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Optimal Multistage Schemes for Euler Equations
with Residual Smoothing
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A numerical technique, composed of the Van Leer-Tai-Powell optimization and a modified procedure, is applied
to design multistage schemes that give optimal damping of high frequencies for given upwind-biased spatial
differencing with implicit and explicit residual smoothing. The analysis is done for a scalar convection equation
in one space dimension. The object of this technique is to make the schemes suited for multigrid acceleration.
The optimal multistage schemes and their damping properties are presented in this paper. By keeping the multistage
coefficients from the one-dimensional analysis and simply redefining the Courant number, the schemes can be
applied to multidimensional problems. A fast Euler code is used to evaluate the suitability of the schemes for
multidimensional multigrid computations. Numerical results show that the modified schemes effectively enhance
the convergence performance on both single and multiple grids.

I. Introduction

T HE computation of a steaty flow pattern induced by a specific
fixed geometry has been done traditionally by implicit methods

in the past few decades. This is due to the relatively large reduction
in residual that can be achieved in one iteration step. Once multi-
grid relaxation was successfully implemented for solving hyperbolic
equations, explicit methods became very effective and available for
marching to steady-state solutions. Explicit methods have many
advantages over implicit methods: they can be easily executed on
computers with vector or parallel architectures, and they allow local
grid refinement. The last advantage is crucial, since adaptive grid
refinement seems to be the most promising way to efficiently obtain
spatial accuracy in complex problems.

The explicit time-integration method proposed by Jameson
et. al.1 and Jameson,2 which is founded on separate time and
space discretizations, is a remarkable combination of components
including convergence-acceleration techniques and multigrid relax-
ation. Since the multigrid strategy acts to remove low-frequency
components of the error while marching, it suffices for the single-
grid scheme used on each grid to damp only the high frequencies.
Tai3 and Van Leer et al.4 have shown how to develop multistage
integration methods that yield optimal damping of high-frequency
modes. These schemes were derived for a scalar convection equa-
tion in one space dimension, and used to solve one- and mul-
tidimensional Euler equations. The analysis for optimizing the
smoothing properties of multistage scheme was extended to a two-
dimensional scalar convection equation by Catalano and Deconick5

and, more satisfactorily, by Lynn and Van Leer.6 In the latter
work, the optimization method is extended to the system of Euler
equations, using the local preconditioning of Van Leer et al.7 to
make the system act more like a scalar equation. These devel-
opments largely enhance the convergence performance of explicit
methods.

The convergence-acceleration techniques introduced by
Jameson2 are local time-stepping, enthalpy damping, and residual
smoothing. Among these techniques, implicit residual smoothing

(IRS) is particularly effective, since it increases the maximum al-
lowable Courant number and smoothes the high-frequency com-
ponent of the residual, as needed in multigrid relaxation. Jameson
suggested some multistage schemes with good smoothing proper-
ties and derived a formula to obtain new Courant number while
increasing smoothing coefficients. Enander8 also tried to improve
the high-frequency damping properties of multistage schemes by
using the developed combined implicit-explicit residual smoother.
More recently, Blazek et al.9 introduced a upwind-biased operator
for the IRS method and showed this method allows substantially
higher Courant-Friedrichs-Lewy (CFL) numbers as compared to
the centered IRS method. In this paper, only a central differencing
operator for the implicit and explicit residual smoothing (ERS) is
of interest.

In the present study we design optimally smoothing multistage
schemes for given upwind-biased spatial discretizations10 using
a central-difference IRS and ERS operator for extra smoothing
and stability. They are designed by means of the Van Leer-Tai-
Powell optimization3'4 and a modified procedure. Since the spa-
tial discretization dictates the final accuracy of the solution, the
most natural way is to select the spatial discretization and then
select the multistage coefficients in such a way that short waves
are effectively damped. This means these schemes are designed
purely for their properties of damping and stability, without re-
gard to time accuracy. The search for the values of the parame-
ters of the multistage schemes that yield optimal damping is done
numerically.

Based on the finite volume formulation,2'11 a high-efficiency
multigrid code for solving the Euler equations was programmed
to simulate the axisymmetric external flowfield about a projec-
tile. This code has been used for the actual multidimensional
application of the optimal multistage schemes. Besides resid-
ual smoothing the code includes local time-stepping to speed
up the rate of convergence and to make the smoothing analy-
sis more appropriate. Convergence performance of these schemes
and a comparison with the classical Runge-Kutta schemes are
presented.
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II. Optimization of the Multistage Scheme
A. Van Leer-Tai-Powell Optimization

Consider the linear ordinary differential equation

du
—dt (1)
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and use a predictor-corrector integration method to discretize the
temporal term as

u = un+a\Atun

un+l = un + XAtu = [1 + AAf + a(AA02K (2)

where the time-step ratio or is a free parameter. Apparently, the
stability and damping properties are determined by the complex
polynomial:

P2(z, a) = 1 + z + cez2, z = h-At (3)

This polynomial has two complex-conjugate zeros which move
along a circle when varying a.

