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Uniform Suction or Blowing
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This paper presents a theoretical investigation of the influence of fluctuating circulation
(flow with magnitude- and direction-dependent amplitudes) upon the transfer of momentum,
heat, and mass in two-dimensional laminar boundary-layer flow past cylinders with or with-
out uniform suction. The boundary-layer equations for flow, temperature, and concentration
arelinearized by use of a perturbation technique. The solutions of the velocity, temperature,
and concentration components are obtained by power-series development so that the uni-
versal distribution functions may be applied to any two-dimensional flow. Theoretical results
include the frequency response of fluid velocity, temperature, and concentration, the stream-
line patterns of the steady streaming, the distribution of the steady second-order temperature
and conecentration, and the net variations in the shear stress, rates of heat, and mass transfer.
Numerical results are obtained for flows around a circular cylinder with fluctuating circula-
tions of constant and space-dependent amplitudes.

Nomenclature

coefficient depending on the geometrical configura-
tion of the body, dimensionless

coefficient depending on the nature of flow oscilla-
tion, dimensionless

dimensionless concentration; = (C,* — C*)/(C,* —
C*)

concentration, lbm-mole; C,* at the wall; C.* of the
freestream

functional coefficient or universal distribution func-
tion of temperature (or concentration), dimension-
less: For for the zeroth-order approximation; Fiy
for the first-order approximation; Fyu for the
second-order approximation

functional coefficient or universal distribution fune-
tion of velocity, dimensionless; fox for the zeroth-
order approximation; fi for the first-order ap-
proximation; faj for the second-ordera pproxima-
tion

(—1)12

integer, dimensionless

characteristic length, ft; = 2R for a circular cylinder

integer, dimensionless

constant, dimensionless

Nusselt number, dimensionless; =(36/3y)y—o

constant, dimensionless

Prandtl number, dimensionless

rate of heat transfer, Btu/hr-ft2

radius of a circular cylinder, ft

Reynolds number, dimensionless

Schmidt number, dimensionless

Sherwood number, dimensionless; = (d¢/dy),—o
dimensionless temperature; = (T,* — T*)/(T,* —
To*)

temperature, °F; 7,* of the wall; 7.* of the free-
stream

dimensionless time; = t*U/L

physical time, hr

velocity of potential flow in dimensionless form;
= U*x,t)/Us

time-average velocity of potential flow in dimension-
less form; = Uy*(z)/Us

oscillation amplitude of potential flow in dimension-
less form; = U1*(z)/Us
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U = velocity of potential flow at infinity, ft/hr

U*(z,t) = velocity of potential flow; = Us*(z) + eUi*(x)
coswi, ft/hr

Uo*(z) = time-average velocity of potential flow, ft/hr

Ui*(z) = oscillation amplitude of potential flow, ft/hr

u = dimensionless velocity in z direction, = u*/u.; up
for the zeroth-order perturbation, =0yy/dy; w
and wu for the first-order perturbation, w; =
AY12/0y; us and ugy; for the second-order perturba-~
tion, ugi; = Oyer; /Oy

u* = velocity component in z direction, ft/hr

14 = velocity of uniform suction in dimensionless form;
=V*/Uq

V* = velocity of uniform suction, ft/hr

v = dimensionless velocity in y direction, = v*/Us; u
for the zeroth-order perturbation, = —0ye/dz; v
and vy for the first-order perturbation, v =
—Oy/0x; v2 and vy for the second-order pertur-
bation, Vorj = —blllglj/bw

v* = velocity component in y direction, ft/hr

z = distance measured along the wall in dimensionless
form; = z*/L

z* = distance measured along the wall, ft

y = dimensionless distance measured in the direction per-
pendicular to the wall; = y*/L

y* = distance measured in the direction perpendicular to
the wall, ft

€ = small constant parameter, dimensionless

7 = dimensionless distance measured in the direction per-
pendicular to the wall; y(a:Re)!/2

9 = dimensionless temperature; 6, for the zeroth-order
perturbation = T%; 6y; for the first-order perturba-
tion; 6., for the second-order perturbation

[ = absolute viscosity, lbm/hr-ft

T = wall shear stress in dimensionless form; = 7*L/uU.
or = (Ju/0y)y=s

¥ = wall shear stress; = —pu(du*/dy*),~, Ibf/ft2

v = Stokes stream function in dimensionless form,
= ¢*/LU.; ¥, for the zeroth-order perturbation,
= ¥*/LU.; ¥y for the first-order perturbation
= U *UL "Y/LHFY; Wy for the second-order per-
turbation = Wy ;*U,,! 1/LI+1

v* = Stokes stream function, ft®/hr; ¥* for the zeroth-
order perturbation; W;* for the first-order per-
turbation; ¥y* for the second-order perturba-
tion

@ = frequency of oscillation in dimensionless form;
= w*L/Us

w* = frequency of oscillation, rad/hr

Superscripts

(), ()’ ()" = first, second, and third derivatives with re-

spect to 5, respectively
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Subscripts for functional coefficients f and F
0,12
J

l

zeroth-, first-, and second-order perturbation

either steady- or transient-state in the second-order
perturbation

order of approximation in terms of the frequency of
oscillation, (1w)?

order of function

time-independent component in the second-order
perturbation

time-dependent component in the second-order per-
turbation

no

il

@
('l

I

Introduction

ECENTLY much work has been published on the theory of

laminar boundary layers in oscillatory motions caused by

the vibrations of solid surfaces or flow oscillations.l™® A

comprehensive review of the literature is presented in Ref. 21
and will not be repeated here.

