Leer and M. Lo, “Unification of Discontinuous Galerkin methods for advection
and diffusion,” ATAA Paper 2009-0400, 2009.

G. A. Baker, “Finite element methods for elliptic equations using nonconforming ele-
ments,” Mathematics of Computation, vol. 31, pp. 4559, 1977.

D. N. Arnold, “An interior penalty finite element method with discontinuous elements,”
SIAM Journal on Numerical Analysis, vol. 19, pp. 742-760, 1982.

M. H. van Raalte, Multigrid Analysis and Embedded Boundary Conditions for Discon-
tinuous Galerkin Discretization. PhD thesis, University of Amsterdam, 2004.

M. van Raalte and B. van Leer, “Bilinear forms for the recovery-based discontinu-
ous Galerkin method for diffusion,” Communications in Computational Physics, vol. 5,
pp. 683-693, 2008.

15