When a partial differential equation is interpreted by the method
of lines, A, represents the Fourier transform of the spatial differ-
encing operator and depends on the spatial frequency f or, more
specifically, on the spatial wave number ft = 2n%Ax. For instance,
consider the one-dimensional linear convection equation

du 8u
c> 0 (4)

and discretize the space term by first-order upwind differencing.
After inserting harmonic data u(x) = UQe~27ri^x, Eq. (4) reduces to
an equation of the form (1)

At—=-v(l -
at (5)

where the nondimension time step v = c A?/ AJC is the CFL number.
All information about the spatial differencing operator is included
in the complex function

z(/8) = -v(l - «-") (6)

Similarly, the complex function for the kappa10 scheme becomes

+ (1 +*)(«" -1)]}. (7)

The parameter K of the high-order upwind-biased differencing regu-
lates the upwindedness: K = I yields central differencing, K .= — I
second-order accurate fully one-sided differencing, K = 1/3 third-
order accurate upwind-biased differencing. If a certain frequency ft
needs to be perfectly damped, one inserts z(ft) into P(z) and de-
termines the values of v and a that make the amplification factor
vanish.

Applying a sequence of m predictor-corrector methods generates
schemes with an even number of stages (2m). To get a scheme
with 2m H- 1 stages, a single application of the forward Euler time
integration scheme

un+l = (1 + A.AOM" (8)

should be added to the string of m predictor-corrector methods. The
forward-Euler scheme has amplification factor

P1(z) = l+z (9)

This polynomial has one zero at z = -1. For first-order upwind
differencing, the spatial frequency that can be perfectly damped is
ft = 7t, and the required CFL number is 1 /2.

A general £-stage scheme with final marching time step Af can
be written as

(10)

where yk is the £th coefficient of the £-stage scheme, and yt = 1.
The scheme has the amplification factor

(H)

In the optimization procedure of Van Leer-Tai-Powell, a string of
predictor-corrector methods, which damp different Fourier modes
in the high-frequency range [n/2, n} and, possibly, a single forward-
Euler step, are merged into the multistage scheme. Therefore, the
amplification factor of the scheme can be written as

(12)

The coefficients and CFL number of the multistage scheme can be
found by multiplying out and comparing Eqs. (11) and (12). But this
combined multistage scheme may not be an optimal smoother. The
optimization method of Tai3 and Van Leer et al.4 can now be im-
plemented to minimize the maximum of the amplification factor in
the high-frequency range. A set of perfectly damped frequencies
is perturbed by means of Newton's iterative method, until all local
maxima of the amplification factor in the high-frequency range are
equalized within a specified margin. The parameters of optimized
schemes for certain spatial discretizations, without use of residual
smoothing, are shown in Table 1. In the table, v is the CFL number, %
the kth coefficient of the optimal multistage scheme, and |P|max the
equalized minimal maximum of the amplification factor of £-stage
scheme in the range [jr/2, TT]. The optimized schemes designed in
this paper are for the first-order upwind scheme and a range of kappa
schemes (excluding central differencing K = 1). From the table it
is observed that the higher is the number of stages, the greater is
the CFL number and the better is the damping of high-frequency
errors.

The contours of the amplification factor of the five-stage scheme
optimized for the third-order spatial differencing, K = 1/3, together
with the locus of the Fourier transform z(ft) of the spatial operator
(dashed line), are indicated in Fig. la. The contour levels for the
magnitude of the amplification factor are | P \ — 1,0.9,0.8,0.7,0.6,
0.5, 0.4, 0.3, 0.2, 0.1, 0.05, and 0.01. A graphic representations of
the amplification factor as a function of ft is given in Fig. Ib for
five different multistage schemes, all optimized for third-order dif-
ferencing without residual smoothing. Note that the CFL number
achieved in an £-stage scheme is considerably lower than the maxi-
mum stable CFL number for that ^-stage scheme, which makes the
optimal multistage schemes robust marching schemes.

