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Experimental methods and results are presented for fully-resolved, three- and four-dimensional, spatio-temporal 
measurements of scalar gradient vector fields V((x .1)  and velocity vector fields U ( X , I )  in turbulent flows. Each 
three-dimensional spatial data volume is composed of up to 2563 spatial data points, with volumes acquired se- 
quentially in time. The four-dimensional data sets are each comprised of over 3 billion individunl point measure- 
ments, and are simultaneously differentiable in x, y ,  z, and 1 ,  allowing access to thc spatial structure and temporal 
dynamics in these fields. Space and time scales relevant to such nieasurenients are summarized. A method for as- 
sessing the resolution achieved by such measurements is presented, and as are criteria for over-resolution in digi- 
tal measurernents. Results give the space- and time-varying conserved scalar field and vector velocity field simul- 
taneously on a regular three-dimensional spatial grid. Direct differentiation of these fields yields the spatial struc- 
ture in the full nine-component velocity gradient tensor field V u ( x , l ) .  From these, the vector vorticity field 
o;(x,I) and tensor strain rate field ~~(x.1) are extracted, as are the kinetic energy dissipation rate field 2v E:E(x,~) ,  
the enstrophy field O. o(x,I), the enstrohy production rate field o.E.w(x,[) and the pressure gradient field 
Vp(x , l ) .  Extension of the scalar imaging velocinietry technique to whole-field measurements are described, and 
various limitingcases is described, which yields velocity vector fields that are filtered in space and time at the res- 
olution scale A .  Such whole-field S I V  measurementsallow use of the full  spatial and temporal dynamic range 
available to the measurements, and permits measurements in turbulent flows at arbitrarily high Reynolds numbers. 

“If we ore 10 uchieve resrills tiever befure accoriiplislred, we tniist expecl 10 eriiploy rr~e~liod.~ tiever before ar~errip~ecl. ” 

Sir Francis Bucori 

INTRODUCTION 

Insights into the fully-resolved, three-dimensional, spatial 
structure and simultaneous temporal dynamics of the full  nine- 
component velocity gradient tensor field V u ( x , f )  at the small 
scales of turbulent flows are key to developing an understanding 
of the physics of turbulence and to the development of models 
for these sinall scales in  large eddy simulations. These small 
scales are generally presumed to be quasi-universal in  high 
Reynolds number flows, and are thus studied in  a generic con- 
text. However, laboratory experiments under controlled condi- 
tions capable of directly yielding useful information on the de- 
tailed structure and dynamics of these scales have been few, and 
as a consequence such studies have been generally limited to di- 
rect numerical simulations under idealized conditions. 

To date niost experiments of this type have been limited to 
single-point measurements of a small subset of the full  velocity 
gradient tensor field. Thc earliest and still most widely used 
technique for measuring one or several of the gr a d’  lent tensor 
components relies on multiple hot-wire or hot-film probes. 
Such probes have been in  use since theoriginal four-wire probe 
was developed by Kovasznay ( 1  954) for measurements of the 
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streaniwise component of the vorticity vector at a single spatial 
point. Surveys of more modern probes and data obtained from 
them are given by Wallace ( 1986) and Foss & Wallace ( 1989). 
Since then, Vukoslavcevic, Wallacc & B a h t  (199 I )  and Balint, 
Wallace& Vukoslavcevic (199 I )  have presented results from a 
nine-sensor hot-wire probe that yields simultaneous measure- 
mentsof all threevorticity components. Ki t  e1 ul (1987. 1988) 
also developed a nine-wire probe to measure several components 
of the velocity gradient tensor, and Tsinober, Ki t  & Dncos 
(1992) assembled a 12-sensor hot-wire probe, as well as a 20- 
sensor probe without coininon prongs, to measure all nine com- 
ponents of the velocity gradient tensor at a single spatial point. 
Such multiple hot-wire/filni probes have provided otherwise in-  
accessible insights into the structure and dynamics in the velocity 
gradient tensor field in  turbulent flows, especially as regards 
statistics of various quantities of interest. However, as the num- 
ber of sensor wires and prongs in these probes increases, block- 
age effects can become significant and alter velocity gradients in 
the vicinityof the probe tip.  Moreover, such probes inherently 
allow measurements at only a single spatial point. Spatial strut- 
tiire i n  the velocity gradient component fields is accessible only 
i f  a Taylor hypothesis is acceptcd, and even then is only avail- 
able along one spatial dimension. 

For these reasons, non-invasive optical techniques have been 
under development for several years to nicasurc components of 
the velocity gradient tensor ficld in turbulent Ilows. These tech- 
niques are making incrcasing use of advanced laser diagnostics, 



high-speed imaging arrays. and high-speed data acquisition ca- 
pabilities to facilitate a variety of optically-based measurement 
techniques that provide information over spatial fields of many 
points. Reviews of some of these are given. for example, by 
Adrian ( 19S6. I99 I. I996), Lauterborn & Vogel ( I9S4). and 
Miles & Nosenchuck ( 1  9S9). Such techniques potentially offer 
high spatial and temporal resolution, as well as genuine spatial 
field information in  place of classical single-point time-series 
data. The most widely used of such methods are panicle track- 
ing and particle image velocimetry (PTV and PIV) techniques. 
These generally produce two-component velocity vectors over 
two-dimensional fields, though three-dimensional panicle track- 
ing (e.g. Nishino e l  nl 19S9; Kasagi & blatsunaga 1995) and 
holographic panicle image velocimetry (e.g. Scherer & Bema1 
1993: Meng & Hussain 1995) are being developed to measure 
f u l l ,  three-component velocity vector fields in complex tlow 
(see also Adrian 1996). 

There are. however. two principle difficulties currently fac- 
ing such particle-based measurement techniques. First. holo- 
graphic extension of PIV to three-dimensional spatial measure- 
ments can be problematic. owing in part to resolution and depth- 
of-field limitations. Second, the high particle seeding densities 
required to adequately resolve the tinest length scales in turbu- 
lent tlows can make optical penetration into the flow difficult. 
Both of these problems can be circumvented by using an  effec- 
tively corrlimoirs distribution of laser tluorescent dye molecules 
as the seed. Their size eliminates the Mie scattering associated 
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Figurc I .  Scheiiiaric showiiig the srructure of the three- arid four- 
diiiieiisioiial dara voluiiies. E x h  four-diiiiensioiial rneiisureiiieiit producw 
[he cotiservedscalor lield < ( x . r )  :it up to 3.1 bi l l io i i  poiiiis in  space and 
t i i i ic. :irr:inged os tetiipor;il sequenceof three-dimensioiiol sp;irial d:ir;i vol- 
iiiiieh. The spatial separation berweeii adjaceiir points iii x .  y. aiid z ih  

