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Introduction

We present further developments in a program
to create a novel algorithm for the Euler and (ulti-
mately) Navier-Stokes equations. The main features
of the algorithm, and of the improvements reported
here, are as follows.

1. The algorithm uses an unstructured grid, and is
driven by residuals evaluated on simplicial cells,
with unknown quantities stored at the nodes.

2. The residuals are split into components having
different physical significance before being dis-
tributed to the nodes of the cell.

3. The residual is enhanced to third-order accu-
racy by reconstructing nodal gradients.

4. The separation between elliptic and hyperbolic
components of the residual is enforced strongly
(nodewise) rather than weakly (elementwise)

These features result in extremely clean solutions
with very low levels of spurious entropy. In particu-
lar, it is possible to demonstrate excellent solutions
to the flow over an ellipse at incidence, thereby
meeting a challenge proffered by Pulliam in.}0 At
the same time, as a byproduct of the decomposi-
tion, the code arrives at an authentic incompress-
ible limit, while still retaining an accurate shock-
capturing ability in transonic flow.

Not yet implemented into the Euler code, but very
compatible with it, are the following

a. Nodal movement also driven by residuals, lead-
ing to

b. Automatic realignment of element edges with
characteristic lines and shocks for hyperbolic
problems,

c. Migration of nodes into under-resolved regions
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These features have been implemented only on
model problems, but for these we can demonstrate
arbitrarily sharp discontinuity capturing (zero width
with no interior points), and accurate elliptic solu-
tions to incompressible flow on very coarse grids.
The material on hyperbolic grid adaptation has ap-
peared elsewhere® so we focus here on newer results
relating to the elliptic case.

This paper is based on the doctoral theses of the
first two authors® ! where more details and exam-
ples can be found.

Basic Solution Strategy

We attempt to combine the most useful features
of several forms of the Euler equations. In natural
variables, (pressure, flow direction, enthalpy and en-
tropy) the flow can be decoupled into potential and
convective parts;

ps—pa’ty = 0
pa’ls —p, = 0
hs = 0
S, 0 (1)

This is the unique form of the equations that pro-
duces, in the linear case, a complete decoupling into
elliptic and hyperbolic subsystems.!” There is an
analogy with the use of characteristic form in con-
ventional upwind codes. The discretization is de-
signed to meet the physics of the natural variables,
but a similarity transformation is used to allow the
coding to be done in terms of more convenient vari-
ables.

The actual variables used are those contained in
the parameter vector z = \/p(1,u, v, h)T, in terms of
which the steady Euler equations can be written!?

Cz; +Dzy =0 (2)
with
29 21 0 0
—1 +1 -1 -1
c=|Tmn mn TEHEs A g
0 z3 F) 0
24 0 0 29
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Fig. 1 Gradients at nodes A and B are obtained
by applying Gauss’ theorem to the shaded control
volumes.

z3 21 0 0
0 23 29 0
D= -1 -1 +1 =1 (4)
L~ Te o
24 0 0 23

The advantage of these variables is that a simple
linearization over an element with vertices 123, z =
(z1 + 22 + 23)/3, C = C(z), D = D(Z), gives a
residual for that element that is conservative and
hence leads to correctly captured shockwaves.3

The residual over an element E is then®

¢E =77 [BE((E dy — D dz) z) V (5)

and this is distributed to the nodes of the element, af-
ter first being projected into the components due to
the elliptic and hyperbolic parts of the flow. In pre-
vious work,” this was done by analyzing the spatial
gradients. The present work is based on the realiza-
tion? that the same task can be accomplished more
directly on the residual itself.

Evaluation of the integral in (5) by applying the
Trapezium Rule to each side gives a second-order
method. If the derivative of the integrand were avail-
able at each node then the Trapezium Rule with
Endpoint Correction could be used to give a fourth-
order method. One order is lost if the derivative is
only an estimate. Caraeni and Fuchs? suggest to ob-
tain these estimates as shown in Figure 1. We apply
their idea in the form,;

A

(6)
This correction is a little more economical than
theirs. We find that it increases the cost of the cal-
culation by only about 25% but greatly improves the
accuracy.

We then define projection matrices (IIg, T, I1,)!2
such that Ils@g is the part of the residual due to
transport of entropy, IIn@g is the part of the resid-
ual due to transport of enthalpy, and Il ¢ is the
part of the residual due to potential flow. The first
two are distributed in an upwind manner using the

2 0F 6

B 1 1
z ds = §|A$| ZA+2p — EAS - (Vuy — Vup)

Fig. 2 Mach number profile over the elliptic
body shows good symmetry.