B. Modified Procedure
The residual smoothing, using central differencing, is applied

implicitly in the following form

(l-s82)R = R (13)

where R is the residual^ R is the averaged residual, £ is the smooth-
ing coefficient, and 82 is the discrete Laplace operator. Smoothing
is applied in each stage. The Fourier transforms of the averaged
residuals corresponding to Eqs. (6) and (7) are

(14)

and

-1)1}
+ 2s -

(15)

Using the optimization procedure of Sec. II. A, four-stage schemes
for the third-order spatial differencing, with various smoothing co-
efficients, were obtained and are defined in Table 2. The damping
and stability properties of these schemes are indicated in Figs. 2a
and 2b. Although the maximum of the amplification factor in the
high-frequency range has been minimized for each scheme, the mag-
nitude of the amplification factor in the low-frequency range lies
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Table 1 Optimally smoothing multistage schemes for given spatial differencing without residual smoothing

Stage V Xi X2 X3 X4 X5 X6 l^lmax

First-order upwind scheme

2
3
4
5
6

1.0
1.5
2.0
2.5
3.0

0.3333
0.1481
0.0834
0.0533
0.0370

1
0.4000
0.2071
0.1263
0.0851

1
0.4267
0.2375
0.1521

1
0.4414
0.2562

1
0.4512

0.3333
0.1414
0.0594
0.0244

1 0.0100

0.9134
2.0336
2.3240
3.0437
3.5851

0.8277
1.3256
1.7316
2.1666
2.5981

0.7029
1.0559
1.3999
1.7484
2.0975

0.6054
0.8949
1.1.884
1.4841
1.7805

0.5294
0.7808
1.0370
1.2951
1.5537

1.1283
0.3557
0.2380
0.1464
0.1038

0.6612
0:2883
0.1668
0.1067
0.0742

0.5409
0.2469
0.1400
0.0897
0.0623

0.4824
0.2209
0.1249
0.0800
0.0556

0.4475
0.2038
0.1151
0.0738
0.0512

Kappa scheme, K =

1
0.3739
0.2850
0.1876
0.1415

1
0.5629
0.3293
0.2303

Kappa scheme, K =

1
0.5009
0.3028
0.1978
0.1393

1
0.5276
0.3233
0.2198

0.4895
0.3227

1
0.5201
0.3301

Kappa scheme, K = 0

1
0.5210
0.2939
0.1866
0.1288

1
0.5252
0.3152
0.2106

0.5216
0.3251

Kappa scheme, K — —

1
0.5149
0.2809
0.1757
0.1201

1
0.5193
0.3057
0.2018

1
0.5174
0.3178

Kappa scheme, K =

1
0.5038
0.2694
0.1670
0.1135

1
0.5121
0.2971
0.1944

,0.5120
0.3109

Kappa scheme, K = —I

1
0.5129

1
0.5178

1
0.5185

1
0.5150

1
0.5106

0.8094
0.6527
0.4304
0.3034
0.2077

0.7016
0.4672
0.2952
0.1849
0.1153

0.6633
0.4210
0.2576
0.1559
0.0938

0.6429
0.4006
0.2411
0.1433
0.0848

0.6288
0.3884
0.2314
0.1361
0.0797

2
3
4
5
6

0.4693
0.6936
0.9214
1.1507
1.3806

0.4243
0.1919
0.1084
0.0694
0.0482

1
0.4930
0.2601
0.1603
0.1085

1
0.5051
0.2898
0.1884

1
0.5067
0.3049

1
0.5062 1

0.6178
0.3799
0.2248
0.1313
0.0763

Table 2 Four-stage schemes modified by the Van Leer-Tai-Powell
optimization without the modified procedure, for the third-order

kappa scheme with IRS

Xi X2 X3 X4

0
0.1
0.2
0.3
0.4
0.5
0.6

1.7316
2.2858
2.8179
3.3331
3.8367
4.3325
4.8227

0.1668
0.1712
0.1755
0.1795
0.1830
0.1861
0.1888

0.3028
0.2926
0.2868
0.2830
0.2802
0.2781
0.2764

0.5276
0.5168
0.5134
0.5129 .
0.5136
0.5148
0.5162

Stable
Stable
Stable
Stable

Unstable
Unstable
Unstable

outside the stability region, especially for the smoothing coefficients
greater than 0.3. It is seen that the instability becomes worse when
increasing the smoothing coefficient in the IRS method. When us-
ing the Van Leer-Tai-Powell optimization, the resulting multistage
schemes for all given spatial discretizations show the same unstable
behavior. Clearly, the procedure has to be modified.

On the other hand, it is observed that the multistage coefficients
obtained by applying the Van Leer-Tai-Powell optimization do not
change significantly while the smoothing coefficients increase, even
for s = 0.5 and s = 0.6, see Table 2. This observation moti-
vated the following modified procedure: keep the coefficients from
the Van Leer-Tai-Powell optimization without residual smoothing,
then search for the optimal CFL number that minimizes the area
under the high-frequency amplification-factor curve while satisfy-
ing the stability condition for all low frequencies. After the modi-
fied procedure, the CFL number for the first-order upwind scheme
and the kappa schemes (K = 1/3, —1) with various smoothing
coefficients become those listed in Table 3. It is seen that the
CFL number now increases with increasing smoothing coefficient.
For instance, the three-stage scheme obtained by the Van Leer-
Tai-Powell optimization for the third-order kappa scheme without
residual smoothing has a CFL number of 1.3256, as seen in Table 1.
Applying the modified procedure, a scheme results with a CFL num-
ber of 3.0029. Figure 3a shows the amplification factor for the two
optimal schemes and also for the smoothed scheme using the opti-
mal CFL number of nonsmoothed scheme.
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Optimal 5-stage scheme
____CFL=2.1666 ""

-6.0 -4.0

Fig. 1 Optimal multistage schemes, for the third-order scheme without
residual smoothing: a) locus and contours of optimal five-stage scheme
and b) amplification factor.