It is generally observed that a steady flow, known as
secondary flow, exists in an oscillating fluid or is generated in a
quiescent fluid where solid boundaries oscillate. This phe-
nomenon is also known to occur when oscillating acoustic
waves interact with a stationary object.

This paper is devoted to the study of the effects of fluctuat-
ing circulation (or flow oscillation with magnitude- and direc-
tion-dependent amplitudes) on the transport phenomena in
two-dimensional laminar boundary-layer flow past cylinders.
The only perturbing force is that due to the flow circulation
with a small fluctuating amplitude and low frequency in an
otherwise forced convective field. One example is a uniform
flow about a heated bluff body with a trailing row of alternat-
ing vortices. This induces oscillations in transport phe-
nomena.

To solve the transport equations for low frequencies, Light-
hill* used a Karman-Pohlhausen method and Hori® used the
method of Blasius and Howarth. At high frequencies, where
viscosity is only effective for osecillation within a very thin
shear-wave boundary layer.close to the wall, the theory of
differential equations with a large parameter was applied in-
dependently by Lighthill' and Lin.? For the present in-
vestigation, the transfer equations are solved by power-series
development from the stagnation point, without any arbitrary
assumptions regarding the velocity, temperature, and con-
centration profiles. The solutions expressed in terms of the
coefficients representing the geometrical configuration, the
nature of the fluctuating circulations, and the universal dis-
tribution functions may therefore be applied to any two-
dimensional flow.

The effects of the uniform suction and blowing are also
treated. Theoretical analyses include the frequency response
of velocity, temperature, and concentration, the alterations
in the wall shear stress and the rates of heat and mass trans-
fer, the streamline pattern of the streaming motion, and the
distribution of the steady second-order temperature and con-
centration. Numerical results are obtained for the flow past
a circular cylinder with fluctuating circulations having the
constant and space-dependent amplitudes.

Fundamental Equations

The physical system consists of a heated cylindrical body
subjected to a transverse flow that fluctuates harmonically
with time. A coordinate system z*, y* is fixed at the forward
stagnation point, with z* measured along the cylindrical
surface and y* in the direction perpendicular to the surface.
The analysis is restricted to two-dimensional, incompressible
flow in the z*-y* plane. The external potential flow is repre-
sented by U*@*,t*) = Ug*@@*) + eU*(@@*) cosw*t*, where
Uy*(x) is the time-average velocity, eU;*(z) is the amplitude
of oscillation, w* is the frequency of oscillation, and ¢* is the
physical time.
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The cylinder with surface concentration of C,* is heated to
a uniform temperature T,,*. It is maintained in contact with
a fluid at temperature 7' *, and the concentration C..*, which
otherwise would flow with a constant velocity UL, at infinity.

The following assumptions are imposed on the analysis:
1) the velocity components are small compared to sonie
velocity, so that the compressibility effects are negligible;
2) in the temperature boundary layer, the viscous dissipation
and the heat generated by change in pressure may be ne-
glected; 3) the differences in temperature and concentration
are not so large that the physical properties of the fluid do not
vary from point to point; and 4) for problems involving sue-
tion or blowing, the flow through the surface is assumed to be
wholly normal, since the pressure gradient through the surface
is usually large. With these assumptions, the boundary-layer
equations for flow, temperature, and concentration reduce to

ou , )
b_x+b_1/_0
ou ou ou oU oU 1 0%
oT oT oT 1 0T
o T4 Ty T ReProp

2¢ | o0, C 1 oC @

o T T8y T Resc o
y=0u=T=C=0

0 for no suction or blowing
{positive for uniform blowing
negative for uniform suction
y=o:u=U0UT=C0C=1

where the external potential flow is Uz, t) = Uy(z) + eUi(x)
coswt. Because of the identical form of the equations as well
as boundary conditions for temperature and concentration,
both may be treated simultaneously. In the following
analysis one may therefore interchange the quantities 7 and C,
Pr and Se, and Nu and Sh.