siii:iIler thari [he loc:il sm i i i - l i n i i kd  molecular diffusioii sc;ile Lo,  ;ind [he 
retiipor;il seporarioii betweeii the sanic sp;ttial point in  successive d:it:i vol- 
i i i i i cs  i s  less [h:iri [he tliffusioti sc;ile :idveciion r i i i ie  TI,. allowiiig dift'ersiiti- 
:itioii hiiiiulraneously in  sp:ice mid t i i i ie .  The vsctor velociry field I I ( S  .I) is 
obt:iiiicd by i i ivening rhe sc;iIar transport equation for the given zcahr tield 
(I:II:I. togstlicr with [he siiioorhiiess coiismiiit betweeii A, ;itid A", 

w i t h  discrere panicles. thus niaintaininp optical transparency in 
the tlow field. Moreover. currently-available scanning tech- 
niques can be readily used to obtain three-dimensional spatial in- 
formation and simultaneous temporal information. as will be dc- 
scribed below. In such scalar-based velocimetry techniques. the 
dye molecules are both dynamically passive and conserved. so 
the conserved scalar transport equation governs their continuum 
concentration field. Unlike PIV. determining velocities then no 
longer involves tinding discrete particle displacements. and is in-  
stead based on inversion of the space- and time-evolving dye 
concentration field to extract the underlying velocity field, ;IS will 
also be described below. Such scalar imaging velocimrtry ineth- 
ods currently allow fully-resolved four-dimensional spatio- 
temporal measurements of the fine ScaIej of turbulent tlows 
(Dahm, Su & Southerland 1991. 1992: Su & Dahm I9960,b). 
Moreover, extensions of this technique are currently tintlerway 
to permit whole-field scalar imaging velocimetry measureinents 
of turbulent tlows. as will be described below. 

Such fully-resolved, three- and four-dimensional, spatio- 
temporal measiirenients of the conserved scalar field < ( s . t )  and 
velocity field II(S.I)  in  turbulent t l o w  are based on high- 
resolution scanning planar laser induced tluorescence imaging 
from the concentration tield of a passive water-solubledye (dis- 
odium tluorescein) having Sc = 2075, combined with continu- 
ous high-speed acquisition of gigabyte-sized data sets. Details 
of the measurenient technique are given by Dahin, Southcrland 
& Buch (1991). Buch & Dahin (1996). and Southerlnnd & 
Dahm (1994. 1996). The resolution achieved reaches below the 
local strain-limited molecular diffusion scale i n  al l  thrce spatial 
dimensions as well as i n  time. The resulting threc-dimensional 
data sets are comprised of nearly 200 temporally successive spn- 
tial data volumes, each of which consists of up to 25GJ spatial 
data points arranged on ;I regular grid a s  shown i n  Figiirc I. 
Owing to the high resolution and signal quality attaincd, the rc- 
stilting data are fully difftrrntiable iii  x.  y ,  and z. The four- 
dimensional data sets are each coinpriscd of over 3 billion indi- 
vidual point measurements throughout a smallerspatial dnta vol- 
ume, and are simultaneously differentiable in x.  y ,  z. and I .  as 
also shown in  Figure I, allowing access to the spatial structure 
and temporal dynamics of the full scalar gradient vector lield 
V < ( x . l )  at the small sciiles of a turbulent Ilow. Key components 
ofthe measurement system are shown in Figure 2. 

Velocimetry techniques based on such scalar field measurc- 
ments were first introduced by Dahm. Su LE: Souther l id  ( 199 I ,  
1992). In tlic scalar imaging velocimetry(S1V) mcrhod. the ve- 
locity field I I ( S . I )  is dcterinined by invcning the exact scalar 
transpon equation. namely 

from four-dimensional ineasurernents ot' the scalar field <(sal)  

together with one or more ntltlitionnl physical consmints sucli ;is 
the smoothness (length scalc) relation between thc velocity ;ind 
scalar gradicnt vector fields i n  turbulent flows. As was pointcd 
out by Dahm, Su B Southcrland (1992). the latter point rccog- 
nizes that. i n  addition to thc true vclocity ficld u(s.[). ( I  ) adlnits 
all other velocity fields with  streamlines confined to isoscalar 
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Figure 2. Key components of the iiieiisurement sysrem assembled for the present fully-resolved. four-dimensional. spatio-temporal. laboratory iiu- 

mreiiieiits of the coiiwrvedscalar field <(s . r )  and the velocity t ield u(x . r )  at the sinall scales of turbulent shear tlows. Two  low-inenia galvaiioniet- 
ric iiiirror scaiiiiers areslavedto the iiiiaging array timing to rapidlysweepa h e r  beam in  a riilster fashion through a siiiall three-diiiiriisioiinl sparial 
volume i n  the llow. The dataacquisirioii system can achieve sustained data throughput rates up to 9.3 MB/sec for voluiiiss as large as the full  3.1 
GB disk capacity. 

surfaces. since then u , V <  I 0. However i n  turbulent flows 
these spurious velocity fields can be excluded. since the ratio of 
siiiallest length scales in the true velocity field and the scalar field 
differ by  a factor SC'/*, while all the spurious velocity fields 
would contain length scales as small as those in the scalar field. 

.The smoothness constraint' thus permits the full velocity vector 
field to be extracted despite the fact that only the component of 
u ( s , r )  along the local V((x,i) direction is involved in  the scalar 
field dynamics. This can be done via direct inversion of ( I )  or 
by a variational implementation, as described by Su & Dahni 
(1996a,b). 

Since the concept of scalar-based velocimetry was first pre- 
sented. a number of related techniques have been suggested for 
obtaining velocity fields from scalar field data. A two-scalarap- 
proach was suggested by Pearlstein RC Carpenter (1995) that 
would not require the smoothness constraint inherent i n  S I V .  
However that method requires developmentofa nieans to simul- 
taneously measure two scalar fields. and requires that the two 
scalar gradient vectors not align. A single-scalar approach based 

on optimal fitting of velocities and velocity gradients to niatch 
the scalar field evolution has been proposed by Maas  (1993) and 
applied in turbulentjets by Merkel 1995. Merkel et a1 1995. and 
Dracos e[ a1 1995'. The method does not make use of the scalar 
transport equation, and instead finds the velocity field that maxi- 
mizes the correlation between the measured scalar tield at suc- 
cessive times. Note that the admissibility of spurious velocity 
fields. with streamlines on isoscalar surfaces. is inherent i n  all 
velocimetry methods based on a single scalar. In the correlation 
method. a smoothness constraint somewhat analogous to that in 
the present SIV method is indirectly introduced through the tem- 
plate on which the correlations are computed. 