Residual smoothing can also be implemented explicitly (ERS),
to suit parallel computing and unstructured grids. In this case the
residual R is replaced by the average

(16)

at each stage of multistage scheme. Using central differencing in the
ERS method, the complex function z(p) corresponding to Eqs. (6)
and (7) become

- 2s (17)

and

+ (1 + K)(eift - !)]}[! - 2s + B(j* + e-* (18)

It is seen that for s > 1/4, there are Fourier modes such that R
could be zero when R is not. Applying the modified procedure,
the CFL number for the first-order upwind scheme and the kappa
schemes (K = —1,1/3) with various smoothing coefficient were
obtained and are listed in Table 4. It is seen that the CFL number
increases with increasing smoothing coefficient. For instance, the
three-stage scheme obtained by the Van Leer-Tai-Powell optimiza-
tion for the third-order scheme without residual smoothing has a
CFL number of 1.3256, as seen in Table 1. Applying the modi-
fied procedure for s = 0.2, a scheme results with a CFL number of

2.0 -

lm(Z)

.0

-2.0

-4.0

Optimal 4-stage scheme [Table 2]
without the modified procedi
with IPS, e =0.6
____CFL=4.8227

-6.0 -4.0

a)

-2.0
Re(Z)

2.0

1.60

1.20

.40 -

.00

b)

Optimal 4-stage scheme [Table 2]
without the modified procedure
with IPS

71/4 71/2 371/4

Fig. 2 Optimal four-stage scheme without the modified procedure, for
the third-order scheme with IRS: a) locus and contours and b) amplifi-
cation factor.

2.3180. Figure 3b shows the amplification factor for the two optimal
schemes and also for the smoothed scheme using the optimal CFL
number of nonsmoothed scheme. From Tables 3 and 4, it is observed
that the CFL number for the ERS method is larger than one for the
IRS method with the same smoothing coefficient. It is seen that the
damping and stability are greatly improved by the modified proce-
dure. Thus, the procedure makes the schemes a good "smoother" as
multigrid strategy requires.

HI. Extension to Multidimensional Problem
Applying the multistage schemes optimized by one-dimensional

analysis to multidimensional or axisymmetric convection prob-
lems is not so straightward. Fortunately, as shown by Tai,3 a two-
dimensional minimax technique for a two-dimensional convection
leads to optimal multistage coefficients that are not significantly
different from those obtained by one-dimensional optimization, al-
though the optimal CFL number may differ somewhat. Thus, the
practical strategy proposed in this paper is keeping the coefficients
from one-dimensional analysis and redefining a two-dimensional
CFL number.

It is obvious that the schemes should be optimal with regard
to errors propagating in the convection direction; this only requires
extending the definition of Courant number to the case of convection
through a two-dimensional grid. Consider a two-dimensional cell
ABCD, as shown in Fig. 4; set the convection speed in the x and
y directions equal to a and b. From a consideration of numerical
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1.00

.75
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.50

.00
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1.00

.75

IPI

.50

.25

.00

b)

Opt. 3-stage scheme:
(with IRS)
___"CFU1.3256, £=0
without the modified procedure
___ CFU1.3256, e=0.5
with the modified procedure
___ CFL=3.0029, 8=0.5

71/4 7C/2p 37C/4

Opt. 3-stage scheme:
(with ERS)
____ CFL=1.3256, e-0
without the modified procedure
___ CFL=1.3256,. e=0.5
with the modified procedure
___ CFL=2.3180, £=0.5

7C/4 7C/2
p

3n/4

Fig. 3 Amplification factor of optimal three-stage scheme with and
without the modified procedure for the third-order scheme with a) IRS
and b) ERS.r

Ay

i
Ax

Fig. 4 Geometry of two-dimensional cell.

stability, the characteristic cell width in the convection direction
should not be greater than AG. From geometric relations, the length
of AG can be found to be

|AG| =
bAx 4-flAv-

and the CFL number based on this length would be redefined as

(19)

AG A>
(20)

Table 3 CFL number of optimally smoothing multistage scheme for
_________IRS with various smoothing coefficient_______________