V=

Solutions

Counsidering the nature of the velocity of the potential flow
U(z, ), which is imposed as perturbations, the following
forms may be assumed for the function involved:

u@yt) = wy) + eal@yt) + Swlzyt) + ...
v(x,y,t) = Uo(%,g} + evl(x)y:t) + 5202($:y7t) + L (2>
T(xzyyt) = To(x;y) + ETl(Z,y,t) + 62T2($,y,t) + e v

By substituting these expansions into the governing equa-
tions and boundary conditions, and by separating terms ac-
cording to the powers of e, a set of simultaneous, linear dif-
ferential equations and boundary conditions are found as
follows:

Zeroth-Order Perturbation,

auo avg _
or + dy 0
W w1 dUy
20 " 0y Re oy *dw
oT, oT, 1 0T,
el 220 3
“ oz + o oy RePr oy? } ®)
y=0:u=T,=90
0
vy = V{positive for uniform blowing
negative for uniform suction
Y

= o u = Upx), Tpo=1 ]
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Table 1 Subscripts for universal functions f and F
Subsecript
Order of
Perturbation 1st 2nd 3rd 4th 5th
Zeroth Order of e Exponent of z Order of function ..
st Order of e Order of w Exponent of Order of function .
2nd Order of e Order of w Steady or transient state Exponent of z Order of function
First-Order Perturbation, e! Second-Order Perturbation, €2
our o _ g our  om _
o oy or T oy
bu1 auo Dul bul buo bug Duo Dul buz auo bul
—dur—Fuw—Fvn— Fu— = =t up— U — — 4 v — —
Y lbx+ Oax+oby+lby at+ 20x+ lax +uoax+zay+vlay+
dUo dU1> . bug U1 dU1 1 62u2
Uy—— + Uy —— ) coswt — wlU; sinwt v — = - —— (1 + cos2wt =
< var T Vg ! w "oy T 2 dp L Heos2e) + g o
%)
oT, oT, 0T, oT oT, o7, T, 0T, oT,
— tu— + wm— + v — e up — — = —
bt+obx+1bw+oby+ bt+obx+ulbx+u20x+voby+
oT, 1 o, ' oT, T, 1 02T,
h——— = . v — + v, = =~
Oy  RePr oyt oy oy RePr oy?
y=0:u=v6=T,=0 Yy=0w=v=T =90
y = ©: u = Uz) coswl, T; =20 y=o:u="Ts=10
Table 2 Universal functions f and F for quasi-steady solutions
Boundary conditions
Function Differential equations n = 7= @
fu fou'' = (fu)? ~ fo-fu't — 1 o = ;(T)/' fu' =0 fu' =1
fos S = 4fu’ fos' — 3for"" fos — for-fos — 1 fo =fu =0 fo! = %
Sost foa'"" = 6fa"fosr" — Bfar’"fosr — farfom’ —1 fost = four' = % fo! = 0
f052 fo\?,’, = f01,'f052' + 8(f04’)2 - 5f01”f052 - 8f04'f04” - fol'f()f:?,/ - 0-5 f052 = f052 = 0 f052’ = 0
S0 S’ = fo' fie' — fa S’ — 1 fio = fi' =0 fud =1
Jroo1 """ = Bfa Fren’ — 2fn’" from — for-frem'" — 1 Jim = fun' =0 o' = %
Sioe2 i = 3fo’ -fun' — 2fe’fime — fofiee’ — 1 4+ 4(fos" fi' — Sfosfreo’’) S = fux' = 0 fun' =0
Sroa fuoa”" = 5fo fron’ — fo'foa’ — 4fa’fou — 1 S = fion” =0 foa' = %
Sroe2 i’ = Bfor'freee + 12f0n"froo1 — forfroer’ — 7.2f0a-from”' — 4f0r" "froee — 4.8f0a" from — 1 fiorr = froe’ = 0 fie” = 0
f1043 f1043/’/ = 5f01'f1043 + 6f100’f051’ - f01f1043 - 4:f01,/f1043 _ 1 f1043 = f1043, = 0 f1043, = 0
F1os froad””" = Sfor'fros + 12f0'fronn + 6fiwo’fose’ — SfuSfioe — 7. 2f0afion’’ — 4fu’'fron Siee = frou” =0 fro" = 0
— 4.8 fos"’ fro
Soos1 - Foostt"! = 2fifaosrt’ + 2f100'fron’ — Forfuwenr”” + 2fie’ Froz — fou'faosn — 0.666 Sfosu1 = foos’ = 0 fuar” = 0
Joos12 Faosi”!" = 2f1 faesre’ + 2f100"f1002” — forfoosre”” + 2f100" froee — for’"foosie o1z = fae2’ = 0 Fasa” = 0
Soos33 Faosss”’ = 8foa'faosr’ + Yo'foosss + 3.333f100"fr0a2” + Of10m 100" — forfoosss — Ofoafaosn  Saoszs = faoszs’ = 0 Sosss” = 0
— Bfioufion’’ — 3f10 foer — 3.333f100" froe2 — 2fos’ Frst1 — 3for’ favsss
Faosza Foossa” = 8foa'foosiz + 4forfeosss -+ 3.333f100"f100s + 3(Jfr022")? — forfaosse’ — 6fosfe0s12”’ Srossa = foosza” = 0 Soosza” = 0
— 3fiom oz — 3.333f100" froas — 2fos’ "fromrz — 3for Frosna
f20335 f208351,’ = 4:f01’f20835 + 3-333f100/f1043l - f01f20335 - 3~333f100’71043 - 3f01”f20835 f20535 = f20535’ = 0 f20335, = 0
Foo FOO” = - PrfOlFOD, FOO =0 F()o =1
Fos Fo'' = PJ{2.0fa'Fe — 3.0fuFv’ — fuFw') Fop =0 Fo =0
Fou Fou'' = P —foFow' + 4fa'Fon — 5fesFon’) Fouw =0 Fum =0
Fope Fop'' = P —fuFos' + 4fo'Foe — 5fesFo’ + $(2f0a’For — 3foFor’)] Foup =20 Foo = 0
Fion Fin'' = P{fo'Fiou — fuFiwn' — 3.0fw0F0’) Fony =0 Fin = 0
Fie Fup' = Pfu'Fiue + 4.0f10'Foe — fuFF1o12” — 3.0f10aF00”) Fue =0 Fion = 0
Fin Fim' = PA3fo'Frsi — foF s’ — 5Fwfioa) Fuon =0 Fun = 0
Fros Fiup'' = PA2fo’Fron + 3fo'Fioz + 6F0fion’ — 6foaFion” — foFose’ — 6fiooFos’ Frz =0 Figp = 0
— 5f10F00’) .
Figss Fiss'' = PA3fo1'Fross + 6fio’Foar — foullr0ss” — 5SfiossFoo’) Fus =0 Fiszs = 0
Fios Fisd' = P{2foi’ Fioe + 3for'Fross 4+ 6f10F0s2 + 6fi020F02 — 6foaFis’ — forFsd’ Fuge =0 Fiuse = 0
- 6F02/f1022 - 5f1044FOC,)
Faosm Fasa!' = P{(0.666f100' Fiou1 — forFams0r” — foosuFoo”) Fayer = 0 Fawm = 0
Faosoe Fagspr’' = PA0.666f100" Froiz — forFs0s02” — faosr2Fo0”) Fase = 0 Fasee = 0
F20821 F20521” = Pr(2f01'F20521 + f1022F1111 + f1021F1012 + 4f20811,F02 - 6f04F20301l - leZOSZI
— 210 F o1’ — 2fasuFos’ — 2fionFioe + 2f100’ Froe — 3fo0sssFo0”) Faen = 0 Foo = 0
Faoson Fopsne'' = Pl 2fo1" Favsr + from Frou — forFaoere’ — 2f100F1on” — 3f0s2F00”) Fagsss = 0 Fogsee = 0
Fasos Fogses’' = Po{2fo1" Faosrs + froeeF 1012 + 4fe0s12’ Foz — 6foaF 20502’ — furFavezs” — 2f100F 1012 Foes = 0 Fopeps = 0
— 2faps12F 02" 4 2f100" Fro34 — 3fa0s34F00”)
F20824 F20824” = PT(2f01’F20824 - f01F20824’ + 2f100’F1021 - 3f20831F001) F203;24 = 0 F20824 = 0
20325 Fopers”' = Py(2for' Faosrs — forFeoss” + 2f100 Fross — 3fsorssFo0”) Foes = 0 Fopes = 0
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Here the value of € is chosen small such that the first three
terms of the expansion will approximate the physical problem.