L 0.1 Df! 033 ;:,:.....:I:m,,::, 0?7 Dil 09 1
Fig. 3 The trailing edge suction peak is almost
captured with same intensity as the leading-edge
one.

NACA 0012 M=0.01, Mach contowr lines for Euler solver
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Fig. 4 NACA 0012 calculations in the incom-
pressible regime. Mach contour plots are super-
imposed for comparison, showing that all solu-
tions are self-similar in the incompressible limit.

PSI scheme? in the form due to Sidilkover,!® and
the third is, in subsonic flow, distributed in a least-
squares fashion.
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Fig. 5 Cartoon of non-uniform enthalpy inflow
problem. Due to the linear inflow velocity profile,
the vorticity is constant everywhere in the flow-
field.

Non-UniNorm Enthalpry inflow, Mx0.15

Fig. 6 Streamlines superimposed with contour
lines of enthalpy (left). Since enthalpy is ad-
vected along streamlines, the two should coin-
cide. The fore-aft symmetry of the flow is well
captured as indicated by the circulation zones.

Properties and Results

For a linear problem, the above scheme has the
property that the potential part of the residual does
not change the entropy or enthalpy. In fact, the
changes that it does create lie in the intersection of
the manifolds S = const, h = const and in the linear
case this is a hyperplane.. In the nonlinear case, the
orientation of the corresponding hypersurface varies
throughout the solution. The update vector is cor-
rectly oriented for the average state in the cell, but
not quite correctly oriented for the state at any node
of the cell. There are therefore small changes of en-
tropy and enthalpy created by the potential part of
the residual. These are found particularly in the
vicinity of stagnation points, where the eigenstruc-
ture degenerates, but are in fact smaller by one or
two orders of magnitude than those produced by
usual Euler codes. However, a further improvement
is possible by projecting the update at each node
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Fig. 7 Order of accuracy of the Euler solver on
Fraenkel’s flow shows third-order behavior.

NACA 0012, M=0.70, 1.65 degres pitch, Mach contours

Fig. 8 NACA 0012 calculations in the supercrit-
ical regime. Mach contours for M., = 0.70, a =
1.65°

into the hypersurface corresponding to the previous
state at that node. The spurious entropy is then re-
duced further by three or four orders of magnitude.

The numerical dissipation is then so low that al-
most perfect potential flow can be recovered. In
particular, the challenge proposed by Pulliam!® can
be met, of computing the flow over an ellipse placed
at incidence in a subsonic flow. As Pulliam observed,
any orthodox Euler code will produce something like
a viscous wake, with a strong fore-and-aft asymme-
try and significant lift and drag. The true potential
flow, of course, should give no aerodynamic forces,
in accord with d’Alembert’s Paradox. The results
in Figures 2 and 3 show that this is rather well
achieved.

A byproduct of the scheme is that it automatically
incorporates preconditioning. It has been known for
some time that most Euler codes, especially those
based on upwind principles, give very inaccurate so-
lutions when applied to almost incompressible flows.
A theoretical explanation was given by Guillard and
Viozat.® An asymptotic analysis shows that pres-
sure fluctuations in a low speed flow that is obtained
analytically, scaled by the free stream sound speed

3 0F 6
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Fig. 9 C, distribution on a Joukowsky airfoil at
the angle of attack 10° obtained by a least-squares
scheme on a fine 160x80 regular triangular O-
grid.

and density, are of order M?, but that those pre-
dicted by a first-order upwind scheme are of order
M. Application of preconditioning'® ?® restores the
correct scaling. There is a close link between precon-
ditioning and equation decomposition'® At the dif-
ferential level, breaking the residual into its unique
orthogonal components, allowing them to evolve in-
dependently, and then recombining them, recovers
the preconditioner of van Leer, Lee and Roe.?° The
present scheme is, in effect, a direct implementa-
tion of this idea, and moreover does not suffer the
slight loss of robustness near stagnation points noted
by other authors. We speculate that this is due to
the truly multidimensional implementation adopted
here. Figure 4 shows solutions obtained for Mach
numbers of 1071,1072, and 10~3superposed on one
another.

