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Inverse Perturbation Method for Structural Redesign
with Frequency and Mode Shape Constraints

Curtis J. Hoff,* Michael M. Bernitsas,} Robert E. Sandstrom,{ and William J. Anderson§
The University of Michigan, Ann Arbor, Michigan

A procedure is described for the redesign of undamped structural systems to meet natural frequency and/or
mode shape objectives. The procedure can be applied to large or small modal changes and is based on a single
finite element analysis of the baseline system. Perturbation of the baseline system is used to develop a set of
equations that characterize the redesign process. Depending on the number of modal objectives and design
variables, the problem is formulated as underconstrained, properly constrained, or overconstrained. All three
problems are solved using an incremental predictor-corrector technique within the feasibility domain defined by
the practical constraints imposed on the design variables. The procedure is illustrated by the redesign of a 1254

degree-of-freedom casting for a frequency objective.

Nomenclature
cij = participation of the jth mode to changes in
the ith mode
i =index associated with the ith mode

=index associated with the jth mode

= generalized stiffness matrix of the baseline
and objective structures, respectively

=stiffness matrix of the baseline and ob-
jective structures, respectively

M = stiffness matrix of element e

fMJ, M’ =generalized mass matrix of the baseline and

objective structures, respectively

J
DK, DK
k], k7]

M; =generalized mass of the ith mode of the
baseline structure

[m], [m'] =mass matrix of the baseline and objective
structures, respectively

[m,] = mass matrix of element e

N =total number of increments in predictor-
corrector solution

n =number of degrees of freedom in the
structural model

S = number of modal objectives

s =number of modes involved in the redesign
process

[ 175, ¢ 37 =transpose of a matrix and vector,
respectively

o, = fractional change to element e

A = prefix denoting change

[Ak] = change to stiffness matrix

[Am] = change to mass matrix

[Ag] =matrix of mode shape vector changes

A(w?) =change to the ith baseline structure
eigenvalue w? :

o = number of structural changes
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[¢], [¢] =matrix of mode shape vectors of the
baseline and objective systems, respectively

tdn (') =ith mode shape vector of [¢] and [¢'],
respectively

Vi = kth degree of freedom of the ith baseline
mode shape

w;, ] = ith baseline and objective structure natural
frequencies

Introduction

N many structural problems, the criteria for an acceptable

design involve constraints on free vibration characteristics.
The constraints may be on one or more of the natural
frequencies, mode shapes, stress levels, or other structural
characteristics. Several degrees of freedom may be con-
strained on any one mode. In most cases the first design does
not satisfy all the free vibration objectives and/or practical
constraints. Therefore, reanalysis of the structural system,
which requires expensive finite element formulation and
analysis, is necessary. Alternatively, the redesign procedure of
the baseline system (first design), based on the perturbation
technique proposed in this paper, can be used. This procedure
does not require additional finite element analyses and can be
applied to large or small modal changes. It is hereafter called
the inverse perturbation redesign (IPR) procedure. The
method can handle problems with both frequency and mode
shape constraints. Direct limits on the design variables may
also be specified.

Let o be the number of design variables in the IPR
procedure, that is, the number of structural system particulars
allowed to change during the redesign, and S the number of
modal objectives. If s is the number of modes involved in the
redesign procedure and the practical constraints, the problem
can be reduced to one of the following types:

1) Underconstrained problem if S<g¢. In this case the
design is not unique and the problem can be formulated as an
optimization problem. For this purpose an optimality
criterion is needed, such as minimum structural weight (linear
programming problem) or minimum change (quadratic
programming problem) from the baseline system. The op-
timization variables in this problem are the o design variables
in the IPR, plus s-n where n is the number of structural
degrees of freedom. The S redesign objectives and the s-n free
vibration equations become equality constraints in the op-
timization problem. Further, practical constraints in the form
of inequalities may be imposed.
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2) Properly constrained problem if S=o. In this case there
are S+s-n equations that can be simultancously solved for
the o+s-n unknowns, yielding either a finite number of
structural designs or no solution. From the point of view of
optimization, this is a constraint-bound problem that can
produce a finite number of feasible designs or prove the
problem to be infeasible. In the latter case the problem should
be treated as in case 3 below.

3) Overconstrained problem if S>o. In this case the S+s-n
equations cannot be satisfied by the o+4s-n unknowns.
Consequently, a minimum error criterion is needed in order to
get a finite number of acceptable designs that will satisfy the
equations and practical constraints within a minimum error.

