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Four-Dimensional Measurements of VVector Fields in Turbulent Flows

Werner J.A. Dahm!, Lester K. Su? and Kathleen M. Tacina3

Laboratory for Turbulence and Combustion (LTC)
Department of Aerospace Engineering
The University d Michigan
Ann Arbor, Ml 48109-2118

Experimental methods and results are presented for fully-resolved, three- and four-dimensional, spatio-temporal
measurements of scalar gradient vector fields V{(x,) and velocity vector fieldsu(x,¢) in turbulent flows. Each
three-dimensional spatial data volume is composed of up to 2563 spatial data points, with volumes acquired se-
quentially in time. The four-dimensional data sets are each comprised of over 3 billion individual point measure-
ments, and are simultaneously differentiable in x, y, z, and 1, allowing access to the spatial structure and temporal
dynamics in these fields. Space and time scales relevant to such measurements are summarized. A method for as-
sessing the resolution achieved by such measurements is presented, and as are criteria for over-resolution in digi-
tal measurements. Results give the space- and time-varying conserved scalar field and vector velocity field simul-
taneously on a regular three-dimensional spatial grid. Directdifferentiation of these fields yields the spatial struc-
ture in the full nine-component velocity gradient tensor field Vu(x,t). From these, the vector vorticity field
w;(x, ) and tensor strain rate field g;(x,1) are extracted, as are the kinetic energy dissipation rate field 2v e:e(x, ¢),
the enstrophy field !/, w- w(x,¢), the enstrohy production rate field w-e- w(x,r) and the pressure gradient field
Vp(x,t). Extension of the scalar imaging velocinietry technique to whole-field measurements are described, and
various limiting cases is described, which yields velocity vector fields that are filtered in space and time at the res-
olution scale A.  Such whole-field SIV measurementsallow use of the full spatial and temporal dynamic range
available to the measurements, and permits measurements in turbulent flows at arbitrarily high Reynolds numbers.

“If we are to achieve resulls never before accomplished, we must expect 10employ methods never before attempted.™

INTRODUCTION

Insights into the fully-resolved, three-dimensional, spatial
structure and simultaneous temporal dynamics of the full nine-
component velocity gradient tensor field Vu(x,) at the small
scales of turbulent flows are key to developing an understanding
of the physics of turbulence and to the development of models
for these small scales in large eddy simulations. These small
scales are generally presumed to be quasi-universal in high
Reynolds number flows, and are thus studied in a generic con-
text. However, laboratory experiments under controlled condi-
tions capable of directly yielding useful information on the de-
tailed structure and dynamics of these scales have been few, and
as a consequence such studies have been generally limited to di-
rect numerical simulations under idealized conditions.

To date most experiments of this type have been limited to
single-point measurements of a small subset of the full velocity
gradient tensor field. The earliest and still most widely used
technique for measuring one or several of the gradient tensor
components relies on multiple hot-wire or hot-film probes.
Such probes have been in use since theoriginal four-wire probe
was developed by Kovasznay (1954) for measurements of the
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streaniwise component of the vorticity vector at a single spatial
point. Surveys of more modern probes and data obtained from
them are given by Wallace (1986) and Foss & Wallace (1989).
Since then, Vukoslavcevic, Wallace & Balint (1991) and Balint,
Wallace& Vukoslavcevic (1991) have presented results from a
nine-sensor hot-wire probe that yields simultaneous measure-
mentsof all threevorticity components. Kit er al (1987. 1988)
also developed a nine-wire probe to measure several components
of the velocity gradient tensor, and Tsinober, Kit & Dracos
(1992) assembled a 12-sensor hot-wire probe, as well as a 20-
sensor probe without common prongs, to measure all nine com-
ponents of the velocity gradient tensor at a single spatial point.
Such multiple hot-wire/film probes have provided otherwise in-
accessible insights into the structure and dynamics in the velocity
gradient tensor field in turbulent flows, especially as regards
statistics of various quantities of interest. However, as the num-
ber of sensor wires and prongs in these probes increases, block-
agecffects can become significantand alter velocity gradients in
the vicinityof the probe tip. Moreover, such probes inherently
allow measurements at only a single spatial point. Spatial struc-
ture in the velocity gradient component fields is accessible only
if a Taylor hypothesis is accepted, and even then is only avail-
able along one spatial dimension.

For these reasons, non-invasive optical techniques have been
under development for several years to measure components of
the velocity gradient tensor ficld in turbulent flows. These tech-
niques are making incrcasing use of advanced laser diagnostics,



high-speed imaging arrays. and high-speed data acquisition ca-
pabilities to facilitate a variety of optically-based measurement
techniques that provide information over spatial fields of many
points. Reviews of some of these are given. for example, by
Adrian (1936, 1991. 1996), Lauterborn & Vogel (1984), and
Miles & Nosenchuck (1989). Such techniques potentially offer
high spatial and temporal resolution, as well as genuine spatial
field information in place of classical single-point time-series
data. The most widely used of such methods are panicle track-
ing and particle image velocimetry (PTV and PIV) techniques.
These generally produce two-component velocity vectors over
two-dimensional fields, though three-dimensional panicle track-
ing (e.g. Nishino er al 1989; Kasagi & Matsunaga 1995) and
holographic panicle image velocimetry (e.g. Scherer & Bemal
1993: Meng & Hussain 1995) are being developed to measure
full, three-component velocity vector fields in complex flows
(see also Adrian 1996).