The present paper summarizes the scalar field measurement 
techniqueand the inversion technique used to obtain the full vec- 
tor velocity fields, and presents sample data from such measure- 
ments. These include the conserved scalar field ((x.t) ,  the 
scalargradient vector field V((x.1). the velocity field u ( s . r ) ,  the 
vector vorticity field w,(x.t) and tensor strain rate field E ~ ( x , ~ ) .  
the kineticenergy density field k ( x . 1 ) .  the kinetic energy dissipa- 

~ ~~ 

' I t  is this point that was iiiissed iii the criticisiii by Pexstei i i  ,Fr Carpiiter 
(IW.5). wtiosr prool'inerely showed rliiir iii the absence of such additioiial 
cniisraints [he scalar tralispon equatiori alone i s  not sufficient to uriiqucly 
drrenniiie u ( s . r ) .  This fact is readilyapparrnr froiii (I ). and was norrd by 
Dahiii. Su & Southerland (1992). 

' Maas ( 1993) refers to the approiichas Adaptive Least Squares Correlatinii. 
The s;iiiie rechiiiqtic wits proposed lilter. i i i id apparently iiidqxndenrly. by 
Tokuiiiaru & Diiiiotiikis (1905). who rcfcr to ir as ImageCorrelation \'e- 
lociiiietry. Neirtier;ddresses the uniqueness issue explicitly or introduces 
additional physical constraints to exclude the spurious velocity lields. 



t i O l l  rate field the enstrophy field \ v ( ~ , [ ) ,  and the  pres- 
SLlre gradient field V / , ( ~ , ~ ) I  , The present paper also discusses 
t h e  extension of this sca la r  i l n a g i n g  velocimetry techniqlle to 
whole-field meaSllrelnentS of such quantit ies i n  tllrbll~ent flows. 

and molecular diffusion acting to increase the gradient scale. 
Thesecan be shown to reach an equilibriumat the strain-limited 
viscous diffusion length scale hv in  the velocity gradient field. 
and at the strain-limited scalar diffusion length scale h, i n  the 
scalar gradient field. These inner length scales are related to the 
local outer scale 6 as hv = A 6 .Reb-3/1 and h, = h, Sc-1“. 
The constant A = I I .2 conies from direct nieasurenients of A, 
by Buch & Dahin (1996a.b) and Southerland & Dahm (1996). 
where 6 is the fu l l  width over which the mean velocity profile 
drops to 5% of its peak value, and h, is the average distance 
over which the layer-normal scalar dissipation profiles drop to 
70% of theirpeak value. As noted above. when working i n  the 

universal; i f  working in  source-based Reynolds numbers i t  will 
appear to depend On the 