Background

Historically, procedures involving natural frequency ob-
jectives were developed first. Since the first procedure
developed by Rayleigh in 1873, many methods have been
proposed.! Only recently have methods aimed at solving the
combined frequency and mode shape objective problems,
such as the one presented in this paper, been developed.

Frequently, objective procedures usually are of the type of
problem 1 described in the introduction, that is, their goal is
to minimize the mass of a structure with specified frequency
values or to maximize the frequency for a given total mass.
Practical constraints are sometimes placed on design variables
such as thickness of plates, cross-sectional area of axial bars,
or moment of inerita of beams. Turner proposed one of the
first methods to solve this problem.? The free vibration
equations were considered as equality constraints and handied
using the Lagrange multiplier method. Taylor solved the
problem for an axially vibrating bar by minimizing the total
energy of the system using Hamilton’s principle.? Sheu ex-
tended the work of Turner and Taylor to situations where the
number of constant stiffness segments are specified, but the
boundaries and specific stiffness values of the segments were
design variables in the minimum bar weight problem.* For a
more detailed review of many of these earlier methods, the
reader is referred to the survey by Pierson.’

In more recent work, Taylor investigated the frequency-
only constrained problem in terms of model correlation.® A
procedure was developed to scale an existing structural model
to meet experimentally measured natural frequencies. The
modification scheme is based on the first-order terms of a
Taylor series expansion about the baseline model. Bellagamba
employed an exterior penalty function technique based on the
first derivatives of the violated constraints.” Additional
constraints were imposed on static displacements and element
stresses.

The problem of combined natural frequency and mode
shape constraints has lately received considerable attention in
terms of perturbation-based solution techniques. Stetson
proposed a first-order perturbation method based on the
assumption that the new mode shapes could be expressed as
admixtures of the baseline mode shapes.® In subsequent
work, the technique was cast in terms of finite elements and
was applied to several problems.®!! Stetson’s procedure,
however, used a method of specifying mode shape constraints
based on admixture coefficients that had no obvious physical
interpretation. Sandstrom developed first-order equations
similar to Stetson’s, but provided a method for specifying
mode shape constraints based on physical quantities.>!? Kim
formulated the problem using the complete nonlinear per-
turbation equations.!* He employed a penalty function
method, where the objective function was a minimum weight
condition and the penalty term was a set of residual force
errors.

Mathematical Formulation

The undamped free vibration of a baseline discrete
structural system is governed by the matrix equation

[m]nxn{{b'}rlxl-*_[k]nxn{l//}nxlz{o}nxl (1)
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An eigenvalue analysis produces the eigenvectors

(6] =[] 0. (Y]] @
and the natural frequencies
w? 0
w3
NSRS . &)
0 w2

Using the calculated eigenvectors the governing equations can
be uncoupled and written as

DR =DM Mo’ )
where [ K ] is the generalized stiffness matrix
DK =1[0]"[k]{¢] &)
and PM] is the generalized mass matrix
DM =[6]7[m][¢] ©
Similarly, the uncoupled equations of an objective system are
PK'J=DM'JPw P )

where [K’.] is the objective system generalized stiffness
matrix

[\K’\]=[¢']T[k’][¢,’] (8)
and MM’] is the corresponding generalized mass matrix
M J=[6"1T[m'][¢'] ©)

Relationships between the two systems can be defined in terms
of perturbations of the baseline system, that is,

(m"]=[m]+ [Am] 10
(k'] =[k]+ [AKk] (11)
Do ?d =D’ + DA(e?) (12)
[¢"1=[0]+ [Ad] (13)

Through these definitions, the uncoupled equations (7) of the
objective system can be rewritten in terms of the baseline
system as

[0 171Ak1 16" 1—[¢" 1T [Am][¢"] Fw’2]
={¢" 1T [ml ¢’ 10w~ [¢'1T[k][o"] (14)

Equation (14) is called the general perturbation equation. It is
nonlinear in terms of the modal quantities [¢’] and [w’4],
but is linear with respect to the desired structural changes
[Ak] and [Am]. To facilitate the solution of this equation,
note that it is composed of #? scalar equations of the form

Ak = ()] [am] (Y )02
= Imly Lw/ 2 =y 3 TR, s)

for i, j=1,2,...,n. Equation (14) or (15) must be satisfied by
the objective system and it should satisfy the S modal ob-
jectives.