There are. however. two principle difficulties currently fac-
ing such particle-based measurement techniques. First. holo-
graphic extension of PIV to three-dimensional spatial measure-
ments can be problematic. owing in part to resolution and depth-
of-field limitations. Second, the high particle seeding densities
required to adequately resolve the tinest length scales in turbu-
lent tlows can make optical penetration into the flow difficult.
Both of these problems can be circumvented by using an effec-
tively continuous distribution of laser tluorescent dye molecules
as the seed. Their size eliminates the Mie scattering associated
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Figure 1. Schematic showing the structure of the three- arid four-
dimensional data volumes. Each four-dimensional measurement produces
the conserved scalar lield {(x.r} at up to 3.1 billion points in space und
time. arranged os u temporul sequenceof three-dimensional spatial dutivol-
unies.  The spatial separation between adjacent points in x, y, and z iy
smaller than the local strain-limited molecular diffusion scule Mg, and the
temporal separation between the same spatial point in successive data vol-
umes is less than the dittusion scale advectiontime 77, allowing ditferenti-
wion simultaneously in space and time.  The vector velocity field utx.r) is
obtained by inverting the scular transport equation for the given scalar tield
data. together with the smoothness constraint between Ay and A,

with discrere panicles. thus niaintaininp optical transparency in
the flow field. Moreover. currently-available scanning tech-
niques can be readily used to obtain three-dimensional spatial in-
formation and simultaneous temporal information. as will be de-
scribed below. In such scalar-based velocimetry techniques. the
dye molecules are both dynamically passive and conserved. so
the conserved scalar transport equation governs their continuum
concentration field. Unlike PIV. determining velocities then no
longer involves finding discrete particle displacements. and is in-
stead based on inversion of the space- and time-evolving dye
concentration field to extract the underlying velocity field, as will
also be described below. Such scalar imaging velocimrtry meth-
ods currently allow fully-resolved four-dimensional spatio-
temporal measurements of the fine scales of turbulent tlows
(Dahm, Su & Southerland 1991. 1992: Su & Dahm 1996a,b).
Moreover, extensions of this technique are currently underway
to permit whole-field scalar imaging velocimetry measurements
of turbulent tlows. as will be described below.

Such fully-resolved, three- and four-dimensional, spatio-
temporal measurements of the conserved scalar field {(x.r) and
velocity field u(x.s) in turbulent flows are based on high-
resolution scanning planar laser induced tluorescence imaging
from the concentration tield of a passive water-solubledye (dis-
odium fluorescein) having S¢ = 2075, combined with continu-
ous high-speed acquisition of gigabyte-sized data sets. Details
of the measurement technique are given by Dahin, Southcrland
& Buch (1991), Buch & Dahin (1996). and Southerland &
Dahm (1994. 1996). The resolution achieved reaches below the
local strain-limited molecular diffusion scale in all three spatial
dimensions as well as in time. The resulting threc-dimensional
data sets are comprised of nearly 200 temporally successive spa-
tial data volumes, each of which consists of up to 2563 spatial
data points arranged on a regular grid as shown in Figure I.
Owing to the high resolution and signal quality attained, the re-
stilting data are fully ditferentiablein x. y, and z. The four-
dimensional datasets are each comprised of over 3 billion indi-
vidual point measurements throughout a smaller spatial data vol-
ume, and are simultaneously differentiable in x. y, z. and 1. as
also shown in Figure 1, allowing access to the spatial structure
and temporal dynamics of the full scalar gradient vector lield
VL(x.t) at the small scales of a turbulent low, Key components
of the measurement system are shown in Figure 2.

Velocimetry techniques based on such scalar field measure-
ments were first introduced by Dahm. Su & Southerland (1991,
1992). In the scalarimaging velocimetry (S1V) method, the ve-
locity field u(x.t) is dcterinined by inverting the exact scalar
transpon equation. namely

u- VC = —{i — I

ot ReSc

from four-dimensional ineasurernents ot' the scalar field {(x.r)
together with one or more additional physical constraints such as
the smoothness (length scale) relation between the velocity and
scalar gradient vector fields in turbulent flows. As was pointed
out by Dahm, Su & Southcrland (1992). the latter point recog-
nizes that. in addition to the true velocity ficld u(x.s), (1) admits
all other velocity fields with streamlinescontined to isoscalar
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Figure 2. Key components of the meusurement system assembled for the present fully-resolved. four-dimensional. spatio-temporal. laboratory mei-
surements 0f the conserved scalar field {(x.2) and the velocity tield u(x.r) at the small scales of turbulent sheartlows. Two low-inertia galvunomet-
ric mirror scanners are slavedto the imaging array timing to rapidlysweepalaser beam in a raster fashion through a small three-dimensional spitial
volume in the llow. The dataacquisition system can achieve sustained data throughput rates up to 9.3 MB/sec for volutes as large as the full 3.1

GB disk capacity.

surfaces. since then u-V{ = 0. However in turbulent flows
these spurious velocity fields can be excluded. since the ratio of
smallest length scales in the true velocity field and the scalar field
differ by a factor Sct/2, while all the spurious velocity fields
would contain length scales as small as those in the scalar field.
_The smoothness constraint' thus permits the full velocity vector
field to be extracted despite the fact that only the component of
u(x,r) along the local V{(x,) direction is involved in the scalar
field dynamics. This can be done via direct inversion of (1) or
by a variational implementation, as described by Su & Dahm
(1996a,b).

Since the concept of scalar-based velocimetry was first pre-
sented. a number of related techniques have been suggested for
obtaining velocity fields from scalar field data. A two-scalar ap-
proach was suggested by Pearlstein & Carpenter (1995) that
would not require the smoothness constraint inherent in SIV.
However that method requires developmentofa means to simul-
taneously measure two scalar fields. and requires that the two
scalargradient vectors not align. A single-scalar approach based

It is this point that was missed in the criticism by Pearlstein & Carpenter
(1995). whose prool merely showed that in the absence of such additional
constraints the scalar transport equation alone is not sufficient to uniquely
determine u(x,r). This fact is readily apparent from (). and was noted by
Dahin, Su & Southerland (1992).

on optimal fitting of velocities and velocity gradients to niatch
the scalar field evolution has been proposed by Maas (1993) and
applied in turbulentjets by Merkel 1995. Merkel et al 1995, and
Dracos et al 1995°. The method does not make use of the scalar
transport equation, and instead finds the velocity field that maxi-
mizes the correlation between the measured scalar tield at suc-
cessive times. Note that the admissibility of spurious velocity
fields. with streamlineson isoscalar surfaces. is inherent in all
velocimetry methods based on a single scalar. In the correlation
method. a smoothness constraintsomewhat analogous to that in
the present S1V method is indirectly introduced through the tem-
plate on which the correlations are computed.