Stage
e 2 3 4 5 6

First-order upwind scheme

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.2847
1.5720
1.8443
2.1023
2.3435
2.5699
2.7832
2.9835
3.0038
3.0120

1.1014
1.2038
1.3730
1.5267
1.6555
1.1414
1.8225
1.8996
1.9734
2.0442

1.9054
2.2673
2.6233
2.9687
3.2888
3.5856
3.8630
4.1207
4.3682
4.6020

2.5876
3.0182
3.4262
3.8403
4.2336
4.5889
4.9178
5.2250
5.5173
5.7940

Kappa scheme, K = 3

1.6683
1.9907
2.2804
2.5419
2.7804
3.0029
3.1562
3.2842
3.4052
3.5206

2.1633
2.5748
2.9509
3.2887
3.5971
3.8827
4.1478
4.4008
4.6401
4.8695

3.2888
3.7879
4.2299
4.6909
5.1381
5.5370
5.9035
6.2483
6.5784
6.8902

2.6925
3.1804
3.6430
4.0564
4.4317
4.7799
5.1041
5.4.127
5.7046
5.9862

3.9952
4.5891
5.0704
5.5719
6.0448
6.4675
6.8637
7.2427
7.6017
7.9502

3.2306
3.7854
4.3233
4.8088
5.2747
5.6526
6.0342
6.3954
6.7395
7.0690

Kappa scheme, K = — 1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.2552
0.2562
0.2572
0.2581
0.2592
0.2601
0.2611
0.2621
0.2630
0.2640

0.8267
0.8303
0.8338
0.8374
0.8409
0.8439
0.8471
0.8503
0.8536
0.8567

1.1674
1.4002
1.6205
1.8354
2.0493
2.2615
2.4741
2.6859
2.8929
3.0956

1.4851
1.7725
2.0321
2.2808
2.5258
2.7701
3.0145
3.2579
3.5040
3.7487

1.8082
2.1619
2.4654
2.7446
3.0219
3.2964
3.5691
3.8421
4.1180
4.4016

robust in the sense of reproducing the good damping properties
of the optimized one-dimensional schemes for two-dimensional
convection.

IV. Fast Euler Solver
A fast Euler solver was developed to prove the applicability of

the optimally smoothing multistage schemes to an axisymmetric
Euler flow problem. An axisymmetric secant-ogive-cylinder-boat-
tail projectile (SOCBT) is used as the testing model. The compress-
ible inviscid external flow of the projectile is described by the Euler
equations in conservation form. A finite volume method was chosen,
i.e., the integratial formulation of the equations is directly discretized
in physical space. A system of ordinary differential equations in
time is obtained by applying the spatial discretization in each cell.
First-order upwind differencing and the Van Leer kappa schemes
were chosen to be the spatial discretization. Roe's flux-difference
splitting,12 modified to satisfy the entropy condition,13 was adopted
to evaluate the fluxes through the control surfaces. The Van Albada
limiter was imposed on the kappa schemes to prevent numerical
oscillations.

The residual smoothing is applied on the finest and coarser grid
levels. In the two-dimensional case, the implicit and explicit steps
are applied in product forms

and

(21)

(22)

where v is the CFL number obtained from one-dimensional analysis.
This may not be the perfect choice, but it has been shown to be very

i.e., approximation factorization is applied to obtain the aver-
aged residual. It is not at all clear that a two-dimension anal-
ysis for sx = sy would yield an optimal CFL number that is
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Table 4 CFL number of optimally smoothing multistage scheme for
________ ERS with various smoothing coefficients _______

Stage
e

First-order upwind scheme

0.05
0.10
0.15
0.20
0.25

0.05
0.10
0.15
0.20
0.25

1.1643
1.4150
1.7580
2.1048
2.2368

0.9277
1.0862
1.2512
1.3784
1.4018

1.7448
2.0323
2.4101
2.8921
3.1791

2.3780
2.7130
3.1089
3.6673
4.0907

Kappa scheme, K = |

1.5233
1.7878
2.0744
2.3180
2.4442

1.9799
2.3019
2.6707
3.0014
3.2158

3.0165
3.4498
3.8613
4.4714
5.0179

2.4739
.2.8420
3.2877
3.7031
3.9956

3.7033
4.1951
4.6450
5.3020
5.9530

2.9075
3.3047
3.8016
4.2938
4.6588

Kappa scheme, K = — 1

0.05
0.10
0.15
0.20
0.25

0.2547
0.2552
0.2557
0.2562
0.2567

0.7920
0.9608
1.1725
1.1936
1.1949

1.0638
1.2510
1.4781
1.8010
2.1868

1.3525
1.5912
1.8377
2.1802
2.6208

1.6435
1.9447
2.2250
2.5854
3.0573

close to the value derived from one-dimension analysis. How-
ever, we have already redefined a two-dimensional CFL number
suited for two-dimensional convection term. It has been shown
that using the redefined CFL number will not make the opti-
mal multistage schemes unstable. Therefore, the smoothing coef-
ficients used in the different directions are set to be equal in this
paper.