The structural change can be decomposed into ¢ element
change properties «,. In sheet metal or die cast systems, many
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elements must change together for manufacturability. In this
case, o is the number of groups of perturbed elements. Then
[Ak] and [Am] become

(AK] goem= Y, [AK,] (16)-
e=1

(Am] em= ), [Am,] a7
e=]

Elements not included in the o groups are not allowed to
change. Furthermore, each element change can be expressed
as a fractional change from the baseline system (or a sum of
terms as needed to separate bending, stretching, and torsion)
as

[Ak, 1=k, ], (18)
[Am,] = [m,]a, 19

These linear equations of «, are used in the IPR procedure
developed in this paper. Nonlinear relations can readily be
implemented in the algorithm for other applications. For
example, the effect of plate thickness on stretching stiffness is
linear, while its effect on bending is of third order. The o
change properties «, are the design variables in the IPR.
Finally, several of the design variables may be subject to
practical constraints. These may be maximum or minimum
size constraints or relative size constraints between the
elements.

In problem 1, defined in the introduction, Eq. (14) or (15)
and the S modal objectives constitute equality constraints and
the practical constraints constitute the inequality constraints.
In problem 2, Eq. (14) or (15) and the S modal objectives can
be simultaneously solved for the o, o, that must fall in the
feasibility domain defined by the practical constraints. In
problem 3, Eq. (14) or (15) and the S modal objectives can be
satisfied along with the practical constraints within a specified
error to vield the o, «,.

Solution Technique

Solution of Eq. (14) or (15) will provide the required
structural changes to meet the modal objectives. However,
direct solution is usually not possible because of the implicit
nature and complexity of these equations. The solution of the
general perturbation equations (15) developed in this work is
based on a predictor-corrector technique. The predictor phase
uses the solution procedure for the first-order equation to
provide a first approximation to the elemental changes [Ak]
and [Am]. Using these approximate elemental changes,
approximate objective eigenvectors are calculated. In the
corrector phase, these eigenvectors are used in the general
perturbation equations (15) to correct the elemental changes.
The solution algorithm is diagrammatically shown in Fig. 1.
In the case of large modal characteristic changes, the
algorithm is applied in increments. In all of the applications
we have tried, a single analysis of the baseline system has
proved adequate. For very large systems, the result of the IPR
method may not be as close as desired to the objective system.
The algorithm may be improved by increasing the number of
increments and/or by performing reanalysis at one or more
intermediate steps. Either remedy will make the algorithm
more expensive.

Predictor Phase

In the predictor phase of the solution algorithm, a first-
order solution to Eqgs. (15) is required. The first-order
equations developed here were originally proposed by Stetson
and extended by Sandstrom.®'* In the first-order per-
turbation development of Stetson, the mode shape changes
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BASELINE MODAL
AND STRUCTURAL
CHARACTERISTICS

l |
I

DETERMINE NUMBER
OF INCREMENTS - N

DESIRED MODAL
CHARACTERISTICS

ro=1, N

SPECIFY MODAL CUHANGES
FOR THE rth STEP

[ LINEAR PERTURBATION

CALCULATE APPROXIMATE
PERTURBED EIGENVECTORS
GENERAL PERTURBATION

ANALYSIS

UPDATE ELEMENTAL MASS AND
STIFFNESS MATRICIES

]_

Predictor Phase
] (See Fig. 2}

Corrector Phase
[ (See Fig. 3)

CALCULATE NATURAL
FREQUENCIES FOR rth STEP
(RAYLEIGH’S QUOTIENT)
ELEMENTAL CHANGES

r =N
CALCULATE TOTAL
ELEMENTAL CHANGES

Fig. 1 Predictor-corrector solution technique.

Algorithm Comments
INPUT r o2, 191, [kl, (m) Baseline system
A(miz), Ay Objectives
Use linear analysis and
(25) (26) that is equations (25)
and (26) to get Gu's
PREDICTION G
(23)
cij Admixture coefficients

(22)

Predict all unconstrained
Aty Alyi's by using ay's
above with equation ({(22)

(13)

OUTPUT [4'1 Predicted objective

eigenvectors

Fig. 2 Predictor phase algorithm.

were represented as linear combinations of the mode shapes
obtained in the analysis of the baseline system

[a¢l=T[o][c]” 20)

where the admixture coefficients ¢;,i,j=1,2,...,n are small
and c; =0. This representation transforms the space spanned
by the eigenvectors {y};i=1,2,...,n into one that is
numerically more convenient. Any method using such a
transformation is an indirect search method since it searches
for the admixture coefficient values instead of the eigenvector
changes.

Applying this relationship for the eigenvector changes and
neglecting terms of order A%, A%, and A* we get the first-order
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perturbation equations in terms of A

(T 8K — WA [Am] o] =MiA(ef)  fori=)

=M;c; (w? ——wf—) for i=j
1)

where M; and M; are the ith and jth generalized mass terms
given by Eq. (6).