SPACE AND TIME SCALES 

~~~~~l~~ of the type to be presented below rely c ruc ia l ly  on the 
reso lu t ion  achieved to certain cr i t ica l  space and tinle 
scales i n  scalar gradient vector fields ~ c ( ~ , ~ )  and velocity gradi- 

i n  t l l rbu~ent  flows, sillce tllrbulent 

llsed i n  
the literature to demark various subranges over which distinctly 
different physical processes dominate. However, only a few of 
t h e x  are of key relevance to nieasurenients of the present type, 
as stiminarized below. 

O1rrer Scules 

In shear-driven turbulent flows, the local outer length and veloc- 
ity scales 11 and 6 are those that characterize the local mean shear 
profile. For example, in  jets and plumes these are the local mean 
centerlirievelocity and the local flow width, while in shear layers 
the relevant quantities are the freestream velocity difference and 
the local flow width. All quantities associated with the outer 
scales are properly normalized by I I  and 6, thus for example the 
local outer time scale is T& = 6/11, The local outer-scale Reynolds 
“Irnber E “6/v lhen properly the local tLlrbulence 

es is the relation between the local outer scales and the local 
inner scales. 

fields 
shear  flows characterized by a wide range of length and tinie local Outer-SCak Reynolds number Reg  the Value O f  /I should be 

Over which var ia t ions  occlIr, there are many 

Note that the viscotis diffusion scale h, is directly propor- 
tional to the classical Kolniogorov length scale hK = ( v ~ / E ) ’ / ‘  de- 
fined in terms ofthe nieiin dissipation rate&. Using the dissipa- 
tion results in turbulentjets of Friehe, van Atta & Gibson (I97 I )  
and A as above gives hv = 5.9 1,. Note that although h,  gives 
the correct parametric sca l ing  for the f ines t  velocity gradient 
length scale, i t  is defined ent i re ly  on dimensional grounds and 
thus does not correspond directly to the resolution requirement. 
~ i ~ i l ~ ~ l ~ ,  the scalar d i f f u s i o n  length Sca le  1, is s i m p l y  propor- 

tional the Batchelor scale, but gives the physical thickness of 
the scalar dissipation layers i n  a turbulent flow, 

Apart from the inner length scale, the viscosity is the only di- 
rectly relevant physical parameter at the inner scales. and thus 

the shortest time scale on which the underlying vorticity field 
evolves in a Lagrangian frame. The local outer-scale Reynolds 
number Reg then provides the relation to the local outer time 
scale as Tv ~ A2 Tb ,  Reg.. 112, where ‘6 ~ (6,u), The 
scale is  directly proportiorlal the  classical Kolnlogorov time 
scale ‘5K ~ ( v / E ) 1 / 2 ,  

properties Of the Key among these for the present purpos- the correspondillg inner tillle scale is ‘5, = (Av?/,,), This gives 

Working in  local outer scales has several advantages over the 
inore widespread use of flow-specific source variables, such as 
the nozzle diameter and exit velocity in  the case of jets. or the 
density difference at the source in the case of plumes. Such 

as above TK = 35 Tv, 

source variables often have at most an indirect influenceon the 
outer scales. as can be seen from the proper momentum-based 
scaling laws, and thus at most have an indirect and potentially 
confusing intluence on the local turbulence properties. Indeed, 
there are many examples in the literature where use of source 
variables has led to erroneous conclusions. Moreover, sufri- 
ciently small scales of all turbulent shear tlows at the same local 
outcr-scale Reynolds number R e s  have essentially similar struc- 
tural and statistical properties. Parametrizations and nonnaliza- 
tions based on flow-specific variables potentially obscure this 
quasi-universality and thereby obfuscate one of the strongest or- 
ganizing principles available in turbulence studies. 

Iiiiier Scules 

The inner scales in turbulent flows characterize the finest length 
scale and finest (Lagrangian) time scale on which variations 
occur in the flow. The finest length scale results from the com- 
peting effects of strain acting to reduce the gradient length scale, 

’ Sonic 01 these results will also be appearing ii i  t i n  upcoming scrizs of pa- 
pers on scaliir imaging velocinielry (Su & Dahm I Y Y G t r , b ) .  

When the outer scale Reynolds number Reb  is sufficiently 
large, the velocity field u(x.r) and scalar field <(x,r)  should be 
independent of Reb when viewed on the inner scales. More- 
over, since the outer variables enter the governing equations 
only through R e 6 ,  the velocity and scalar fields should therefore 
also be indcpendent of the outer scale variables and. as a further 
consequence, should be independent of the particular shear flow 
as well. I t  is in this sense that the fine scale structure of the ve- 
locity and scalar fields, when viewed on the inner scales of high 
Reynolds number turbulent flows. are believed to be largely uni-  
versal ( i . e .  independent of thc Reynolds number and of the par- 
ticular tlow). 

Advectioti Scale5 

The inner Lagrangian time scale T” is not, however, the temporal 
resolution requirement for turbulent flow measurements. Tlic 
Eulerian nature of mcasurenicnts obtained at any fixed spatial 
point introduces the much shorter viscous advection timc SCBIC 
T,  (h,/u) in the velocity gradient field, and the corresponding 
scalar advection time scale T,  3 (hdu) in the scalar gradient 
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field. Fully-resolved velocity or scalar field measurements thus 
need to nieet these much more stringent Eulerian resolution re- 
quirements. Note that these can be related to the local inner time 
scale as T~ = A T; Re,“‘, and to the local outer time scale as T~ 
= (T,/A) .Re,3/4. 

Finally, note that statistics of velocity and scalar fields ob- 
tained from time-series measurements will converge on the outer 
time scale ( S / u ) ,  while velocity gradient and scalar gradient 
statistics convergeon the advective time scale T,  or Tu for Eule- 
rian time-series measurements, and on the inner length scale h, 
or h, for spatial measurements. 

F i i l l y -  Resolved vs. Over-Resolved Measiiremeitts 

Fully-resolved scalar field ineasurenients i n  turbulent flows thus 
require ut least Nyquist sampling relative to h, in  space and rela- 
tive to T ,  in time. Velocity field measurements similarly require 
NyquisL sampling relative to h, and T,. This level of resolution 
;iIIows accurate differentiation i n  space and time to permit deter- 
mination of the scalar gradient vector field V c ( x . t )  and the ve- 
locity gradient tensor lield Vu(x.r). 

Assessing i f  a given set of experimental data are ful ly  re- 
solved can be done via a procedure analogous to “grid conver- 
gence” assessments in numerical simulations. The dissipation 
f ield V , f .  V J ( x , t )  associated with theenergyf’(x,r) of any niea- 
sured quantityJ(x.0 can be integrated over the measurementdo- 
main. with the proccdurc repeated as the resolution in  the mea- 
sured dataJ(x. t )  is effectively degraded (post hoc) by successive 
nveraging over adjacent points. When the result approaches a 
rcsolution-independent valtte, then the data are fully-resolved. 
Application of this procedure to the present scalar field measure- 
ments is demonstrated in the following section. 

While the limits above set the minimum resolution required 
For fully-resolved measurements, i t  is noteworthy that much 
higher spatial or temporal resolution is not always desirable. 
Since data are discretized not only in space and time, but also in 
digital signal level, i t  is apparent that there is a finest resolution 
limit beyond which adjacent points will takeon i n  the same digi- 
tal signal level, and thus compromiscdifferentiability of the data. 
For a n y  fieldf(x,r). the finest spatial resolution Ax  and temporal 
resoltition AI  occur at critical values of the parameters 