Recall that the multigrid method effectively removes the low-
frequency components of error on the coarser grids in the iter-
ative procedure but requires a good single-grid smoother. Thus,
the use of a multistage scheme with good high-frequency damp-
ing on each grid may effectively improve the performance of the
multigrid strategy.2-14 Therefore, the optimally smoothing multi-
stage scheme was considered as the time-integration method. The
multigrid strategy used in the test code is a saw-tooth cycle,2 in
which first-order upwind differencing is used on all coarse grids
and the kappa schemes only on the finest grid. A powerful tech-
nique is to perform some preliminary iterations on a coarser grid,
then use the resulting approximation as an initial guess on the
finer grid; this so-called "nested iteration" was used in the fast-
solver to get a better initial quess on the finest grid. In addi-
tion, one more acceleration technique was used, i.e., local time
stepping which allows each cell to advance in time at maximum
rate and makes the scalar, constant-coefficient analysis locally
applicable.

V. Application of the Optimally Smoothing
Multistage Schemes

The numerical application of the optimal multistage schemes was
carried out for the SOCBT projectile in supersonic flow, M^ = 1.2,
at zero angle of attack. All computations were performed on an
HP-750 workstation and achieved a drop of residual to 10~6. The
computational work required for convergence, denoted as WU, is
expressed in terms of finest-grid residual calculations. Most of the
test cases were performed by using a 64 x 64 mesh which was
generated by O-type elliptic solver. Figure 5 is the expanded view
of the grid.

A. Grid Analysis
The quality of the solution and the effect of mesh size on con-

vergence can be inferred from Figs. 6-8. Figure 6 shows the pres-
sure coefficient [defined as Cp = (p - /?00)/l/2p00f/(

2
<)] on the

projectile, obtained by using the optimal five-stage scheme for the
first-order upwind scheme with the IRS method, s = 0.5, on single-
and five-level grid calculations (64 x 64 cells). The surface pres-

Y/D

-9.0
-6.0 12.0

Fig. 5 Expanded view of computational grid near the model.

1.80

1.00 -

Cp

-.60

By using the optimal 5-stage with CFL=5.1381
(for the 1st-order upwind scheme with IRS, £=0.5)

o o Experiment
——— 1-level Calculation

A 5-level Calculation

.0 2.0 4.0 6.0
X/D

Fig. 6 Surface pressure distribution of the test model.

5.0

2.5 -

Y/D

.0 -

-2.5 -

-5.0
-1.0 1.5 4.0 6.5 9.0

X/D

Fig. 7 Pressure contours of the test model.

sure distributions of the SOCBT projectile for both calculations are
identical and in agreement with the experimental data.15 Figure 7
is the pressure contour plot for the projectile at M^ = 1.2. In this
figure, the flow pattern of projectile, such as an attached shock, ex-
pansions, and a recompression shock can be found. Meshes with
different numbers of cells, 64 x 64,128 x 64, and 128 x 128, were
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-3.00

Optimal 5-stage scheme with CFL=5.1381
(for the 1st-order upwind scheme with IRS, e=0.5)

1-level Calculations:

-4.00

Log(Res).

-5.00 -

5-level Calculations : ___ 64X64
____ 128X64
..„.„.„. 128X128

-6.00

____ 64X64
____ 128X64
_ _ _ _ _ _ 128X128

-3.00

7000. 14000. 21000.
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Fig. 8 Convergence history of optimal five-stage scheme on single- and
five-level grids with different grid size.

-3.00

Optimal schemes
(for the 1st-order upwimd scheme with IRS.e =0.5)

-4.00

.og(Res) -

-5.00 -

___ 2-stage; CFL=2.3435
____ 3-stage; CFL=3.2888
____ 4-stage; CFL=4.2336
____ 5-stage; CFL=5.1381

-6.00
5000. 10000. 15000.

WU
Fig. 9 Convergence history of optimal schemes with different number
of stage.

used to test convergence dependence on cell size. Figure 8 shows
results of the optimal five-stage scheme for the first-order upwind
scheme with the IRS method, s = 0.5, implemented on a single-
and a five-level grid. It is seen that the multigrid convergence is
not completely independent of the number of cells in the finest

-grid.