Solution of the first-order equations require the
specification of the frequency changes A(w?) and the mode
shape changes Ay, in terms of the admixture coefficients ¢,
where Ay, is the change in the kth degree of freedom of the
ith mode.

In order to eliminate the admixture coefficients, whose
physical interpretation is difficult, the following algebraic
manipulations are performed. Note that the change to the kth
degree of freedom of the ith mode in terms of the admixture
coefficients is

Ay =cidrr t oo+t ey ¥rior +Ciis ¥k i

n

Fot b = Y b
=1
J#Ei

22

Also note that by rearranging Eq. (21) when i#j, the ad-
mixture coefficient ¢;; can be expressed as

1

CA-=-——
v Mj(w‘,?—-wf)

(1Y) [AKT ) —wf (Y3 ] [Am] (¥3)) (23)

Applying Eq. (23) to Eq. (22) we develop an expression that
directly relates the physical mode shape changes to the
structural changes

_ 4 ¢kj T
svu= 1[5t oy (W L8191,

j=1
Jj#i

—oF (I (am1(9)) | @4)

Using the relationships for the structural changes defined by
Egs. (18) and (19), the first-order perturbation equations for a
natural frequency change to the ith mode can be written as

1
A(w,g) =1\7-

1

[E (M,T[kg]{w},-—w?m?[mewmae]
e=1
(25)

and for changes to the kth degree of freedom on the ith mode
as

_ g n ¢k]
avu= B | B aritany (W kv,

=1 L=
i
—w;?mf[mewm]ae 26)

Equations (25) and (26) are a set of linear equations with
respect to «, that, when solved, will provide a first-order
approximation to the structural changes. Should nonlinear
expressions be used instead of Eqs. (18) and (19), then Egs.
(25) and (26) would be nonlinear.
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The predictor phase problem can be of type 1, 2, or 3
depending on the relation between ¢ and S. In any case, the
problem solution will yield first-order approximate values to
the o element change properties «,. The predictor phase
algorithm is summarized in Fig. 2.

Corrector Phase

In the corrector phase, the first-order approximations to
the structural changes are used to calculate a first-order
approximation to the objective eigenvectors. These ap-
proximate objective eigenvectors are used in the general
perturbation equations to correct the elemental changes.

The approximate objective eigenvectors are calculated
using the linear mapping provided by Eq. (20), where the
admixture coefficients ¢;; are calculated from Eq. (23). With
the approximate eigenvectors developed, the general per-
turbation equations (15), combined with the definitions for
structural changes [Eqs. (18) and (19)], are used to develop
the following equation:

8:21 3] Tk I Y=o/ 207 T Tm, 1147 3 ) e,

=W Imlty w2 = (9 3 TR (), @7

which provides the corrected structural changes. This
equation is used for all modes where a frequency constraint is
specified. The corrector phase problem can be of type 1, 2, or
3 depending on the relation between ¢ and the number of
specified natural frequencies. At the end of the predictor

Algorithm Comments
INPUT & mizq , k1, [m) Baseline system
[¢*) From predictor phase
A(wiz) Objective frequencies
(27}
/
CORRFECTION e Fractional changes
(10), (1),
(18),(17),
(18),{(19)
Y
k'1, [m') Updated mass and
stiffness matrices
Rayleigh's quotient
w12

1

Fig. 3 Corrector phase algorithm.

Fig. 4 Disk drive aluminum casting with design parameter sets.
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Table 1 Percentage thickness changes by predictor and corrector phase
for each increment

Increment No. Final thick-
Element 1 2 ness design
set Predictor Corrector Predictor Corrector change o;

1 7.0 6.2 -0.6 12.1 19.0
2 6.7 16.0 2.8 -17.4 -4.2
3 14.5 39.8 2.8 13.4 58.6
4 10.0 10.1 5.1 15.3 26.9
5 8.4 -4.0 3.5 13.9 9.3
6 7.6 58.0 4.6 20.0 89.6
7 2.4 0.1 2.4 7.9 8.0
8 6.5 9.4 1.1 6.5 16.6

I

Fig. 5 First mode—floor twist.

phase, however, all the modal degrees of freedom have been
computed to first order and are known in the corrector phase
problem. Thus, the only unknowns are the o structural
changes «, and in practice the corrector phase problem is
usually of type 3. When i=j, Eq. (27) enforces the frequency
constraint on the ith mode. When i, Eq. (27) is interpreted
as enforcing orthogonality between the ith and jth mode
shapes.