wlierc IVfl characterizes the local gradient magnitude, and Af is 
tlic difference i n  J between successive digital signal levels. 
When /I becomes sufficiently small. spatially or temporally adja- 
cent points will be at the same digital signal level, contributing to 
an underestimate i n  tlie magnitude of tlie gradient field V f ( x , i )  
or the time derivative 3 f / J t ( x , t ) ,  and affecting the orientation of 
the grridicnt vector. 

FOUR-I)IMENSIONAL SCALAR FIEI,I) MISASUKER’LEN’I’S 

Threc- and four-dimensional measurements of the universal 
small-scale structure of conserved scalar mixing i n  turbulent 

flows have become possible over the past few years (Dahm, 
Southerland & Buch 1991; Buch & Dahm 1996a; Southerland Rr 
Dahm 1994, 1996). This section describes such nieasurements 
having spatial resoltition finer than the scalar diffusion length 
scale h, and temporal resoltition finer than the scalar advection 
time scale T,, and with results spanning up to 2.5 h, in  each 
spatial dimension and I .2 T, i n  the temporal dimension. The re- 
sulting conserved scalar field data @ , t )  simultaneously span all 
three spatial dimensions and time, and have sufficiently high sig- 
nal quality to accurately determine the true scalar gradient vector 
field V<(x,f) .  The measurements presented here were madeat a 
fixed location in the self-similar far field of an axisymmetric ttir- 
bulent jet at outer-scale Reynolds numbers Re, in  the range 
2,600 - 5,000 and with Taylor-scale Reynolds numbers Rek 
ranging from 38 to 52. 

Scnlar Field Memiireiiteitt  Teckrtipe 

The measurements are based on high-speed imaging of the laser 
induced tluorescence intensity emitted by the concentration field 
of a passive water-soluble dye having Sc = 2075, which mixes 
with undyed fluid in  a turbulent shear flow. A steady axisyni- 
metric turbulent jet was formed by issuing a weak aqueous dis- 
odium fluorescein solution through a 4.9 mm axisymnietric 
nozzle into de-ionized water in  a tank. All measurements were 
made 235 diarnetersdownstream of the jet exit (x = I .  15 m), for 
which the resulting 6(x) = 50 cm. For comparison, the three- 
dimensional measurement volume was typically 2.5 cm on each 
side. The concentration field ( ( x , t )  was measured repeatedly in 
timeat as many as 2563 points within a small three-dimensional 
spatial volume located 26 diameters (13 cm) off the jet center- 
line. A highly collimated beam from a 5W argon-ion laser oper- 
ated in multi-line emission mode was swept in  a raster fashion 
through this volume, and the resulting laser induced tluores- 
cence from dye-containing fluid was imaged onto a high-speed, 
planar, 256 x 256 clement. photodiode array (EG&G Rcticon 
MC92561MB9000) by a Vivatar 100mmJ-2.8 macro lens opcr- 
ated at full  aperture with an orange Mie filter. Figure 2 shows 
key elements of the data acquisition system assembled to convert 
and store the serial output from the photodiodearray in 8-bit dig- 
ital format. The array formatter provided a non-interlaced, 
sampled-and-held output train to the AID converter. An extenial 
clock signal drove the array at pixel rates up to 1 I MHz, corre- 
sponding to a framing rate up to 120 frames per second. A dual- 
ported image processor effectively acted as a high speed I6 MB 
buffer in  which segments of the array output data stream were 
temporarily stored en route to four 823.9 MB capacity disk 
drives. The 1. I G B  capacity of the disks allowed continuous in-  
terleaved acquisition of nearly 200 individual 2563 spatial data 
volumes, or over 50.000 individual 256* data planes at the sus- 
tained throughput rate of 9.3 MBlsec. The resulting menured 
fluorescence intensity field F ( x , t )  was subsequently converted 
to the true dye concentration field c ( x , t )  via the f u l l  multiline 
form of Beer’s Law, and then to the conserved scalar field 
c(x.1) as described in Southerland & Dahrn (1994, 1996). 

Each mcasuremcnt produces tlic scalar field at over 3 billion 
indivicltial points i n  space and time, stnicturcd as shown i n  Fig- 
ure 1. To estimate the resulting spatial and temporal resolution, 
note that the local outer scale 6(x) = 0.44. x and centerlinc veloc- 
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Figure 5 .  Exaiiiple time series results froiii [he preseiic fully-resolved. four-diiiieiisional. spatia-ieiiipord iiieiwreiiieiiis. showing iiiiie-varyiiig coli- 
served scalar values <(s ,O ;it ii siiigle spulial darn poiiir ai lop. arid the scalarriiergy dissipatioii viiIuss V<.V[(x./) ai ;I siiiyle spaiial data poiiii ;ii bur- 
10n1. The sniirc dur;itiori of [he rneasurenieiii is shown ai lefi. ;IS well iis a niagiiified seciioii iii right deiiioiisiriiiiiig [tie high isniporal resoluiioii 
iichieved. Symbols show [he discrete n i tuurcd values. 

.ity ~ ( x )  = 7.2 (Jlp)”’. x - I ,  with J thejet source niomentuin tlux 
and  p the ambient t luid density. For example, at the outer scale 
Reynolds number R e ,  = (u8iv) = 3,700 and with the Schmidt 
number of 2075, the local strain-limited inolecular diffusion 
length scale estimate i s  h, = 257 p~i and the local advection time 
scale estimate i s  T,  = I03 msec. For comparison, the in-plane 
spatial resolution was A(x.y) = 109 p i .  The (I/r) laser beam 
thickness was measured as I S  I pm. Deconvolution o f  the scalar 
field nieasuremenrs among adjacent planes increases the effective 
spatial resolution in  the z-direction to the interplane separation 
Az = 120 pm. These values show that both the characteristic 
scale of the pixel image volume (Ax. Ay. A z ) ” ~  and i t s  maxi- 
i i ium dimension (Az) are less than 0.5 h,. Similarly. the teinpo- 
ral separation between successive data planes was A! = S.9 
msec. and comparing with the diffusion scale advection time of 
IO3 niscc verilies that the present i i ie i i~ i i rcment~ resolve essen- 
tially a l l  o f  the fine scale structure of the local turbulent mixing 
process. 

F i y r c  3 gives ;I reprcsentiitive example o f  ii single three- 
diiiicnsion:il 256‘ spatial data volume from such ;I nieasurenient. 

I n  this case. the outer-scale Reynolds nuinber R e ,  i s  5.000. and  
the data volume gives a n  indication of the access to threc- 
dimensional fine scale structure accessible by such ineiisure- 
ments. Similarly. representative rcsuI[s from four-dimensional 
data are given in  Figure 4. which shows a time series of the 
scalar field in  the same spatial data plane I’rorn eight temporally 
successive spatial data volumes, and in Figure 5 .  

In  terms of classic;iI Kolrnogorov varinblcs. for the four- 
dimensional data, the intervolume tiiiie of 5 3  insec i s  typically 
less than half the scalar diffusion scale advection tirne Adit and 
thus entirely negligible i n  comparison with the Kolmogorov time 
scale (v/E)”?. Similarly, the interplane time i s  8.9 msec, which 
even in  the worst case is less than 1/10 Adti, and thus i s  entirely 
trivial in ternis of the Kolmogorov time. Consequently, the data 
acquisition rate i s  suf’ticient to cl’fcctivcly freeze the scalar field. 
and to entirely freeze the underlying velocity field. 

The higli spatial and tcnipor;iI resolution ;ichicvcd. togcthcr 
with the high signal quality attained. allows ;iccur;itc dil’lkrcntia- 
tion of the measured conscrved scalar tield in a l l  three spiitial d i -  
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mensions and in time. as shown i n  Figures 6-9. This makes it 
possible to determine the components of the true local instanta- 
neous scalar gradient vector field V < ( s . f )  throughout these 
three- and four-dimensional data. without any need to resort to 
vnrious approximations based on Taylor's hypothesis as is com- 
monly required. This in turn permits determination of the true 
scalar energy dissipation rate field V( . V < ( s . f ) .  and thus an as- 