B. Covergence Effect of the Optimal Multistage Stages
The effect of the number of stages on convergence can be seen

in Fig. 9. The results in this figure are obtained by using the op-
timal two-, three-, four- and five-stage schemes for the first-order
upwind scheme with IRS, s = 0.5, on single- and five-level grids.
It is shown that the convergence of these schemes is effectively
enhanced by using the multigrid strategy. The convergence of the
two-stage scheme is superior to the others for a single-level calcu-
lation. This is because it uses fewer flux calculations per unit CFL
number. However, for the five-level calculations, the convergence
histories of all of the schemes are similar. This is because in multi-
grid relaxation the damping properties become important, and these
are better for the many-stage schemes. The effect of the number of
grid levels can be seen in Fig. 10, showing the convergence histo-
ries of calculation for various numbers of levels, by using for the
optimal five-stage scheme and the first-order upwind scheme with
the IRS and s = 0. The convergence history of the single-grid cal-
culation illustrates that initially the residual decreases sharply, cor-
responding to the quick elimination of the high-frequency modes,

-4.00

Log(Res).

-5.00 -

-6.00

Optimal 5-stage scheme with CFL=5.1381
(for the 1st-order upwind scheme with IRS, £=0.5)

___ 1 level
___ 2 levels
___ 3 levels
___ 4 levels
___ 5 levels

5000. 10000.
WU

15000.

Fig. 10 Convergence history of optimal scheme on grids with different
number of levels, first-order upwind scheme.
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Log(Res).

-5.00 -

-6.00

Optimal 5-stage scheme with CFL=2.5258
(for the 2nd-order upwind scheme with IRS, £=0.5)

___ 1 level
___ 2 levels
___ 3 levels
___ 4 levels
___ 5 levels

V/\ ,' ^M^V .-4\ /x\/y\^v-^%;\>
10000. 20000.

WU
30000. 40000,

Fig. 11 Convergence history of optimal scheme on grids with different
number of levels, second-order upwind scheme.
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-5.00 -

-6.00

Optimal 5-stage scheme with CFL=4.4317
(for the 3rd-order scheme with IRS, £=0.5)

___ 2 levels
3 levels

___ 4 levels
___ 5 levels

30000.10000. 20000.
WU

Fig. 12 Convergence history of optimal scheme on grids with different
number of levels, third-order scheme.

followed by a slow decrease due to the low-frequency modes. The
five-level calculation displays the best convergence performance,
illustrating that the multigrid code based on the optimal scheme
effectively benefits from the damping of the low-frequency errors.
Figures 11 and 12 show the multilevel convergence behavior of
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6000. 12000. 18000.
WU

Fig. 13 Convergence history of optimal scheme with different smooth-
ing coefficients, IRS.
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Fig. 14 Amplification factor of optimal five-stage scheme with different
smoothing coefficients, IRS.

optimal five-stage schemes for the kappa scheme (K — —1,1/3)
with the IRS method, s = 0.5.

A convergence comparison of the optimal five-stage schemes
for first-order upwind differencing with IRS, s = 0, 0.2, 0.5, and
0.8, on single- and five-level calculations is shown in Fig. 13. It is
seen that the speed of convergence increases while the smoothing
coefficient increases, as expected, because of the better damping
properties and the larger Courant number. It is also seen that
the convergence efficiency does not improve dramatically by in-
creasing the smoothing coefficient beyond about 0.5. Figure 14
shows that the high-frequency damping properties worsen while
the smoothing coefficient increases. This also holds for the kappa
schemes.

Figure 15 shows the convergence histories of the optimal five-
stage schemes for first-order differencing with ERS, s = 0, 0.1,
and 0.2 on single- and five-level calculations. It is seen that the
five-level calculation with s = 0.2 yields the best convergence effi-
ciency. From Fig. 13 and 15, it is seen that the ERS method yields
better convergence performance while using the same smoothing
coefficient. In our experiment, using the ERS method with s > 1/4
may make the calculation diverge, unless a very small CFL number
is employed.

C. Comparison with the Runge-Kutta Scheme
Two cases with five-stage Runge-Kutta schemes, one with the

CFL number 2.5 and one with the allowable maximum CFL

Optimal 5-stage scheme
(for the 1st-order upwind scheme with ERS)

____ 8=0.0, CFL=2.5

-4.00

Log(Res).

-5.00

____ 8=0.1, CFL=3.4498
8=0.2, CFL=4.4714

-6.00
6000. 12000. 18000.

