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Mode Tracking Issues in Structural Optimization
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Within the context of optimization of the structural dynamics properties of finite element models, methodology
is developed for the tracking of eigenpairs through changes in the structural eigenvalue problem. The goal is to
eliminate difficulties caused by “mode switching” (i.e., frequency crossing). Out of several candidate methods, two
methods for mode tracking are successful. The first method, the higher order eigenpair perturbation algorithm,
is based on a perturbation expansion of the eigenproblem. It iteratively computes changes in the eigenpairs due
to parameter perturbations with the important feature of maintaining the correspondence between the baseline
and perturbed eigenpairs. The second method is a cross-orthogonality check method, which uses mass orthogo-
nality to reestablish correspondence after a standard reanalysis. Modified eigenpair extraction routines (Lanczos,
subspace iteration, inverse power) were unsuccessful in tracking modes. Applications of mode tracking technology
that are presented are frequency-constrained optimization and optimization with mode shape constraints. Each
application procedure is outlined and examples are given. Recommendations are made based on method efficiency

and robustness in the example problems.

Nomenclature
b = design variable
[C] = cross-orthogonality check matrix

c = weighting factor for the homogeneous solution in the
eigenvector perturbation calculation

[D] = singular coefficient matrix in the eigenvector
perturbation solution

{F} = static pseudoload vector appearing in the eigenvector
perturbation calculation

f = frequency, Hz

[K] = stiffness matrix; symmetric

[M] = mass matrix; symmetric

{V} = particular solution for eigenvector perturbation from
Nelson’s method

A = perturbation symbol denoting exact change from a
reference

by = eigenvalue; w?

& = collection of terms in solution for ¢

[P] = matrix of {¢} column vectors

{¢} = normal mode shape; normalized with respect to
appropriate [M]

1) = circular frequency, rad/s

Subscript

i = associated with the ith eigenpair

Superscripts

&) = optimization iteration number

T = transpose
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= baseline values

1 = perturbed values resultant from parameter change,
eg. O = 0+ A()

= user-specified quantity

= error from a specified quantity

*

Introduction

N modern structural optimization software, the performance of

a structural design is optimized with respect to many different
performance metrics. In the automated structural optimization sys-
tem (ASTROS), for example, constraints can be applied on stress,
displacements, buckling loads, natural frequencies, and static and
dynamic aeroelastic properties. In optimization using free vibra-
tion characteristics, modal quantities (frequencies and mode shapes)
may be specified in the objective function or in the constraints. For
this class of optimization problem, mode tracking is required to
facilitate the proper bookkeeping of the specified frequencies and
mode shapes.

When optimizing structural dynamic characteristics, specific fre-
quencies and mode shapes must be referenced by a number. In
vibration problems, the eigenvalues and eigenvectors are ordered
by eigenvalue magnitude. When design variable perturbations are
performed, frequencies will drift and mode crossings can occur.
If these crossings are not tracked, the objective function and con-
straint functions can be evaluated using modes that are different
from those that were intended. This causes problems both from the
design standpoint (the optimum found will not reflect the design
goals) and from the mathematical viewpoint (convergence can be
destroyed).

Theory of Mode Tracking

Mode tracking algorithms maintain correspondence between
baseline and perturbed eigenpairs (sets of frequencies and modes
on adjacent iterations) through changes in the parameters of an
eigenproblem statement. They may either augment a standard eigen-
problem analysis or replace it entirely, depending on the technique
used. Mode tracking is applicable whenever repeated eigenproblem
analyses are required, such as within an optimization procedure or
within an incremental process. The former case of mode tracking
within optimization is investigated herein, whereas the latter case
of mode tracking within an incremental process is investigated in
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Fig. 1 Nonlinear programming optimization algorithm with mode
tracking.

Ref. 1 for the case of incremental aeroelastic analysis by the V-g
and p-k methods.