The present paper summarizes the scalar field measurement
techniqueand the inversion technique used to obtain the full vec-
tor velocity fields, and presents sample data from such measure-
ments. These include the conserved scalar field {(x.1). the
scalargradient vector field V(x.r), the velocity field u(x,r), the
vector vorticity field w,(x.r) and tensor strain rate field g;(x.z).
the Kineticenergy density field £ (x.¢). the kinetic energy dissipa-

? Muaus (1993) refersto the approuch us Adaptive Least SquaresCorrelation.
The sume technique wax proposed later, und apparently independendy. by
Tokumaru & Dimotakis (1995), who reter to it as Image Correlation Ve-
locimetry. Neither addresses the uniqueness issue explicitly or introduces
additional physical constraints to exciude the spurious velocity fields.




tion rate field P11 the enstrophy field W(x,t), and the pres-
sure gradient field Vp(x,t)' - The present paper also discusses
the extension of this scalar imaging velocimetry technique to
whole-field measurements of such quantities in turbulent flows.

SPACE AND TIME SCALES

Results of the type to be presented below rely crucially on the
resolution achieved relative 1o certain critical space and time
scales in scalar gradient vector tields V{(x.r) and velocity gradi-
ent tensor fields YU(X.f) in rbulent flows. Since turbulent
shear flows € characterized by a wide range of length and time

sculc_s over which variations occur, there are many s.cales_us_ed in
the literature to demark various subranges over which distinctly

differentphysical processes dominate. However, only a few of
these are of key relevance to measurements of the present type,
as summarized below.

Outer Scules

In shear-driven turbulent flows, the local outer length and veloc-
ity scalesu and 6 are those that characterize the local mean shear
profile. For example, injets and plumes these are the local mean
centerline velocity and the local flow width, while in shear layers
the relevant quantities are the freestream velocity difference and
the local flow width. All quantities associated with the outer
scales are properly normalized by « and 6, thus for example the

local outer time scale is T5 = &/u.. The local outer-scale Reynolds
number p, = ud/v then properly scales the local turbulence

properties of the flow. Key among these for the present purpos-
es is the relation between the local outer scales and the local
inner scales.

Working in local outer scales has several advantages over the
more widespread use of flow-specificsource variables, such as
the nozzle diameter and exit velocity in the case of jets. or the
density difference at the source in the case of plumes. Such
source variables often have at most an indirect influenceon the
outer scales. as can be seen from the proper momentum-based
scaling laws, and thus at most have an indirect and potentially
confusing intluence on the local turbulence properties. Indeed,
there are many examples in the literature where use of source
variables has led to erroneous conclusions. Moreover, suffi-
ciently small scales of all turbulent shear tlows at the same local
outcr-scale Reynolds number Re; have essentially similar struc-
tural and statistical properties. Parametrizations and normaliza-
tions based on flow-specific variables potentially obscure this
quasi-universality and thereby obfuscate one of the strongest or-
ganizing principles available in turbulence studies.

Inner Scules

The inner scales in turbulent flows characterize the finest length
scale and finest (Lagrangian) time scale on which variations
occur in the flow. The finest length scale results from the com-
peting effects of strain acting to reduce the gradient length scale,

* Some of these results will also be appearingin an upcoming series of pa-
pers on scalar imaging velocimetry (Su & Dahm 19964, b).

and molecular diffusion acting to increase the gradient scale.
These can be shown to reach an equilibriumat the strain-limited
viscous diffusion length scale &, in the velocity gradient field.
and at the strain-limited scalar diffusion length scale A, in the
scalar gradient field. These inner length scales are related to the
local outer scale 6 as A, = A 6 -Reg=3+ and A, = &, Sc-!/2,
The constant A = | 1.2 conies from direct measurements of A,
by Buch & Dahm (19964a,b) and Southerland & Dahm (1996).
where & is the full width over which the mean velocity profile
drops to 5% of its peak value, and A, is the average distance
over which the layer-normal scalar dissipation profiles drop to
20% of theirpeak value. As noted above. when working in the
local outer-scale Reynolds numberRe8 the value of A should be

universal; if working in source-based Reynolds numbers it will
appear to depend on the flgw.

Note that the viscous diffusion scale A, is directly propor-
tional to the classical Kolniogorov length scale A, = (v3/g)!/* de-
fined in terms of the mean dissipation rate €. Using the dissipa-
tion results in turbulentjets of Friehe, van Atta & Gibson (1971)
and A as above givesA, = 5.9 A,. Note that although A, gives

the correct parametric scaling for the finest velocity gradient
length scale, it is defined entirely on dimensional grounds and
thus does not correspond directly to the resolution Fequirement.
Similarly, the scalar diffusion length scale A, is simply propor”
tional '© the Batchelor scale, but gives the physical thickness of
the scalar dissipation layers in a turbulent flow.

Apart from the inner length scale, the viscosity is the only di-
rectly relevant physical parameter at the inner scales. and thus
the corresponding inner time scale is T, = (A,2/v). This gives
the shortest time scale on which the underlying vorticity Tield
evolves in a Lagrangian frame. The local outer-scale Reynolds
number Reg then provides the relation to the local outer time

scale as T, = AZ T Rgs—l/Z' where 5= (8/u). The inner ume

scale is directly proportional 'O the classical Kolmogorov time
scale T, = (v/g)112, WHeTC 45 above T, = 35 Ty

When the outer scale Reynolds number Reg is sufficiently
large, the velocity field u(x.¢) and scalar field (x,¢) should be
independent of Reg when viewed on the inner scales. More-
over, since the outer variables enter the governing equations
only through Re;, the velocity and scalar fields should therefore
also be independent of the outer scale variables and. as a further
consequence, should be independent of the particular shear flow
as well. 1t isin this sense that the fine scale structure of the ve-
locity and scalar fields, when viewed on the inner scales of high
Reynolds number turbulent flows. are believed to be largely uni-
versal (i.e. independent of the Reynolds number and of the par-
ticular tlow).