A. Zeroth-Order Solutions

The zeroth-order perturbation is the case of steady-state
forced convection.?’ In two-dimensional flow, the time-
average freestream velocity follows the formula

Uo(]?) = Z a2k+1x2’°+1 (6)
k=0

where the coeflicients @ 1, which depend on the geometrical
configuration of the body, are considered to be known. By
selecting the dimensionless distance from the wall, defined as
7 = y(aRe)!'? as the similarity variable, the stream function
and temperature are obtained:

1/2
<%) <f01x -+ 4—asfogx3 + %fosﬁ +.. >l
’ S @

Yo

If

4.(13

To 90—Foo+—F02xZ+'—Fo4x4+

The subscripts for the universal functions f and F are de-
scribed in Table 1. Equations and their appropriate boundary
conditions that define the functions f and F in Eq. (7) and
later in Eqgs. (11) and (14) are given in Ref. 21. Only those
relevant to the quasi-steady solutions are tabulated in Table 2.

B. First~-Order Solutions

For low frequencies, the velocity and temperature com-
ponents are expanded in terms of frequency as follows. Itis
convenient to adopt complex notations and to write

u(z,y,f) = realfluny) + Gw)unlzy) +
() 2urs(xyy) + . . et}
n(zyt) = real{o(,y) + (woulry) +

() ez, y) + . . .1} ®

Ti(zyt) = real{[Ou(z,y) -+ @w)bu(zy) +
(1) 200a(z,y) + . . Je}

The new funetions wu;q, 10, b1, - - - are now complex quantities
and independent of time. Substituting Eq. (8) into Eq. (4)
and observing that the symbol “real” appears in front of every
term, it is disclosed that, since “real” is a linear operator, it
can be dropped out of the equations. All terms are now linear
in ¢®, which can also be dropped out. In this manner, time-
dependency is omitted from the differential equations. Ar-
ranging the time-independent equations according to the
powers of iw results in the lth-order approximation (fw)!:

%’+6L”

ox oy =0
uo%l‘l‘ au0+ 0%‘1‘ 1lau0=
oz Ay
dUl + U1 forl =0
—1_ B2uu
Re 0y? Uy — wup for I = ©
— Ui —1) forI>1
o 06, of o0
uoa*”-i' 0+vo—”+ u—‘D=
x oy
M’ 0 for 1=0
PT byZ 31(1_1) fOI' l > 0
y=0: uu=ou=0=0

Yy = :u10=U1,u11=91z=0
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where [ is the order of approximation (#w). The amplitude

follows the formula
U1 ($) = Z bz}cx% (10)
=0

where the coeficients by depend upon the nature of the
fluctuating circulations. U;(x) is an even-power series, since
only the velocity fluctuations of the potential flow caused by a
fluctuating circulation are considered. Then the solutions of
Eq. (4) are obtained as

1
Y = ——— 7 (bofin + 3bofrex? + Sbsfruxt + . . -)l

a(a,Re)l/?
12( 1[e) an
O = a—;l (b2F1t1x + 2b4Fys® + 4bel1sx® + . . ) S
1

where [ is the order of approximation (iw). The functional
coefficients fin and Fii are independent of the particular
properties of the profiles (i.e., @), and of the fluctuating circu-
lation (i.e., b), if they are split up as

fue = fu + (asbo/arbs) Sriom
aabg a5b0 boag

f1l4 = fll41 + fll3‘? fll43 + f1l44

and
Fin = Fun + (asho/ai/bs) Frys

b b b
& Frig + —- & Frss + 0(13 F1134

FllS_F1l3I+ b b

C. Second-Order Solutions

In the second-order perturbation for wus(z,y,t), ve(z,y,t),
and Ta(r,y,t), the convective terms in the governing equa-
tions will contribute terms with cos?wt. - These, in turn, can
be reduced to terms with cos2wt, sin2wt, and steady-state, i.e.,
time-independent terms.'® Therefore us, vs, and 7%, for low
frequencies, may be expanded as follows:

us(@,y,t) = 3 real{ums(z,y) + (w)u(zy) +
() 2uza(z,y) + - oo+ [uso(z,y) +
(w)uae(z,y) + (zw)2u22,(x,y) + .. Je2et]
va(@,y,t) = F real{ves(@y) + (w)oms(ey) +
(i) was(@,y) + .« .+ [vwi(z,y) + (12)
(tw)vas()y) + (o) oo () + . . -]eizwl}
Oa(wy,t) = 5 real{fua(z,y) + (iw)fns(z,y) +
(1) 200s(@yy) + ... + [fai(zyy) +
(icq)(?gl,(x,y) + (iw)zezgg + . .]8i2mt}
The equations of continuity, momentum, and energy, which
are obtained by substituting these relationships into Eq. (5)
and by separating according to frequency- and time-de-
pendency, are as follows. Although the analysis has been ex-
tended to include the first- and second-order approximations,
only two resulting time-dependent and time-independent

equations corresponding to the zeroth-order approximation
(tw)® are presented here. They are

Oumi | i _
ox + dy 0
aUQov; +u bu{,o + Ung; 22 buo + gy a0 a’LLm; +
oz ox o
bum buo 1 o2 U0 dU1
v < + va; dy Re oy’ + U, dr (13)

(Equation continued on following page)
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00x; of o6, fel/) 1
Uo ~0:+u10_10+ 207 O‘I‘o 207+ (3)
ox ox
Oy Wy _ 1 b,
my, T = Bepr o

y = 0: un; = vy; = Opn; =0

Yy = w! u20j=020j=0

o | %

= | o

= 1o
— o=

@ R fos fo = bt =
o lole
o |7 o

.09

08

07

2
Qu-a Uy,

06}

.05

.04

03[

024+

Rell g

Fig. la Profiles of first-order velocities for flow past a
circular cylinder with fluctuating circulations.
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Fig. 1b Profiles of first-order temperatures or concentra~-
tions for flow past a circular cylinder with fluctuating
circulations for a fluid with Pr = 1.0 or S¢ = 1.0.
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where the subscript j refers to either the time-independent or
time-dependent components, respectively expressed by the
subscripts s and {.