WU
Fig. 15 Convergence history of optimal scheme with different smooth-
ing coefficients, ERS.
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.25 -

.00

(for the 1st-order upwind scheme with IRS)^
RK 5-stage method :
____ CFL=2.5, 8=0.5
___ CFL=4.3, 8=0.5

71/4 7C/2p 371/4

Fig. 16a Loci and contours of Runge-Kutta five-stage scheme.
1.00

IPI

.50

.00

(for the 1st-order upwind scheme with IRS )
RK 5-stage method : ___ CFL=4.3,8=0.5

a ____CFL=2.5,8=0.5
V ^ OPT. 5-stage method :___CFL=5.1381,8=0.5

i \

71/4 7C/2 37C/4

Fig. 16b Amplification factor of optimal and Runge-Kutta five-stage
schemes.

number 4.3, were used to compare with the optimal five-stage
scheme. The implicit residual smoothing, such that s = 0.5, is con-
sidered in these schemes. The damping and stability of the Runge-
Kutta four-stage scheme can be judged from Figs. 16a and 16b.
The comparisons were implemented both on a single- and a five-
level grid by utilizing the five-stage schemes for first-order upwind
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Fig. 17 Comparison of convergence history of optimal five-stage
scheme and five-stage Runge-Kutta scheme.

differencing with the IRS method, s = 0.5, as shown in Fig. 17. The
optimal scheme performs somewhat better than the Runge-Kutta
scheme, presumably because of its large CFL number.

VI. Conclusions
In this paper, a technique has been introduced for develop-

ing a multistage scheme suited for multigrid use. Parameters for
multistage schemes for certain one-dimensional spatial discretiza-
tions, with or without residual smoothing, implicit or explicit, are
presented. The damping and stability properties of some optimally
smoothing multistage schemes are studied. The extension to any
specified spatial discretization with or without residual smooth-
ing should be easily achieved with little computational cost. The
multistage coefficients from one-dimensional analysis directly ap-
ply to multidimensional computations by redefining the CFL num-
ber. In numerical applications of the optimally smoothing schemes
this significantly accelerates the convergence to a steady-state
solution.

Acknowledgment
The authors gratefully acknowledge the financial support of the

National Science Council of the Republic of China under Grant
NSC-82-0401-E-014-009.

References
^Jameson, A., Schmidt, W., and Turkel, E., "Numerical Solutions of the

Euler Equations by a Finite Volume Method Using Runge-Kutta Time-
stepping Schemes," AIAA Paper 81-1259, June 1981.

2Jameson, A., "Numerical Solution of the Euler Equations for Com-
pressible Inviscid Fluids," Numerical Methods for the Euler Equations of
Fluid Dynamics, edited by Angrand, F, Dervieux, A., Desideri, J. A., and
Glowinski, R., Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 1985, pp. 199-245.

3Tai, C. H., "Acceleration Techniques for Explicit Euler Codes," Ph.D.
Thesis, Univ. of Michigan, Ann Arbor, MI, May 1990.

4Van Leer, B., Tai, C. H., and Powell, K. H., "Design of Optimally
Smoothing Multi-stage Scheme for the Euler Equations," AIAA Paper 89-
1923-CP, June 1989.

5Catalano, L. A., and Deconinck, H., "Two Dimensional Optimization of
Multistage Schemes Applied to Hyperbolic Equations," von Karman Insti-
tute for Fluid Dynamics, TN-173, Rhode Saint Genese, Belgium, July 1990.

6Lynn, J. F, and Van Leer, B., "Multistage Schemes for the Euler and
Navier-Stokes Equations with Optimal Smoothing," AIAA Paper 93-3355,
June 1993.

7 Van Leer, B., Lee, W. T, Roe, P. L., Powell, K. G., and Tai, C. H., "De-
sign of Optimally Smoothing Multi-stage Scheme for the Euler Equations,"
Communications in Applied Numerical Methods, Vol. 8,1992, pp. 761-769.

8Enander, R., "A New Residual Smoother," Uppsala Univ., Dept. of Sci-
entific Computing, Rept. No. 128,1990.

9Blazek, L., Kroll, N., Radespiel, R., and Rossow, C.-C, "Upwind Im-
plicit Residual Smoothing Method for Multi-stage Scheme," AIAA Paper
91-1532, June 1991.

10 Van Leer, B., "Upwind-difference Methods for Aerodynamic Problems
Governed by the Euler Equations," Lectures in Applied Mathematics, Vol.
22,1985, pp. 327-336.

nHirsch, C., "Numerical Computation of Internal and External Flow,"
1st ed., Vol. 1, Wiley, New York, 1988, pp. 237-261.

12Roe, P. L., "Approximate Riemann Solver, Parameter Vector and Dif-
ference Scheme," Journal of Computational Physics, Vol. 43, 1981, pp.
357-372.

13Van Leer, B., Lee, W. T., and Powell, K. G., "Sonic-Point Capturing,"
AIAA Paper 89-1945, June 1989.

14Briggs, W. L., A Multigrid Tutorial, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1987.

15Kayser, L. D., and Whiton, F, "Surface Pressure Measurements on
Boatailed Projectile Shape at Transonic Speeds," U.S. Army Ballistic Re-
search Lab., Aberdeen Proving Ground, MD, AD-A113520, March 1982.