Advection Scales

The inner Lagrangian time scale T, is not, however, the temporal
resolution requirement for turbulent flow measurements. Tlic
Eulerian nature of mcasurenicnts obtained at any fixed spatial
point introduces the much shorter viscous advection time scale

T, = (A /u) in the velocity gradient field, and the corresponding
scalar advection time scale 7, = (A /u) in the scalar gradient
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field. Fully-resolved velocity or scalar field measurements thus
need to nieet these much more stringent Eulerian resolution re-
quirements. Note that these can be related to the local inner time
scaleas T, = AT, Reg!/4, and to the local outer time scale as s
= (T /A)-Regds,

Finally, note that statistics of velocity and scalar fields ob-
tained from time-series measurements will converge on the outer
time scale (8/«), while velocity gradient and scalar gradient
statistics convergeon the advective time scale 7, or 77, for Eule-
rian time-series measurements, and on the inner length scale A,
or A, for spatial measurements.

Fully-Resolved vs. Over-Resolved Measurements

Fully-resolved scalar field measurements in turbulent flows thus
require ut least Nyquist sampling relative to A, in space and rela-
tive to T, in time. Velocity field measurements similarly require
Nyquist sampling relative to A, and 7,,. This level of resolution
allows accurate differentiationin space and time to permit deter-
mination of the scalar gradient vector field V(x,¢) and the ve-
locity gradient tensor ficld Vu(x,1).

Assessing if a given set of experimental data are fully re-
solved can be done via a procedure analogous to “grid conver-
gence” assessments in numerical simulations. The dissipation
field V£ - Vf(x,r) associated with the energy f2(x,) of any mea-
sured quantity f(x.r) can be integrated over the measurement do-
main. with the procedure repeated as the resolution in the mea-
sured data f(x, t) is effectively degraded (post hoc) by successive
averaging over adjacentpoints. When the result approaches a
resolution-independent value, then the data are fully-resolved.
Application of this procedure to the present scalar field measure-
ments is demonstrated in the following section.

While the limits above set the minimum resolution required
For fully-resolved measurements, it is noteworthy that much
higher spatial or temporal resolution is not always desirable.
Since data are discretized not only in space and time, but also in
digital signal level, it is apparent that there is a finest resolution
limit beyond which adjacent points will take on in the same digi-
tal signal level, and thus compromiscdifferentiability of the data.
For any field f(x,t), the finest spatial resolution Ax and temporal
resoltition A¢ occur at critical values of the parameters

i /i
Af[Ax Af/(u -Ar)

where [Vl characterizes the local gradient magnitude, and Af is
tlic difference in f between successive digital signal levels.
When B becomes sufficiently small. spatially or temporally adja-
cent points will be at the same digital signal level, contributing to
an underestimate in the magnitude of the gradient field VA(x, 1)
or the time derivative df/dt(x,), and affecting the orientation of
the gradient vector.

()

FOUR-DIMENSIONAL SCALAR FIELD MEASUREMENTS

Three- and four-dimensional measurements of the universal
small-scale structure of conserved scalar mixing in turbulent

flows have become possible over the past few years (Dahm,
Southerland & Buch 1991; Buch & Dahm 1996a; Southerland &
Dahm 1994, 1996). This section describes such measurements
having spatial resoltition finer than the scalar diffusion length
scale A, and temporal resoltition finer than the scalar advection
time scale 77, and with results spanningup to 2.5 A, in each
spatial dimension and 1.2 <5 in the temporal dimension. The re-
sulting conserved scalar field data £(x, ) simultaneously span all
three spatial dimensions and time, and have sufficiently high sig-
nal quality to accurately determine the true scalar gradient vector
field VC(x,7). The measurements presented here were made at a
fixed location in the self-similar far field of an axisymmetric tur-
bulent jet at outer-scale Reynolds numbers Re, in the range
2,600 - 5,000 and with Taylor-scale Reynolds numbers Re,
ranging from 38 to 52.

Scalar Field Measurement Technique

The measurements are based on high-speed imaging of the laser
induced fluorescence intensity emitted by the concentration field
of a passive water-soluble dye having Sc = 2075, which mixes
with undyed fluid in a turbulent shear flow. A steady axisym-
metric turbulentjet was formed by issuing a weak aqueous dis-
odium fluorescein solution through a 4.9 mm axisymmetric
nozzle into de-ionized water in a tank. All measurements were
made 235 diarnetersdownstream of the jetexit(x =1.15 m), for
which the resulting 8(x) = 50 cm. For comparison, the three-
dimensional measurement volume was typically 2.5 cm on each
side. Theconcentration field {(x,¢) was measured repeatedly in
time at as many as 256> points within a small three-dimensional
spatial volume located 26 diameters (13 cm) off the jet center-
line. A highly collimated beam from a 5W argon-ion laser oper-
ated in multi-line emission mode was swept in a raster fashion
through this volume, and the resulting laser induced fluores-
cence from dye-containing fluid was imaged onto a high-speed,
planar, 256 x 256 clement. photodiode array (EG&G Rcticon
MC9256/MB9000) by a Vivatar 100mm f-2.8 macro lens oper-
ated at full aperture with an orange Mie filter. Figure 2 shows
key elements of the data acquisition system assembled to convert
and store the serial output from the photodiodearray in 8-bit dig-
ital format. The array formatter provided a non-interlaced,
sampled-and-held output train to the A/D converter. An extenial
clock signal drove the array at pixel rates up to 11 MHz, corre-
sponding to a framing rate up to 120 frames per second. A dual-
ported image processor effectively acted as a high speed 16 MB
buffer in which segments of the array output data stream were
temporarily stored en route to four 823.9 MB capacity disk
drives. The 3.1 GB capacity of the disks allowed continuous in-
terleaved acquisition of nearly 200 individual 2563 spatial data
volumes, or over 50,000 individual 2562 data planes at the sus-
tained throughput rate of 9.3 MB/sec. The resulting measured
fluorescence intensity field F(x,t) was subsequently converted
to the true dye concentration field c(x,¢) via the full multiline
form of Beer's Law, and then to the conserved scalar field
C(x,r) as described in Southerland & Dahrn (1994, 1996).