The second-order solutions are as follows:

3bgb2
it (o Re)

20,
Yo; = <f21j1€6 + a—3f2z]-3x3 +
1

3
aasfzhsxs + .. >
(14)
3bgb
0217‘ = .l o <F2l]0 + — szx +
1

3
ﬂ F2l74x4 + )
where

Jain = faju + (asbo/anbs) farina

dgbo a1b2 a1b4 asbe

f2lj3 = f21]31 + f2113‘? f2l733 + b f2l134 + b f2l135

and
Faio = Farjor + (asbos arbs) Fation

ash a:b
F2lj2 = F2lj21 + 3170 F2l722 + @ 2F21123 +
ab. asb
1b4 F21724 + 0 F21725
D. Solutions Up to Second Order
The velocity components are
u = U+ €[(t — w?uw)? + (oun)?]t? X
cos[wt -+ tan—1<—wu1~l2—>:| +
Uy — W U2
2
;—{um — WU + [(u20t - w2u22t)2 + (wumt)z]l/z X
cos[th + tanﬂ(—wwuz—):l}
Ugor — W Uga¢
(15)

v = v+ e[{vio — wW12)? + (won)?]V? X

cosl:wt + tan‘l(—wvl—12>:| +
Vg — w2

2
;— {Uzos — wgs + [(Woz - 6021)22t)2 + (wU21z)2]1/2 X

cos|:2wt =+ tan‘1<—ﬂ2—>]}
Vapt — W V29

The dimensionless shear stress, defined as 7 = (Qu/0%y)y—y, 18

% 27]1/2 - w(auu /by) )
(“’ ay)] “OS[“” + tan ((aum/ay) ~ oousop) T
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The steady-state shear stress is Eq. (16) without the second
and fourth terms on the right-hand side of the equation. The
periodic terms will contribute nothing when integrated over
a whole cycle. The mean position of separation may be ob-

| m
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tained by equating the steady-state shear stress to zero. The
separation in the unsteady boundary layer is fully discussed by
Hori.? The temperature is

T = 0 + €[(6y — ?015)% + (w0ir)2]/2 X

_ wﬂn ]
cos[wt + tan <————0m — w2012> +

{0205 — s + [(02m - w2€22z)2 + (w021t)2]1/2 X

1 s :|
cos|:2wt + tan <————02m — w20221> a7

The local Nusselt number, defined as Nu = (@7/dv)y—0, 18
obtained as

_ }9b, oy _ 2bil2>2 ( ?@)Z]”“’
N"_{by+€|:<by “ dy * “ oy <

. w(@0.,/0%)
m[“’t + ton <<aom/ay> - wﬂ(aeu/aw)] +

€ (b, @) e [<aew B anm>2
2 <by @ o +2 Ay @ oy T
27j1/2
(w bgm> ] cos[2wt +
Y

—1 w (bﬁm/by)
tan ((aezm/aw - w?(aem/awﬂ}m (18)

Again the periodic terms contribute nothing to the steady-
state value.
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E. Net Alterations in Skin-Friction and Heat-Transfer
Rate Resulting from Fluctuating Circulations

Equations (15) indicate that a fluctuating circulation in-
duces a steady-secondary or streaming motion; Eq. (18)
shows that the streaming flow resulting from the oscillation
causes a change in the local Nusselt number from that cor-
responding to steady forced convection. The second-order
contributions to the net variations of the wall shear stress and
heat-transfer rate are obtained from Eqs. (14, 16, and 18) as
follows:

AT Sezbobg boas
W = W x {fzosu” + ‘;;fzosm” -

E b
<a%> <f22811” + %: f22512”> +

2as asbo a1be by
1 " " "
20s31 20s3. 20533 20834
ax f ¢ albz f e agbof * (Zabz f *

asbo asbo

2
P 0835’ — (2’1) ( I (Efnssz" +
a;;l)ofm% + asbzﬁzsu + s Jooszs ) |22+ ... o (19a)
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3 ay ale
2a; abs, asbg
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Results and Discussion

Table 2 presents the differential equations and their appro-
priate boundary conditions which define the universal fune-
tions f and F. In the interest of brevity, only those functions
relevant to the quasi-steady solutions, i.e, w — 0, are given.
As will be discussed later in the section, these quasi-steady
solutions may approximate the behavior of the unsteady
boundary layers. All functionsfand F in Eqgs. (7, 11, and 14)
were evaluated by steps of » = 0.1 using an IBM 7090 digital
computer. The method of Runge and Kutta was employed
for this purpose. Their numerical reduction was obtained for
Prandtl numbers from 1.0 to 10 and V = 0, 1, —1. A posi-
tive V corresponds to the superposition of uniform blowing, and
a negative V corresponds to that of uniform suction.

Owing to the dependency of transfer performance on the co-
efficients @ and b, the geometrical configuration of the system
and the nature of fluctuating circulation must be specified
for the quantitative as well as qualitative evaluation of the
mechanics of two-dimensional flow. As an illustration, the
case of a uniform flow about an infinite circular cylinder with
a superposition of an alternating vortex placed in the stream
is treated.