sessment of the geometric scaling properties of the highly com- 
pact support on which this field is concentrated in  turbulent 
shenr tlows. 

Similarly, the temporal separation between adjacent data 
plrines within each three-dimensional (2563) spatial data volume. 
and between the same data point in successive spatial volumes 
w i t h  fewer z-planes in the fully four-dimensional data. is shorter 
tI i ; i~ the local diffusion scale advection time q,. As a result i t  is 
possible to extract fully-resolved time series data of  the type 
shown in Figure 5 from both the conserved scalar field ((s,!) 
and scalar energy dissipation rate field V< .V((x.f). 

Differentiation of such data in  x, y ,  and I is straightforward 
via linear central difference operators between spatially or tem- 
porally adjacentplanes, as shown in  Figures 6 and 7. Note that 
all derivative results are shown without any smoothing or filter- 
ing. Moreover, with four-dimensional data it  is even possible to 
tnkc into account the small time differenceover which spatially 
ad jmxt  planes are acquired when differentiating in z as 

This avoids errors introduced by nai've npplication of the direct 
central difference. and determines all three components ot' the 
gradient vector field V((s .  I )  bvith equivalent levels ot' accui-cic)i. 

Figure 9a shows an example of  the instantaneous scal;ir en- 
ergy dissipation rate field V <  V<(s.r )  throughout such :I three- 
dimensional (2563) spatial data volunie. and Figure 9h give5 the 
resultingdivergenceof the sc;iIargrsdisnt field V .  V ( ( S . I )  i i i  the 
same spatial data volunie. Figure I C )  shows the result obtained 
when the experimental "grid convergence" proccdure described 
in the previous section is iipplicd to tlie present four-dinierisioli;il 
scalar field data. This shows that the present resolution IevCI CS- 
sentially reaches the knee i n  curve. with approximately 80% of 
the scalar energy dissipation captured by the present mc;isurt'- 
ments. A factor of ten finer resolution would be needed to 
ture 98% of the dissipation: a factor of three coarser rcsolution 
would capture less than 15% of the total dissipation. 

Note that the imaged region in the turbulcnt scalar field in 
these experiments typically spans less than 1/15 of the local 
outer scale 6, and is comparable to tlie local inncr scalc h, of the 
flow. The structure of velocity and scalar fields i n  turbulent 
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tei i  titier resolutioii would be required to capture 9S& of  the total resolution. 



shear flows at scales near and below hv is generally believed to 
be statistically universal. This contention appears to be true even 
for the present moderate Reynolds number flows. as evidenced 
by the DNS studies of Jimtnez, Wray, Saffrnan & Rogallo 
(1993). The estirnatedTaylor scale Reynolds numbers for the 
present data are Re;, = 45, well within the range of values over 
which the DNS results of Jinitnez et a1 showed Reynolds num- 
ber independent collapse on inner variables at the smallest flow 
scales. Moreover. high wavenumber spatial scalar spectra from 
these same data (Southerland, Dahm & Dowling 1995) show the 
k - '  scaling predicted by Batchelor for large Sc mixing in turbu- 
lent flows. As a result, even though the present measurements 
are I'rom Res = 3,500 turbulentjets, the fine scales seen in  them 
iirc believed to be largely representative of the generic scaling 
properties at the inner scales of all turbulent shear Ilows. 

FULLY-RESOLVED VELOCITY FIELD MEASUlUklENTS 

Fully-resolved, four-dimensional, spatio-temporal measure- 
ments of all three components of the velocity vector field u(x.r), 
as well as all nine components of the corresponding velocity gra- 
dient tensor field Vu(x,t) and associated dynamical fields ob- 
tained from it, can be obtained via the scalar imaging velocimetry 
(SIV) technique. This technique is based on four-dimensional 
scalar field measurements of the type described above, though 
the requirement for f u l l  spatial and temporal resolution in  the 
scalar field, and even in  the velocity field, can be relaxed as will 
be shown in the following section. In  this section. we suninia- 
rize the velocimetry technique and present sample results ob- 
tained from it. The technique is described i n  detail by D a h .  Su 
& Southerland (1992) and by Su & Dahm (1996a,h). 

Tlre Scalar Irrrngirig Velociirie/ry Tecliriiqiie 

I n  scalar imaging velocinietry, extraction of the underlying 
space- and time-varying velocity field froni such scalar field 
iiieastirements is based on the exact conserved scalar transport 
emation 

(4) 

Given ful ly  space- and time-differentiable scalar field dam 
((x,!), the only unknowns in this equation are the components 
of the velocity field u(x,t) .  As noted in the Introduction, i t  is 
possible to extract the velocity field despite the fact that only the 
local component of u along the scalar gradient vector direction 
ivr affects the scalar field evolution. This is done by making 
use of additional constraints, such as the smoothness condition 
that relates the finest length scales admissible in the velocity and 
scalar gradient vector fields in turbulent flows, as was pointed 
out by Dahm, Su & Southerland (I 992). Such constraints must 
he imposed in  all single-scalar based velocimetry methods to ob- 
tain the velocity field and thereby exclude the spurious additive 
fields admitted by (4), which must have streiimlines confined to 
isoscalar surfaces. I t  is preferablc that these constraints be 
physically-based and imposed explicitly, as is clone here, so that 
i t  is clear that thc truc velocity ficld I I ( X , I )  is obtained. In the 
correlation-based approach (c.g. Mans 1993; Mcrkel et a1 1995; 
Tokamaru & Dirriotakis 1995) the constr;iiiits iirc imposed im- 

plicitly by the correlation template i n  the numerical method used 
in  the inversion and has no direct physical basis, in  which case 
the relevance of the  resulting fields to the true velocity field may 
be unclear. In  the SIV technique, the constraints are physically- 
based but applicable only i n  turbulent flows and thus, unlike 
LDV, PTV or PIV, the method can only be applied in  turbulent 
flows. 

In the SIV method, therc are two closely related approaches 
by which this inversion can be accomplished. The first, referred 
to as direct inversion scalar imaging velocinietry, involves in-  
verting (4) directly throughout the four-diniensional data space 
to obtain the velocity component field q ( x , / )  which lies along 
the scalar gradient vector direction 2og(x . t ) .  The f u l l  vector 
field is then obtained by imposing the smoothness constraint on 
Vql(x,f)  to yield an iterative procedure that converges to the true 
velocity field u ( x , t ) ,  as described by Dahm. Su & Southerlancl 
(1992). The second approach, referred to as integral minimizn- 
tion scalar imaging velocimetry, recognizes that any mcasure- 
menterrors in  the scalar fielddata t ; ( s , t )  will lead to a non-zero 
right hand side in  (4). The method thus instead determines the 
velocity field that minimizes an integral of a functional E com- 
posed of the right hand side of (4) together with the smoothness 
constraint, and possibly other physical constraints i f  desired. 
Thus 

where 
E 5  E, + $ E 2  +OjE, +.. .  , (5) 

E? 2 ( V .  U ( X . r ) ) 2  , (7) 
and 

E, = v u  : Vu(s,r)  , (8) 

where E ,  is the smoothness constraint and E z  allows the conti- 
nui ty  constraint to be included. The factors a2, p2, ... > 0 
allow control over the relative weights assigned to each of the 
E? By selecting the weight assigned to the smoothness con- 
straint, the correct ratioof length scales in the velocity and scalar 
fields can be ensured. 

Note that all the Ei 2 0 werc chosen to be second-order in  u,  