In the above formulation, only some of the natural
frequencies and mode shapes are constrained. If the designer
wishes to limit the changes in one of these modes, he should
specify upper and lower bounds on their characteristics. The
unconstrained modal characteristics, and particularly those of
modes close to the constrained modes, are affected in the final
design. The corrector phase algorithm is summarized in Fig.
3.

Disk Drive Aluminum Casting Redesign
The purpose of this example is to redesign the aluminum
casting of the Irwin-Olivetti Winchester disk drive to raise the
first natural frequency by 30%. Solution of the problem is
considered using the design objective of least change from the
baseline structure.

Finite Element Model

It is desired to consider the vibration of the structure as a
free body in space. In order to remove the rigid-body
motions, the structure is supported by soft springs at the
corners.

A total of 312 structural elements were used, involving 209
nodes and 1254 degrees of freedom (Fig. 4). There were 144
beam elements, 8 spring elements, 159 quadrilateral plate
elements, and 1 triangular plate element. The quadrilateral
and triangular plate elements were used to model the basic
casting geometry, while the beam elements were used for the
various stiffeners. The spring elements were used to support
the structure.

The eigenvalue analysis was performed using the inverse
power method option in MSC/NASTRAN. A truncated set of
the first eight modes were extracted. The natural modes were
normalized by setting the maximum value of each mode to
unity, The first natural frequency of the baseline structure

occurred at 393.6 Hz. The motion of the structure
corresponds to a twisting of the main floor (Fig. 5).

Design Variables

The design variables for the analysis are the plate
thicknesses of the structural elements. Beam and elastic spring
elements are held at their baseline values. Variation of only
the plate thickness is not considered a significant limitation on
the analysis since the plate elements contain over 75% of the
strain energy in the first mode. Design variable linking is
employed to link the thickness of several elements to one
design parameter. A total of 16 design parameters remain
after linking the 160 plate elements. Linking is performed on
the basis of similar geometric and structural properties.
Manufacturability and perturbation analysis cost con-
siderations are primary reasons for variable linking.

To further reduce the number of significant variables, the
strain energy of each one of the 16 parameter sets was
calculated. Only sets 1-8 have significant strain energy values
for the first mode. Therefore, only these sets are included in
the analysis. (See Fig. 4.)

Constraints on Design Variables

Several constraints are imposed on the design variables to
insure a practical design. The thickness of any plate is limited
to a minimum of 1.8 mm (0.070 in.) while the maximum
thickness is unlimited.

Results

The analysis was performed using two increments of the
predictor-corrector technique. In the first increment a.
frequency of 470.0 Hz was achieved, while the second in-
crement achieved the final value of 515.6 Hz. This final value
represents a 31% increase in the first natural frequency or a
3.3% error in our objective of 511.6 Hz. If the designer wishes
to achieve the exact value, another increment could be used.
However, this will increase the cost of the analysis.

In the predictor phase the problem was formulated as a type
1 problem with y

1) A minimum change objective: min e:E ol.

2) Eight optimization variables (o0 =8).

3) One equality constraint, that is, Eq. (25) for the first
natural frequency.

4) Eight inequality constraints defining the lower bounds
for plate thicknesses.

This optimization problem was (a quadratic programming
problem) solved using the Nelder and Mead simplex
method. "’

In the corrector phase, the problem was formulated as a
type 2 problem with eight unknowns (oc=8) and eight
equations like Eq. (27) for the first eight modes. The
simultaneous solution of the eight equations yielded one
solution that did not satisfy the eight inequality constraints
defining the lower plate thickness bounds. Consequently, the
problem was formulated as a type 3 problem with eight
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unknowns (o=38), eight equations like Eq. (27) for the first
eight modes, and eight inequality constraints defining the
lower plate thickness bounds. This produced a solution that
minimized the error in the equality and inequality constraints.

Results for the predictor and corrector phases of each
increment, as well as the total changes, corresponding to each
parameter set are shown in Table 1. In each increment the
difference between the predicted changes and the corrected
changes is significant. This is interpreted as the adjustment of
the predictor phase changes to account for higher-order
effects and enforcement of the orthogonality conditions
between modes.

Summary

A nonlinear incremental inverse perturbation method for
structural redesign has been developed. The method uses a
single finite element analysis of an undamped baseline
structural system and can be applied to large or small natural
frequency and/or mode shape changes. The redesign problem
is solved using an incremental predictor-corrector technique.
A 1254-degree-of-freedom aluminum casting has been
redesigned for a frequency objective, which was achieved in
two steps within 3.3%.
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