The low dissipation is maintained even when the
flow has variable enthalpy. Figure 5 shows the flow
past a circular cylinder due to a stream that is
sheared at infinity. An exact solution for this sit-
uation was given by Fraenkel.® Closed regions of
separated flow are found near the front and rear.
The enthalpy of this flow is not uniform, but should
be constant along streamlines. In Figure 6 we su-
perpose some streamlines and some lines of constant
enthalpy, showing that they coincide to within visual
accuracy. In Figure 7 we demonstrate third-order
grid convergence for this case.

In Figure 8 we show that our code gives a clean
solution to a typical transonic problem.

Grid Movement

It was shown in'4 that remarkable results for a
simple hyperbolic problem could be achieved by the
simple expedient of minimizing the residuals with
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Fig. 10 (), distribution on a Joukowsky airfoil
obtained by the modified least-squares scheme.

Fig. 11 A third-order solution for the airfoil
problem on a 80x40 O-grid.

respect to the nodal coordinates as well as with re-
spect to the nodal states. Both minimizations can be
neatly put into the present distributive framework.
It was also shown in'® that perfectly discontinuous
data could be represented by allowing elements to
degenerate to zero width across the characteristic
direction. In® the extension to nonlinear shocks was
achieved, although all results obtained to date have
only been for scalar model problems, or 2 x 2 linear
systems. However in® results are given for the Euler
equations from a scheme that requires the degener-
ate elements to be flagged in advance; merging of
the two approaches should be fairly simple.

With good progress made on the hyperbolic case,
we report here on efforts to extend the idea to
the elliptic case. We have considered the Cauchy-
Riemann equations

0 =us+vy, = 0 (M
(8)

Il
o

W = Uz — Uy
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Fig. 12 The solid line indicates the line of con-
vergence rate 3. The error in v and v were
measured in L; norm, indicated by circles and
stars respectively. Ng is the number of nodes in
the radial direction of the O-grids.

as a model of incompressible flow, applied to a
Joukowsky airfoil for which the exact solution is
known. Our first effort was to define discrete cell
residuals Ag, Qg and to minimize the functional

F=>) (A5 +0})/Se €)
E

where Sg is the element area. This was proposed
in'4 and has some very attractive theoretical proper-
ties, such as reproducing, away from boundaries, the
standard Galerkin method for the Laplace equations
governing u and v. In fact the results were highly
disappointing. Figure 9 shows the results from a
“second-order” version of this method on quite a fine
mesh. The problem apparently lies in correctly cou-
pling the two Laplace equations on the boundary,
through a no-flow condition. If the exact solution
for either u or v was prescribed on the boundary,
then a good solution for the other variable could be
found. A much better solution (Figure 10, obtained
on a fixed grid) was obtained with the factor Sg
omitted from (9), but another disappointment was
that further minimization with respect to the grid,
although it necessarily reduced the residual, did lit-
tle or nothing to reduce the error. From this it can
be deduced that for elliptic problems there is little
correlation between the error and the residual de-
termined by a piecewise linear element. Indeed, this
should not be unexpected since the error in approx-
imating a smooth function by a piecewise linear one
must depend on the local curvature, which is not
accounted for in this method.

Things worked out far better after modifying the
residual as in (6). On a fixed grid, we obtained the
results in Figure 11. This is a better solution than we
obtained with the second-order scheme using half the
mesh spacing, and Figure 12 shows that third-order
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Fig. 13 Initial 40x20 O-grid around a Joukowsky
airfoil.

Fig. 14 (), distribution on the initial grid.

convergence is indeed obtained. Moreover, because
the residual now contains derivative information, the
solution can be improved by adjusting the grid to
minimize it. In Figure 13 the original grid is shown
(but with the spacing again doubled) and in Figure
14 the solution on that coarse grid is shown. When
the nodes are allowed to move, giving the grid in
Figure 15, the much improved solution in Figure 16
is produced.

Future Work

We recognize that there is no great market for
a new two-dimensional Euler solver, even a very
good one. These are still preliminary studies, but
encouraging in showing that clean and accurate so-
lutions can be produced on rather coarse grids. The
big benefit to be derived from this will come in
three-dimensional calculations. Many of the ideas
presented here do go over directly to three dimen-
sions, but not all. The decomposition of the Euler
equations in three dimensions yields two advection
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Fig. 16 (), distribution on the adaptive grid.

equations, and a 3 x 3 system that does not describe
potential flow, but rather Beltrami flow, in which
the vorticity is always parallel to the flow direction.