so that fast, linear iterative methods can be used to perform the 
minimization. Moreover these constraints were chosen so that 
the resulting systcm contains only first- and second-ordcr 
derivatives of the velocity components, for which compact dis- 
crete difference operators lead to a sparse linear system. The re- 
sulting smoothness constraint in (8) is in  the form of a regular- 
izing operator, which arc commonly used i n  inverse problems. 
The mathematical basis of such operators is described by 
Tikhonov & Arsenin (1977); operators of the form of E,  are 
known as Tikhonov stabilizers of first order. 

For E as defined here. including only first derivatives of the 
dependent variables i i i ,  the Euler characteristic equation that min- 
imizes the integral of E over the domain has the general form 

(9) 
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For E in (5) - (8) .  the resulting three Euler equations are given i n  
Su & Dahm (I9960,b). Determination ofthe velocity field then 
involves writing these as a linear system via discrete difference 
operators and solving to find u(x,t)  from the given data for 
< ( x , t ) ;  e.8. with an iterative method similar to the method of 
conjugate gradients. I t  is found that the results obtained do not 
depend strongly on the choice of the weighting factors (a2,  p2) 
over a fairly wide range of values and, owing to the integral i ia- 
ture of the formulation, are rather insensitive to noise i n  the 
scalar field data for values well beyond the levels i n  the present 
experiinental data. 

V~iliduiivii OJ' ihe SIV Tectiriiqrie 

Results from a detailed DNS validation test of the SIV technique 
are presented by Su tk Dahm (1996a) for the extreme case of a 
Sc = I scalar field i n  homogeneous decaying turbulence. The 
sciilar field @ , i )  from the DNS calculations served as input 
data. and the velocity field u(x,t) obtained was cornpared with 
the actual DNS velocities. These showed excellent agreement of 
the resulting velocity field, with phase correlations exceeding 
96% in  the velocity field, and with probabilitydistributions for 
the velocity component magnitudes also showing good agree- 
ment with the corresponding DNS distributions. Moreover, in 
these Sc = I simulations the scalar field input data contains the 
same amount of information as does the velocity field being 
sought, making the inversion extremely difficult. The agreement 
obtained even in this lirnitingcase suggests that, for the present 
experimental scalar field data with Sc )) I ,  the results could be 
cven more accurate, since then the scalar field carries far more 
information than does the velocity field being sought. 

Snirrple Velociiy Field n/leci.siireirieiris u(s , I )  

Figures I I - I8 show sample results obtained when this SIV tech- 
niquc is applied to fully-rcsolved. four-dimensional. spatio- 
tcmpornl. experimental data for Sc v I scalar fields of the type in 
tlic previous section. I n  Figure I I ,  a scalar field plane together 
wi th  thc three velocity component fields in the same plane arc 
presented. Normalization is with the local inner length scale h, 
and inner velocity scale (vlh,). These and all subsequent results 
have been processed with a spectrally sharp filter with cutoff 
wavenumber 2rc/hv, which leaves the velocity field at scales 
ahove this essentially unaffected. I t  is apparent that the velocity 
ficld is much smoother than the scalar field, as would be expect- 
ed since h ,  = h,. s ~ -" ~ .  With Sc = 2075, the finest length scale 
i n  thc velocity field should be 45 times larger than that in the 
scalar field. 

Figure 12 shows a time series of the scalar field in the same 
plane from six spatial data volumes spaced 30 AT apart, where 
AT is the temporal separation between successively acquired 
data volumes. The temporal spacing i n  Figure 12 was chosen 
since the advection time scale T, in thc velocity field is 45 times 
longcr than the advection time sciile T,, i n  the scalar field. Re- 
sults for the three velocity component fields i n  each of these 
planes are shown i n  Figures 13n,0,c, where the evolution on this 
timc scalc can hc rcaclily seen. Thc probability densities i n  Fig- 
ure I3 arc constructed from velocity fields at the roughly 300 or 
inore tinic steps spanning the entire four-dimensional data space. 

For each velocity vector component, results are shown from 
three measurements at essentially the same conditions. Note 
that. for each component. the three measurements give roughly 
similar results, though i t  is apparent that these statistics have not 
fully converged over the time spanned by any one measurement. 

Velocity Gradierii Terisor Fields Vu(x,  i) 

Results for all nine components of the velocity gr a d '  lent tensor 
field are shown in Figures 14- 16. Note that, unlike the velocity 
component statistics i n  Figure 13, which converge on the outer 
time scale (6/u), statistics for the velocity gradient tensor compo- 
nents converge on the much shorter udvection time scale Tu. 

The three antisymmetric components of the velocity gradient 
tensor field, namely the velocity vector components o,, 0,. . and 
oz, are given in  Figure 14. Spatial fields are shown in the same 
six planes as in  Figure 12. as well ;IS statistics over the entire 
data space from the three measurements considered. Note that 
statistics From two of the three cases show good agreement. The 
third case (R0628) is believed to havc non-negligible buoyancy 
effects. which in inner variables simply produces a rescaling of 

h,. Accordingly, a single revised hv value is used here and 
throughout the results presented in all following figures for this 
case. This brings the vorticity distributions, and the distribu- 
tions for all other velocity gradient quantities. into good agree- 
ment with the two other cases. 

Results for the six symmetric components of the velocity 
gradient tensor field. namely the three normal components E,,., , 
E?:,., and and the three shear components E,. , q.z, and of 
the strain rate tensor field E(x,I), are shown in Figures 15 and 
16. Note tha t  statistics obtained show good agreement among 
the three measurenients considered, and from comparisons 
among the various tensor components suggest only weak depar- 
tures from isotropy on these scales. Of key interest for physical 
models of the dissipative structure of turbulence are the relative 
magnitudes of the eigenvalues of the strain rate tensor, and the 
orientation of the vorticity and scalar gradient vectors relative to 
the eigenvectors of the strain rate tensor field. Results of this 
type are experimentally accessible from SIV measurements such 
as these: e.g. see Su tk Dahm (19960). 

. ,  

Tiirhiilerice Dyiiorizics Fielcls 

The velocity gradient tensor components above are of interest i n  
part because of their relation to various higher-order constructs 
associated with the dynamics of turbulent flows. Among these 
are such quantities as the true kinetic energy dissipation rate field 
Q(x,i) 2v E :~(x,t), the enstrophy field 1/2 w .  w(s,[), and the 
enstrophy production rate field o. E.  w ( x , i ) .  Sample results for 
such quantities are shown in Figure 17, including spatio- 
temporal Structure and dynamics as well as statistics. 

Note that thcsc higher-order quantities become increasingly 
intermittent. The dissipation and enstrophy fields, both of 
which are second-order in the velocity gradient tensor compo- 
nents, show nearly lognormal distributions. Thc enstrophy pro- 
duction rate, which is third-order, is even more highly intcnnit- 
tent. Ploreover, note that the same rcscaled values of 1" used 



throughout these results for Case R0628 produces good agree- 
ment with the two other cases for which measurements are pre- 
sented here. I t  should be noted that these and many other quan- 
tities obtained from these SIV measurements show good agree- 