The time-average mean velocity of the external potential
flow for this case is

Up(x) = 2 sin(2x)

By expanding the sine function on the right-hand side of the
equation into a power series, one obtains the coefficients
Q41 A8

8

om=40=—% a6=5=...

o

Next a model must be selected for the alternating vortex in
order to determine the coefficients by, In an experimental
study of the general characteristics of fluctuating pressures
(caused by shedding vortices) at the surface of a circular
cylinder in a uniform stream, McGregor?? has developed a
simple mathematical model of the flow by considering an al-
ternating vortex standing at the rear of the cylinder. The
theoretical prediction of the pressure fluctuations based on
this model was in good agreement with the experimental re-
sults; however, it requires at least a fourth-degree poly-
nomial to approximate the model in the form of Ui(z). Ina
study of unsteady flow in boundary layers, Hori? has analyzed
a special case of the MeGregor’s model in which the vortex in
the stream is shifted to infinity. For this case, the amplitude
of fluctuating circulations becomes a constant. In the present
work, two different oscillating amplitudes eU;(x) are investi-
gated: 1) constant and equal to €, for which by = 1, b, = by =
... = 0; 2) space-dependent and equal to either (1 + x2),
for whichby = b, = 1,bs = bs = ... = 0, or (1 + 22 4 z%), for
which by = b, = by = 1, b6 = bs = ... = 0. It must be
noted that Ui(z) in the latter case does not mathematically
approximate McGregor’s model. Nevertheless, it is adopted
in order to numerically demonstrate the effect of the space-
dependency of the fluctuating amplitude on the transfer
phenomena,.

The stream functions and temperatures defined by Egs.
(7, 11, and 14) are calculated with three terms for the zeroth-
and first-order solutions and two terms for the second-order
solution. This limitation on the number of terms involved
is mainly attributed to the computer capacity. Since there
is no general method to determine the radius of convergence,
the quality of the power-series solution has to be evaluated by
studying the behavior of the series with various number of
terms.”® An examination disclosed that, after the first term,
each series converges well, especially near the surface for small
values of z. For large values of z, all series give fairly good
convergence with three terms except in the neighborhood of
the separation point. In general, the stream functions give
better convergence than the temperature solutions with the
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same number of terms. The convergence of Eqgs. (19) for the
net alterations in skin friction and heat-transfer rate is quite
good with the first two z terms, especially for low values of .

Numerical results are presented in graphical form in Figs.
1-5. The zeroth-order solutions are exactly those of Fross-
ling?® for the steady-state forced convection. The first-order
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Fig. 2a Amplitude and phase or fluid velocity for flow
past a circular eylinder with fluctuating circulations.
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Fig. 2b Amplitude and phase of fluid temperature or
concentration for flow past a circular cylinder with fluct-
uating circulations.
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solutions give the magnitude and phase angle of harmonic
oscillations of velocity and temperature inside the boundary
layer induced by the fluctuating circulations. Figure 1 gives
the first-order velocity and temperature profiles u;; and 6;;.
uy (and vy) and 6y are the quasi-steady velocity and tem-
perature, respectively, that is, the amplitudes of velocity and
temperature fluctuations at w — 0. twuy, (tw)?ue {and also
211, (Tw) 2], and (i) 01, (Tw)26:, represent the amplitudes of
unsteady velocity and temperature fluctuations, respectively.
It is disclosed by Figs. 1 that both the velocity profiles wig, w1,
w2 and the temperature profiles 8y, 611, 612 increase in magni-
tude along the surface from the forward stagnation point.
Since U; = b, corresponds to the case of the alternating vortex
located at infinity, Uy = by + bex? or by + box? + bur* repre-
sents the case in which this vortex has been shifted toward the
cylinder. The shift in the vortex from infinity toward the
cylinder results in an increase in the quasi-steady amplitudes
of both velocity and temperature, but practically no sig-
nificant variations in the amplitudes of unsteady veloeity
and temperature fluctuations.

Figures 2a and 2b illustrate the amplitude and phase angle
of the first-order harmoniec oscillations of velocity u; and tem-
perature 6;,. The effects of several physical factors on the
frequency response of velocity and temperature are investi-
gated. They include the location z measured from the for-
ward stagnation point, the location of the vortex, the uniform
blowing or suction of the boundary layer, and the Prandtl
number. Tt is seen from Fig. 2 that in general the amplitude
and phase angle of both velocity and temperature fluctuations
increase with increases in z, frequency, and the shift in the

7 0.8 0.9 1.0
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£
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Fig. 3a Streamline pattern of the steady-secondary mo-

tion produced by flow past a circular cylinder with fluct-

uating circulations of amplitude, ¢ u; = ¢, at quasi-steady
state (w—0).

Fig. 3b _ Streamline pattern of the steady-secondary mo-

tion produced by flow past a circular cylinder with fluctu-

ating circulation of amplitude, u; (x) = «1 + x + x%), at
quasi-steady state (w—0).
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Fig. 4a Distribution of the steady-secondary component

of temperature or concentration produced by flow past a

circular cylinder with fluctuating circulations of ampli-

tude, € u; = ¢ for a fluid having Pr = 1, or S¢ = 1, at quasi-
steady state (w—0).

Fig. 4b Distribution of the steady-secondary component

of temperature or concentration produced by flow past a

circular eylinder with fluctuating circulation of amplitude

euw (x) = e 1 + x* + x% for a fluid having Pr = 1 or
Sc= 1, at quasi-steady state («—0).

location of the vortex from infinity toward the cylinder. The
effect of the uniform blowing on the velocity response is to in-
crease the amplitude and to decrease the phase angle, al-
though not significantly. For temperature response, the uni-
form blowing tends to decrease both the amplitude and phase
lag. The uniform suction of the boundary layer affects the
response in the opposite manner. The Prandtl number is re-
lated only to the thermal boundary layer in forced convec-
tion. An increase in the Prandtl number produces a steeper
and larger amplitude profile, a smaller phase lag, and a thinner
thermal boundary layer.