This is in fact what we need in order to predict
high Reynolds number lifting flows with trailing vor-
ticity, but it leads to the numerical study of a model
problem that has so far recieved little attention. In
the supersonic case it is the wave equation written
as a first-order system. In either the subsonic or
supersonic cases helicity (streamwise vorticity) may
exist, but does not change along streamlines. The
correct numerical treatment of helicity might be a
great advance toward the ecomomical computation
of strongly vortical flows. This is the next place
where effort needs to be concentrated.

References

IM. J. Baines, S. J. Leary and M. E. Hubbard, A finite-
volume method for steady hyperbolic equations, in Finite Vol-
umes for Complex Applications II, eds Vilsmeier, Benkhal-
doun, Hanel, Duisberg, 1999, Hermes.

2D. Caraeni, L. Fuchs. A New Compact High Order Mul-
tidimensional Upwind Discretization. Proceedings of the jth

6 OF 6

(c)2001 American Institute of Aeronautics & Astronautics or Published with Permission of Author(s) and/or Author(s)' Sponsoring Organization.

World CSCC Conference, Vouliagmeni, Greece, July 10-15
2000.

3H.Deconinck, P.L.Roe, R.Struijs, A multidimensional
generalisation of Roe’s flux difference splitter for the Euler
equations, Computers and Fluids, 22, p215, 1993.

4H.Deconinck, R.Struijs, G. Bourgois, P.L.Roe, Compact
advection schemes on unstructured grids, Von Karman Insti-
tute Lecture Series 1993-04, 1993.

5L. E. Fraenkel, On corner eddies in plane invisid shear
flow, Journal of Fluid Mechanics, 11, 1961.

6H. Guillard, C. Viozat, On the behaviour of upwind
schemes in the low Mach number limit, Comput. Fluids 28,
1999.

7L. M. Mesaros, P. L. Roe, Multidimensional fluctuation
splitting based on decomposition methods, AIAA paper 95-
1699, 1995.

8H. Nishikawa, On grids and solutions from residual min-
imization, Ph. D Thesis, Aerospace Engineering, University
of Michigan, 2001.

9H. Nishikawa, M. Rad, P. L. Roe, Grids and solutions
from residual minimization, Proc. Ist Int. Conf. on CFD,
Kyoto, 2000.

10T, Pulliam, A Computational Challenge: Euler solutions
for ellipses, AIAA paper 89-0469, 1989.

11M. Rad., A residual distribution approach to the Eu-
ler equations that preserves potential flow, Ph. D Thests,
Aerospace Engineering, University of Michigan, 2001.

12M. Rad, P. L. Roe. An Euler code that can preserve
potential flow, Finite Volumes for Complex Applications, eds
Vilsmeier, Benkhaldoun, Hanel, Duisberg, 1999, Hermes.

13p L. Roe, Riemann solvers, parameter vectors, and dif-
ference schemes, J. Comput. Phys., 43, p 357, 1081.

14p L.Roe, Compounded of many simples, reflections on
the role of model problems in CFD, Workshop on Barriers
and Challenges in Computational Fluid Dynamics, NASA
Langley, August, 1996, eds Venkatakrishnan, Salas and
Chakravarthy, Kluwer, 1998.

15p L. Roe, Fluctuation splitting on optimal grids, AIAA
CFD Meeting, Snowmass, Colorado, June 1997.

16p. L. Roe, K. Kabin, Differential preconditioning and
elliptic/hyperbolic splitting of two-dimensional conservation
laws, in preparation

17p 1..Roe, E. Turkel, The quest for diagonalization of
differential systems, Workshop on Barriers and Challenges
in Computational Fluid Dynamics, NASA Langley, August,
1996, eds Venkatakrishnan, Salas and Chakravarthy, Kluwer,
1998.

18D, Sidilkover, P.L. Roe, Unification of some advection
schemes in two dimensions. ICASE Report No. 95-10, March
2, 1995,

19K, Turkel, V. Vatsa, R. Radespiel, Preconditioning meth-
ods for low-speed flow, AIAA paper 96-2460, 1996.

20B. van Leer, W-T. Lee, P. L. Roe, Characteristic
timestepping, or local preconditioning for the Euler equations,
AIAA paper 91-1552-CP, 1991.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS PAPER 01-2595