ment with available data from numerical simulations and experi- 
mental measurements (see Su & Dahm 1996b), providing fur- 
ther validation of the results obtained. 

Note that, while the range of spatial scales accessible by 
these results is limited to about 2 hv, the much longer temporal 
dimension of these four-dimensional spatio-temporal data pro- 
vides access to inertial scales. This in  turn  allows such con- 
structs as inertial range scaling exponents to be assessed from 
these data (e.g. Su & Dahm 1996b) for comparisons with vari- 
ous theoretical predictions, large eddy and direct numerical sim- 
ulations, and with other experimental measurements. Results of 
this type show, for example, good agreement in structure func- 
tion exponents up to I4-lh order with previous measurements, 
providing further evidence for the validity of the results obtained 
with this SIV technique. 

Pressure Grarlieiit Fields V p ( x ,  t )  

As a final example, Figure 18 shows experimental results for the 
pressure gradient vector field V p ( x , ~ )  obtained from these veloc- 
i ty measurements. These are obtained by inverting the Navier- 
Stokes equation for the velocity and velocity gradient fields from 
the previous section as 

Vp(X, l )= -  -++ .v - -v~  U(X,I) , 
K l  Re I 1  

where, for the present constant density case. the density has 
been absorbed into the pressure. This involves only spatial and 
temporal derivatives of the velocity field, which are fully acces- 
sible from the present measurements. 

WHOLE-FIELD SCALAR IMAGING v E L o c I m m ~  

The four-dimensional scalar and velocity field iiieasurenients de- 
scribed above are fully-resolved, having spatial resolution i n  the 
scalar field finer than the local inner scale ho and temporal reso- 
lution finer than the local advection scale To. and in the velocity 
field having spatial and temporal resolution much finer than the 
local inner scale h, and local advection scale T,. However, be- 
cause the Schmidt number Sc of the scalar is very large, and the 
resolution scales in the velocity and scalar fields differ by the 
factor Sc1'2. Thus the velocity field measurements obtained in 
the previous section are over-resolved by a factor of 45. This 
makes relatively inefficient use of the spatial dynamic range 
available by the photodiode array, and inefficient use of the tern- 
poral dynamic range available by the total storage capacity of the 
measurement system. In principle, the ideal resolution for fully- 
resolved velocity measurements would be slightly finer than the 
Nyquist limit relative to h, and T, (rather than h, and TD). 

I t  is thus natural to inquire i f  velocity fields can be accurately 
obtained from intentionally under-resolved scalar field data, i n  
order to make use of the full dynamic range accessible to the 
measurements. I f  so, then by setting the resolution in the scalar 
field measurementsat h, and T,  i t  would be possible to obtain 
fully-resolved velocity field data with a spatial dynamic range 45 

Figure I X. The pressure gradient field Vp(x3r) iii the siiiiie six  planes for whicli results were shown i n  ihe previous figures. obraitied from the present 
scalar imagitig velocimetry result U(X,I) and the Nuvier-Stokes equation LIS in (IO). 



times larger than i n  the previous section. Moreover, i f  the reso- 
lution in  the scalar field measurements were intentionally made 
coarser than h, and T,,, then true whole-field four-dimensional 
velocity measurements would be possible, with the spatial dy- 
namic range of the array reaching from the lociil outer scale 6 to 
a cutoff scale determined by the spatial dynamic range of the 
i magi ng array. Equal I y important, since the measureinen ts 

would no longer require full resolution of all spatial or temporal 
scales. results could be obtained at arbitrarily high outer-scale 
Reynolds numbers R e s .  

To assess the feasibility of such whole-field SIV measure- 
meiits, we write ( I )  with the aid of the continuity constraint 
v . U ( S , l )  = 0 as 

v .<u=-  ---v2 <(x,t)  
[:I RJSc ] 

Since any under-resolved quantity ( f  ),(x,t) can be represented 
by  the convolution of its resolved counterpart f ( x , f )  with a filter 
function gA(x,l) having spatial (temporal) scale A as 

and since convolution and differentiation commute for filter 
functions that are symmetric in both space and time, ( I  I ) can be 
written as 

Comparing (13) with ( I  1 )  shows that straightforward applica- 
tion of SIV to under-resolved scalar field data produces. i n  place 
of the filtered velocity field (u)A(x,[). the scalar-weighted til- 
tered velocity field ((u),/((),. 

This scalar-weighted liltered velocity field has various physi- 
cal meanings depending on the choice of filter scale A relative to 
the local inner length scale and advective time scale for the scalar 
and velocity fields, (AD, Td and (h,,, T,) respectively, and rela- 
tive to the local outer scales ( 6 , u ) .  Note i n  pnrticular that when 
(AD, TD) (( A (( (L,, T,) the velocity field is fully-resolved but 
the scalar field is under-resolved. It is then easy to show that 
((u),/((), u(x.1). so that the SIV result gives the true veloci- 
ty field ii(x,t). On theothei hand, when (1,. T,) < A (( ( 6 , ~ )  it 
can be shown that(<u),/(<), -+ (u)A(x,l), so that the SIV result 
givcs the true velocity field filtered in  space and time at the scale 
A .  This is analogous to the result from a large eddy simulation 
(LES), but without the need for a subgrid scale model. 

The suggests that physically meaningful velocity field results 
can be obtained via SIV at arbitrarily high values of Res .  Since 
(Av, T,,) will decreaseas the Reynolds number increases, the ve- 
locity fields are filtered at different levels, somewhat like varying 
the grid cutoff in an LES calculation at differing scales. When 
the Reynolds number is high enough that the cutoff scale is in 
the inertial range. such results will provide insights into the flow 
structure and dynamics for subgrid scale rnoclcl development. 
Moreover. this inlbrniation will be obtained in  real, inhomogc- 
iicotis. anisotropic tiirbulent shear flows, at Reynolds numbers 
th;it Ihr exceed those accessible by DNS studies. 

Perhaps most importantly. the extension of SIV to under- 
resolved scalar field data removes the need for fully-resolved 
measurements of the type presented here. This would make 
four-dimensional spatio-temporal nieasurements of vector veloc- 
ity fields similar to those in Figures 13 - I8 possible in  essen- 
tially all turbulent flows. The SIV technique would thus repre- 
sent a practical, general purpose, whole-field measurement tech- 
nique permitting experimental access to velocity and velocity 
gradient fields in  essentially any flow where a conserved sciiliir 
field can be measured. 

CONCLUSIONS 

This paper has summarized methods for four-dimensional mcti- 
surernents of conserved scalar fields and velocity fields i n  turbu- 
lent flows, and presented results froin a number of such mea- 
surements. These allow direct experimental access to the struc- 
ture and dynamics of the fu l l  scalar gradient vector field V < ( S , I )  
and the full velocity gradient tensor field Vu(x,l) throughout a 
small three-dimensional spatial volume in the Flow. Moreover, 
the extension of these techniques currently underway to whole- 
field measurements, spanning from the local outer scale 6 to an 
inertial cutoff scale h set by the spatial dynamic range of the 
imaging array, will allow similar data to be obtained at esscntial- 
ly arbitrary Reynolds numbers, and i n  essentially arbitrary 
flows. Such scale-based techniques provide an alternative to 
particle-based imaging methods, and allow high-resolution mea- 
surements in  fully-three-dimensional volumes with current de- 
tector technology. 
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