The second-order solutions, as demonstrated in the analysis,
consist of the secondary-steady and periodiec components.
The steady components represent permanent alterations in
the velocity and temperature profiles in the laminar boundary
layer caused by the superposition of the alternating vortex.
This provides a steady-secondary flow, or streaming, and per-
manently alters the wall shear stress and heat-transfer rate.
Figures 3 and 4 present the streamline g, and temperature
distribution 6y, of the steady-secondary components under
the quasi-steady condition w — 0. In order to demonstrate
the effect of the location of the alternating vortex on the
secondary streaming, two vortices are studied. One is placed
at infinity and the other is shifted toward the cylinder. Their
amplitudes eU; may be expressed by e and e(1 + 2? + z%), re-
spectively. A comparison of Figs. 3a and 8b shows that the
streamline patterns are essentially similar, except that the
alternating vortex at infinity causes weaker steady-secondary
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Fig. 5 Effects of fluctuating circulation on the local wall
shear stress and Nusselt number for flow past a circular
eylinder.

flow in the boundary layer than the other. These streamline
patterns are, in general, similar to the one produced by the
oscillating flow for which Uy(xz) = Ui(x) (Ref. 21) except in
the downstream region. The latter case produces a separation
in the secondary streamline at z =2 0.8, which corresponds
to an angle of about 90°, where according to the potential
flow theory its oscillatory boundary layer is about to separate
from the cylinder surface.®? This flow oscillation causes an
increase in the skin friction from that corresponding to steady
flow. The result is given in Fig. 5 for comparison with the
present case. A superposition of the uniform blowing tends
to delay the separation of the steady-secondary motion. In
the present case, the secondary streamlines run closer to the
cylinder surface in the downstream direction. The result is
that the fluid particles are accelerated along the surface. In
other words, the forced convection velocities are increased
along the cylinder surface until the point of boundary-layer
separation is reached. This causes a continuous increase in
the permanent alteration in the skin friction Ar along x as in-
dicated in Fig. 5. An increase in the fluctuation frequency
tends to enhance the secondary flow but its effect is very in-
significant (the maximum difference in the order of magnitude
between g, and wyg, is about 20 to 1 for the dimensionless
frequency w of 0.5). An investigation of Figs. 4 reveals that
the steady-secondary component of temperature is negative
in the entire oscillatory boundary layer up to the separation
point. As the alternating vortex moves from a position at in-
finity toward the cylinder, one observes: 1) the over-all dis-
tribution pattern remains unchanged, 2) the magnitude in
B0 18 increased, and 3) the isothermal lines in the immediate
vicinity of the cylinder surface shift closer toward the surface
in the downstream direction. The result is that the tempera-
ture gradient at the surface, which is negative in sign, is in-
creased along the surface. This causes a continuous decrease
in the permanent alteration in the heat-transfer rate along the
surface, as illustrated in Fig. 5. As for the oscillating flow
case,?" the isothermal lines are pushed away from the surface
in the downstream direction due to the steady-secondary flow.
A zero isothermal line intersects orthogonally with the cylinder
surface at zero Oy, at a location between the forward stagna-
tion point and the separation point of the secondary stream-
line. Tt is at the intersection point where 6y, changes from a
negative value upstream to a positive value downstream until
the steady-secondary flow separates. This indicates, as shown
in Fig. 5, that the steady-secondary flow resulting from the
oscillating flow causes a reduction in the local Nusselt number
upstream and an increase downstream from that correspond-
ing to steady forced convection. As the Prandtl number in-
creases from 1 to 10, this intersection point shifts forward from
z = 0.7toz = 0.42. For the fluctuating circulation case, the
permanent alterations in the skin friction and heat-transfer
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" rate as expressed by Eq. (19) are graphically illustrated in
Fig. 5. It is shown that the steady-secondary flow resulting
from the superposition of an alternating vortex causes an in-
crease in the local skin friction and a reduction in the local
heat-transfer rate from those corresponding to steady forced
convection. These alterations, however, are very small and
are detected from the analysis only when solutions are ob-
tained to at least the second-order approximation beyond the
solution for the steady forced convection problem. In gen-
eral, the alterations are magnified along the surface from the
forward stagnation point. A shift in the location of the alter-
nating vortex from infinity toward the cylinder surface, the
superposition of the uniform blowing, and an increase in the
fluctuation frequency may contribute to an increase in the
alterations. It is obvious that the effect of the frequency is
very insignificant. This indicates that, in the range of small
frequency for which this analysis applies, the quasi-steady
solutions may predict qualitatively the effects of fluctuating
circulations in the response of the unsteady boundary layer
and the permanent changes in the wall shear stress and heat-
transfer rate.
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