Each mcasuremcnt produces tlic scalar ficld at over 3 billion
individual points in space and time, structured as shown in Fig-
ure I. To estimate the resulting spatial and temporal resolution,
note that the local outer scale 8(x) = 0.44- x and centerlinc veloc-
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ity u(x)y = 7.2 (JIp)'% x=}, with / the jet source momentum tlux
and p the ambient fluid density. For example, at the outer scale
Reynolds number Re, = (1d/v) = 3,700 and with the Schmidt
number of 2075, the local strain-limited molecular diffusion
length scale estimate is Ay = 257 jtm and the local advection time
scale estimate is 7, = 103 msec. For comparison, the in-plane
spatial resolutionwas A(x,y) = 109 um. The (l/e) laser beam
thickness was measuredas IS Iytm. Deconvolution of the scalar
field measurements among adjacent planes increasesthc effective
spatial resolution in the z-direction to the interplane separation
Az = 120 um. These values show that both the characteristic
scale of the pixel image volume (Ax- Ay- Az)!/3 and its maxi-
mum dimension (Az) are less than 0.5 A,. Similarly. the tempo-
ral separation between successive data planes was Ar = S.9
msec. and comparing with the diffusion scale advection time of
103 msec verifies that the present measurcments resolve essen-
tially all of the fine scale structure of the local turbulent mixing
process.

Figure 3 gives a representative example of a single three-
dimensional 256% spatial data volume from such a measurement,

Inthis case. the outer-scale Reynolds number Re, is 5.000. and
the data volume gives an indication of the access to three-
dimensional fine scale structure accessible by such mecasure-
ments. Similarly. representative results from four-dimensional
data are given in Figure 4. which shows a time series of the
scalar field in the same spatial data plane from eight temporally
successive spatial data volumes, and in Figure 5.

In terms of classical Kolrnogorov variables. for the four-
dimensional data, the intervolumetime of 53 msec is typically
less than half the scalar diffusion scale advection time A ,/u and
thus entirely negligible in comparison with the Kolmogorov time
scale (v/e)!/?. Similarly, the interplane time is 8.9 msec, which
even in the worst case is less than /10 Xj/u, and thus is entirely
trivial in terms of the Kolmogorov time. Consequently, the data
acquisition rate is sufficient to cffectively trecze the scalar field.
and to entirely freeze the undertying velocity field.

The high spatial and tcmporal resolution achieved, together
with the high signal quality attained. allows accurate diflerentia-
tion of the measured conserved scalar ticld in all three spatial di-
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mensions and in time. as shown in Figures 6-9. This makes it
possible to determine the components of the true local instanta-
neous scalar gradient vector field VC(x.r) throughout these
__'_(“
4

three- and four-dimensional data. without any need to resort to 3

various approximations based on Taylor's hypothesis as is com-

monly required. This in turn permits determination of the (rue ~ This avoids errors introduced by naive npplication of the direct
central difference. and determines all three components of the

scalar energy dissipation rate field V{ -VE(x.t). and thus an as-
gradient vector field VZ(x.1)with equivalent levels ot'accuracy.

X 0| + onh) 3

sessment of the geometric scaling properties of the highly com-
pact support on which this field is concentrated in turbulent
shear tlows. Figure 9a shows an example of the instantaneous scalar en-
ergy dissipation rate field V& V(x.1) throughout such a three-
dimensional (2563) spatial data volume. and Figure 94 gives the

Similarly, the temporal separation between adjacent data
planes within each three-dimensional (2563)spatial data volume.  resultingdivergenceof the scalar gradient field V- V{(x.t) in the
and between the same data point in successive spatial volumes  same spatial data volume. Figure 10 shows the result obtained
with fewer z-planes in the fully four-dimensional data. is shorter ~ when the experimental "grid convergence" procedure described
that the local diffusion scale advectiontime 7,. As a result itis  in the previous section is applied to tlie present four-dimensional
possible to extract fully-resolved time series data of the type  scalar field data. This shows that the present resolution level es-
shown in Figure 5 from both the conserved scalar field {(x,:)  sentially reaches the knee in curve. with approximately 80% of

the scalar energy dissipation captured by the present measure-

and scalar energy dissipation rate field V{ -V{(x.¢).
ments. A factor of ten finer resolution would be needed to cap-
Differentiation of such data in X, y, and ¢ is straightforward  ture 98% of the dissipation: a factor of three coarser resolution
via linear central difference operators between spatially or tem-  would capture less than 15% of the total dissipation.
porally adjacentplanes, as shown in Figures 6 and 7. Note that
all derivative results are shown without any smoothing or filter- Note that the imaged region in the turbulent scalar ficld in
ing. Moreover, with four-dimensional data it is even possible to  these experiments typically spans less than 1/15 of the local
take into account the small time differenceover which spatially  outer scaled, and is comparableto tlie local inner scale A, of the
flow. The structure of velocity and scalar fields in turbulent

adjacent planes are acquired when differentiating in z as

T T
o 0. 0 e see caption
B for legend
= ‘: description
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Figure 10. Experimental grid convergence test of the true resolution achieved in these meusurements, showing the fraction of the total scalar dissipation

V- V{(x.t) cuptured by a measurement having any given number of pixels per inner scale Xp. Thesolidline is the theoreticul result for a single dissipa-
tion layer. The shon dished line is tlie theoreticul result for a set of parallel interacting layers having the same distributions of scalar endpoints and layer

separations as the experimental data. Note the good agreement with the latter. indicatingthat the present measurements resolve §0% of the total dissipa
tion. Any measurement having resolution coarserby an order of magnitude than the present datawould miss essentially all the dissipation. A factor ol

ten liner resolution would be required to capture 98% of the total resolution.




shear flows at scales near and below . is generally believed to
be statistically universal. This contention appears to be true even
for the present moderate Reynolds number flows. as evidenced
by the DNS studies of Jiménez, Wray, Saffrnan & Rogallo
(1993). The estimated Taylor scale Reynolds numbers for the
present data are Re;, = 45, well within the range of values over
which the DNS results of Jiménez et a/ showed Reynolds num-
ber independent collapse on inner variables at the smallest flow
scales. Moreover. high wavenumber spatial scalar spectra from
these same data (Southerland, Dahm & Dowling 1995) show the
&~} scaling predicted by Batchelor for large Sc mixing in turbu-
lent flows. As a result, even though the present measurements
are from Reg = 3,500 turbulentjets, the fine scales seen in them
are believed to be largely representative of the generic scaling
properties at the inner scales of all turbulent shear flows.

FULLY-RESOLVEDVELOCITY FIELD MEASUREMENTS

Fully-resolved, four-dimensional, spatio-temporal measure-
ments of all three components of the velocity vector field u(x, ),
as well as all nine components of the corresponding velocity gra-
dient tensor field Vu(x,#) and associated dynamical fields ob-
tained from it, can be obtained via the scalar imaging velocimetry
(S1V) technique. This technique is based on four-dimensional
scalar field measurements of the type described above, though
the requirement for full spatial and temporal resolution in the
scalar field, and even in the velocity field, can be relaxed as will
be shown in the following section. In this section. we summa-
rize the velocimetry technique and present sample results ob-
tained from it. The technique is described in detail by Dahm, Su
& Southerland (1992) and by Su & Dahm (1996a.5).

The Scalar Imaging Velocimetry Technique

In scalar imaging velocinietry, extraction of the underlying
space- and time-varying velocity field froni such scalar field
measurements is based on the exact conserved scalar transport
gauation

[—a-+u-v——l—vz]z;(x,:)=o | ()

at ReSc

Given fully space- and time-differentiable scalar field data
C(x,t), the only unknowns in this equation are the components
of the velocity field u(x,¢). As noted in the Introduction, it is
possible to extract the velocity field despite the fact that only the
local component of u along the scalar gradient vector direction
éyy affects the scalar field evolution. This is done by making
use of additional constraints, such as the smoothness condition
that relates the finest length scales admissible in the velocity and
scalar gradient vector fields in turbulent flows, as was pointed
out by Dahm, Su & Southerland (1992). Such constraints must
he imposed in all single-scalarbased velocimetry methods to ob-
tain the velocity field and thereby exclude the spurious additive
fields admitted by (4), which must have streamlines confined to
isoscalar surfaces. It is preferable that these constraints be
physically-based and imposed explicitly, as is clone here, so that
it is clear that the truc velocity field u(x,t) is obtained. In the
correlation-based approach (c.g. Maas 1993; Merkel et al 1995;
Tokamaru & Dimotakis 1995) the constraints arc imposed im-

plicitly by the correlation template in the numerical method used
in the inversion and has no direct physical basis, in which case
the relevance ot the resulting fields to the true velocity field may
be unclear. In the SIV technique, the constraints are physically-
based but applicable only in turbulent flows and thus, unlike
LDV, PTV or PIV, the method can only be applied in turbulent
flows.

In the SIV method, there are two closely related approaches
by which this inversion can be accomplished. The first, referred
to as direct inversion scalar imaging velocimetry, involves in-
verting (4) directly throughout the four-dimensional data space
to obtain the velocity component field «(x.7) which lies along
the scalar gradient vector direction &g (x.1). The full vector
field is then obtained by imposing the smoothness constraint on
Vuy(x,t) toyield an iterative procedure that converges to the true
velocity field u(x,r), as described by Dahm. Su & Southerland
(1992). The second approach, referred to as integral minimiza-
tion scalar imaging velocimetry, recognizes that any mcasure-
menterrors in the scalar fielddata {(x.¢) will lead to a non-zero
right hand side in (4). The method thus instead determines the
velocity field that minimizes an integral of a functional E com-
posed of the right hand side of (4) together with the smoothness
constraint, and possibly other physical constraints if desired.
Thus

E=E+0'E+PpE+ 5
where
g=f|Lonv——
E=(Vuxn) @)
and
E, =Vu:Vu(x,1) , (8)

where E, is the smoothness constraint and £, allows the conti-
nuity constraint to be included. The factors a2, B2, ... > 0
allow control over the relative weights assigned to each of the
E, By selecting the weight assigned to the smoothness con-
straint, the correct ratio of length scales in the velocity and scalar

fields can be ensured.

Note that all the £; = 0 were chosen to be second-orderin u,
so that fast, linear iterative methods can be used to perform the
minimization. Moreoverthese constraints were chosen so that
the resulting system contains only first- and second-ordcr
derivatives of the velocity components, for which compact dis-
crete difference operators lead to a sparse linear system. The re-
sulting smoothness constraint in (8) is in the form of a regular-
izing operator, which arc commonly used in inverse problems.
The mathematical basis of such operators is described by
Tikhonov & Arsenin (1977); operators of the form of E, are
known as Tikhonov stabilizers of first order.

For E as defined here. including only first derivatives of the
dependentvariables «;, the Euler characteristic equation that min-
imizes the integral of E over the domain has the general form

0E <~ 0 dE
=N ——|=0 . 9
du, i a.r,(a(au,./ax,)] ®
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For E in (5)-(8), the resulting three Euler equations are given in
Su & Dahm (1996a,b). Determination of the velocity field then
involves writing these as a linear system via discrete difference
operators and solving to find u(x,s) from the given data for
C(x,t); e.g. with an iterative method similar to the method of
conjugate gradients. It is found that the results obtained do not
depend strongly on the choice of the weighting factors (o2, B2)
over a fairly wide range of values and, owing to the integral na-
ture of the formulation, are rather insensitive to noise in the
scalar field data for values well beyond the levels in the present
experimental data.

Validation of the SIV Technique

Results from a detailed DNS validation test of the SIV technique
are presented by Su & Dahm (1996a) for the extreme case of a
S¢ = | scalar field in homogeneous decaying turbulence. The
scalar field {(x,r) from the DNS calculations served as input
data. and the velocity field u(x,t) obtained was cornpared with
the actual DNS velocities. These showed excellentagreement of
the resulting velocity field, with phase correlations exceeding
96% in the velocity field, and with probabilitydistributions for
the velocity component magnitudes also showing good agree-
ment with the corresponding DNS distributions. Moreover, in
these Sc = | simulations the scalar field input data contains the
same amount of information as does the velocity field being
sought, making the inversion extremely difficult. The agreement
obtained even in this lirnitingcase suggests that, for the present
experimental scalar field data with Sc » |, the results could be
cven more accurate, since then the scalar field carries far more
information than does the velocity field being sought.

Sample Velocity Field Measurements u(x,1)

Figures I - 18 show sample results obtained when this SIV tech-
nique is applied to fully-resolved, four-dimensional. spatio-
temporal. experimental data for Sc » 1 scalar fields of the type in
tlic previous section. In Figure ||, a scalar field plane together
with the three velocity component fields in the same plane arc
presented. Normalization is with the local inner length scale X,
and inner velocity scale (v/A,). Theseand all subsequent results
have been processed with a spectrally sharp filter with cutoff
wavenumber Zn/?\v, which leaves the velocity field at scales
ahove this essentially unaffected. It is apparentthat the velocity
field is much smoother than the scalar field, as would be expect-
ed since A =A- S~ = ""With Sc = 2075, the finest length scale
in the velocity field should be 45 times larger than that in the
scalar field.

Figure 12 shows a time series of the scalar field in the same
plane from six spatial data volumes spaced 30 AT apart, where
AT is the temporal separation between successively acquired
data volumes. The temporal spacing in Figure 12 was chosen
since the advection time scale 7, in the velocity field is 45 times
longer than the advectiontime scale 7}, in the scalar field. Re-
sults for the three velocity component fields in each of these
planes are shown in Figures [3a,b,¢c, where the evolution on this
time scale can he readily seen. The probability densities in Fig-
ure I3 arc constructed from velocity fields at the roughly 300 or
more time steps spanning the entire four-dimensional data space.

For each velocity vector component, results are shown from
three measurements at essentially the same conditions. Note
that. for each component. the three measurements give roughly
similar results, though it is apparentthat these statistics have not
fully converged over the time spanned by any one measurement.

Velocity Gradient Tensor Fields Vu(x, i)

Results for all nine components of the velocity gradient tensor
field are shown in Figures 14-16. Note that, unlike the velocity
component statistics in Figure 13, which converge on the outer
time scale (8/u), statistics for the velocity gradient tensor compo-
nents converge on the much shorter udvection time scale 7.

The three antisymmetric components of the velocity gradient
tensor field, namely the velocity vector components w,, w, . and
w,, aregivenin Figure 14. Spatial fields are shown in the same
six planes as in Figure 12, as well as statistics over the entire
data space from the three measurements considered. Note that
statistics from two of the three cases show good agreement. The
third case (R0628) is believed to have non-negligible buoyancy
effects. which in inner variables simply produces a rescaling of

~Accordingly, a single revised Xv value is used here and
throughout the results presented in all following figures for this
case. This brings the vorticity distributions, and the distribu-
tions for all other velocity gradient quantities. into good agree-
ment with the two other cases.

Results for the six symmetric components of the velocity
gradient tensor field. namely the three normal components g
€y and €;; and the three shear components e, , &;,, and € of
the strain rate tensor field g(x,¢), are shown in Figures 15 and
16. Note that statistics obtained show good agreement among
the three measurements considered, and from comparisons
among the various tensor components suggest only weak depar-
tures from isotropy on these scales. Of key interest for physical
models of the dissipative structure of turbulence are the relative
magnitudes of the eigenvalues of the strain rate tensor, and the
orientation of the vorticity and scalargradient vectors relative to
the eigenvectors of the strain rate tensor field. Results of this
type are experimentally accessible from SIV measurements such
as these: e.g. see Su & Dahm (19960).

Turbulence Dynamics Fielcls

The velocity gradient tensor components above are of interest in
part because of their relation to various higher-order constructs
associated with the dynamics of turbulent flows. Among these
are such quantities as the true kinetic energy dissipation rate field
O(x,t) =2v E:€(x,t), the enstrophy field 1/2w- w(x,¢), and the
enstrophy production rate field w-€- w(x,r). Sample results for
such quantities are shown in Figure 17, including spatio-
temporal structure and dynamics as well as statistics.

Note that these higher-order quantities become increasingly
intermittent. The dissipation and enstrophy fields, both of
which are second-order in the velocity gradient tensor compo-
nents, show nearly lognormal distributions. The enstrophy pro-
duction rate, which is third-order, is even more highly intermit-
tent. Moreover, note that the same rcscaled values of A, used




throughout these results for Case R0628 produces good agree-
ment with the two other cases for which measurements are pre-
sented here. Itshould be noted that these and many other quan-
tities obtained from these SIV measurements show good agree-
ment with available data from numerical simulations and experi-
mental measurements (see Su & Dahm 1996b), providing fur-
ther validation of the results obtained.

Note that, while the range of spatial scales accessible by
these results is limited to about 2 A, the much longer temporal
dimension of these four-dimensional spatio-temporal data pro-
vides access to inertial scales. This in turn allows such con-
structs as inertial range scaling exponents to be assessed from
these data (e.g. Su & Dahm 1996b) for comparisons with vari-
ous theoretical predictions, large eddy and direct numerical sim-
ulations, and with other experimental measurements. Results of
this type show, for example, good agreement in structure func-
tion exponents up to 14-t/ order with previous measurements,
providing further evidence for the validity of the results obtained
with this STV technique.

Pressure Gradient Fields Vp(x,t)

As a final example, Figure 18 shows experimental results for the
pressure gradient vector field V p(x, ) obtained from these veloc-
ity measurements. These are obtained by inverting the Navier-
Stokes equation for the velocity and velocity gradient fields from
the previous section as

-
VP(X.I)=—{%+U-V—7§V'}u(x,r) g (10)
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where, for the present constant density case. the density has
been absorbed into the pressure. This involves only spatial and
temporal derivatives of the velocity field, which are fully acces-
sible from the present measurements.

WHOLE-FIELD SCALAR IMAGING VELOCIMETRY

The four-dimensional scalar and velocity field measurements de-
scribed above are fully-resolved, having spatial resolution in the
scalar field finer than the local inner scale A, and temporal reso-
lution finer than the local advection scale 7, and in the velocity
field having spatial and temporal resolution much finer than the
local inner scale A, and local advection scale T,,. However, be-
cause the Schmidt number Sc of the scalar is very large, and the
resolution scales in the velocity and scalar fields differ by the
factor Sc!/2,  Thus the velocity field measurements obtained in
the previous section are over-resolved by a factor of 45. This
makes relatively inefficient use of the spatial dynamic range
available by the photodiode array, and inefficient use of the tem-
poral dynamicrange available by the total storage capacity of the
measurement system. In principle, the ideal resolution for fully-
resolved velocity measurements would be slightly finer than the
Nyquist limit relative to A, and 7', (rather than A, and T,,).

It is thus natural to inquire if velocity fields can be accurately
obtained from intentionally under-resolved scalar field data, in
order to make use of the full dynamic range accessible to the
measurements. If so, then by setting the resolution in the scalar
field measurementsat A, and T, it would be possible to obtain

v
fully-resolved velocity field data with a spatial dynamic range 45

1+60AT

1+ 30AT

0. [-‘;L’I/(vz/xv-‘) 600.

Figure [X. The pressure gradient field Vp(x,f) in the same six planes for which results were shown in the previous figures. obtained from the present
scalar imaging velocimetry result u(x,r) and the Nuvier-Stokes equation as in (10).




times larger than in the previous section. Moreover, if the reso-
lution in the scalar field measurements were intentionally made
coarser than A, and 7,, then true whole-field four-dimensional
velocity measurements would be possible, with the spatial dy-
namic range of the array reaching from the local outer scale 6 to
a cutoff scale determined by the spatial dynamic range of the
imaging array. Equally important, since the measurements
would no longer require full resolution of all spatial or temporal
scales. results could be obtained at arbitrarily high outer-scale
Reynolds numbers Re;.

To assess the feasibility of such whole-field SIV measure-
ments, we write (1) with the aid of the continuity constraint
V u(x,t)=0as

V-Cu——[i——i—-vz]ﬁ(x 1) ()
dr  ReSc -
Since any under-resolved quantity (f),(x,¢) can be represented
by the convolution of its resolved counterpart f(x, ) with a filter
function g,(x,t) having spatial (temporal) scale A as
(A, &0 = jf(x-x',:—:') g (X ) dx'dr . (12)
(")
and since convolution and differentiation commute for filter
functions that are symmetric in both space and time, (I |) can be
written as
J
Volty) =-|Z_
(Gu) [a[
Comparing (13) with (I 1) shows that straightforward applica-
tion of SIV to under-resolved scalar field data produces. in place

of the filtered velocity field (u),(x.r). the scalar-weighted fil-
tered velocity field <CU>A/<§>A‘

| )
V- )
P }(C)A(w) (13)

This scalar-weighted filtered velocity field has various physi-
cal meanings depending on the choice of filter scale A relative to
the local inner length scale and advective time scale for the scalar
and velocity fields, (A, T5) and (?»v, T,) respectively,and rela-
tive to the local outer scales (8,u). Note in particular that when
(Ap. Tp) « A « (. T,) the velocity field is fully-resolved but
the scalar field is under-resolved. It is then easy to show that
(Cu)L\/(Z;)A — u(x,t), so that the SIV result gives the true veloci-
ty fieldu(x,t). Onthe other hand, when (A, 7,) < A « (8,1) it
can be shown that (Qu),KC), — (u),(x,¢), so that the SIV result
gives the true velocity field filtered in space and time at the scale
A. This is analogous to the result from a large eddy simulation
(LES), but without the need for a subgrid scale model.

The suggests that physically meaningful velocity field results
can be obtained via SIV atarbitrarily high values of Re;. Since
A, T,) will decreaseas the Reynolds number increases, the ve-
locity fields are filtered at different levels, somewhat like varying
the grid cutoff in an LES calculation at differing scales. When
the Reynolds number is high enough that the cutoff scale is in
the inertial range. such results will provide insights into the flow
structure and dynamics for subgrid scale mode! development.
Moreover. this information will be obtained in real, inhomoge-
neous, anisotropic turbulent shear flows, at Reynolds numbers
that far exceed those accessible by DNS studies.

Perhaps most importantly. the extension of SIV to under-
resolved scalar field data removes the need for fully-resolved
measurements of the type presented here. This would make
four-dimensional spatio-temporal measurements of vector veloc-
ity fields similar to those in Figures 13 - L8 possible in essen-
tially all turbulent flows. The SIV technique would thus repre-
sent a practical, general purpose, whole-field measurement tech-
nique permitting experimental access to velocity and velocity
gradient fields in essentially any flow where a conserved scalar
field can be measured.

CONCLUSIONS

This paper has summarized methods for four-dimensional mea-
surernentsof conserved scalar fields and velocity fields in turbu-
lent flows, and presented results from a number of such mea-
surements. These allow direct experimental access to the struc-
ture and dynamics of the full scalar gradient vector field V{(x,)
and the full velocity gradient tensor field Vu(x,¢) throughout a
small three-dimensional spatial volume in the Flow. Moreover,
the extension of these techniques currently underway to whole-
field measurements, spanning from the local outer scale 6 to an
inertial cutoff scale A set by the spatial dynamic range of the
imaging array, will allow similardata to be obtained at essential-
ly arbitrary Reynolds numbers, and in essentially arbitrary
flows. Such scale-based techniques provide an alternative to
particle-based imaging methods, and allow high-resolution mea-
surements in fully-three-dimensional volumes with current de-
tector technology.
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