A simple flowchart for optimization with mode tracking is shown
in Fig. 1, for the case of a gradient-based optimizer (nonlinear pro-
gramming). The first step is the generation of a baseline model. Af-
ter thorough analysis of the baseline model, criteria are developed
for desired improvements and are implemented through a design
objective and design constraints. Within the optimizer, a nonlin-
ear programming algorithm requires current values and sensitivi-
ties for the objective function and constraints to calculate a search
direction. For optimization of structural dynamics quantities, an
eigenproblem analysis must be performed for this evaluation, and
mode tracking must be employed to maintain proper identification
of the frequencies and modes of interest through whatever design
changes have occurred since the previous eigenproblem analysis.
This eigenproblem analysis may occur internally in the case of an
integrated optimization system (e.g., ASTROS, MSC/NASTRAN)
or externally in the case of a nonintegrated system. Once the search
direction has been computed, a line search along this search di-
rection is performed. This generally requires additional objective
function and constraint evaluations (an exception is when approxi-
mation concepts are used exclusively in the line search), and again
mode tracking must be employed in each eigenproblem analysis.
Based on the results of the line search, a new estimate of the opti-
mal design variables is calculated, and if convergence has not been
obtained, another optimization cycle is performed.

Mode Tracking Methods for Self-Adjoint
Eigenvalue Problems

Two successful methods, the higher order eigenpair perturbation
algorithm and the cross-orthogonality check method, are proposed
for use in mode tracking for self-adjoint problems. One unsuccess-
ful class of methods, the modified eigenpair extraction routine, is
briefly discussed.

Higher Order Eigenpair Perturbations

The thrust of the higher order eigenpair perturbation (HOEP)
method? is to solve for perturbations AX; and {A¢}; via an ex-
act perturbation expansion of the standard undamped structural
eigenproblem:

K1) = A\ M}, o)

When the system is perturbed from the baseline through mass and
stiffness changes, the new statement of dynamic equilibrium is

(K'Y = A IM o) )

or in expanded form
(K1 + [AKD({8°): + (A¢k:)

= (A + &%) (M) + [AMD(6°) + {Ad)) ®)

All perturbation terms are retained, which leads to coupled equations
for AX; and {A¢};. These equations must be solved iteratively and
will converge to the exact eigenpair perturbations.

The full-order eigenvalue perturbation equation, derived by pre-
multiplying Eq. (3) by {¢°}] and twice canceling the baseline solu-
tion of Eq. (1) (see Ref. 2 for a detailed derivation), is

@O (IAKT~ KIAM])(8"):
B {60} [M']{9');

where, in the context of a reanalysis phase in an optimization
process, the superscript 0 denotes the previous design and the su-
perscript 1 denotes the current design. Unlike a linear eigenvalue
sensitivity expression, in which only the baseline eigenvector ap-
pears, Eq. (4) shows coupling with the perturbed eigenvector. This
equation provides a more accurate estimate of A than the Rayleigh
quotient, because the Rayleigh quotient introduces more error for
an approximate eigenvector.

The corresponding eigenvector perturbation equation, derived by
canceling the baseline solution in Eq. (3) and collecting {A¢};
terms, is

Al “

[D'1:{Ad): = (F™); )
where
[D'); = [K']— A/[M'] ©)
is singular, and
{F"y = (AMIM'] + A [AM] - [AKD){¢"); )

is a static pseudoload. Equation (5) corresponds to the pathologi-
cal Fredholm alternative in which the coefficient matrix is singular,
yet a nonzero load exists. Such equations cannot be solved in gen-
eral. This equation is solvable, however, since it is “consistent.” For
self-adjoint systems, consistency requires that the forcing vector be
orthogonal to the null space of the singular coefficient matrix (the
forcing vector does not “push” in a singular direction). Thus, for
Eq. (5), consistency requires that { F"}T{¢'}; = 0, since the per-
turbed eigenvector defines the null space of [ D']; ([D'];{¢'}; = {0}
by definition). The null result of { F*}7 {¢'}; can be shown by sub-
stituting Eq. (4) into Eq. (7) and performing the inner product.

The total solution for {A¢}; is the sum of homogeneous and
particular solutions, {¢'}; and {V};, respectively. For singular
[D'};, {¢'}); is a homogeneous solution for {A¢}; in Eq. (5) since
[D'1;{¢*}; = (0}. The weighting factor ¢; is introduced because the
scaling of the homogeneous solution is initially indeterminate:

{Ad)i = ci{p')i +{V}h 8

Equation (8) must be altered since {¢'}; is unknown. Expanding
{¢'}; and collecting {A¢}; terms gives

¢ 1
{Ag) = ——{¢"}i + —— (V] 1))
1- Ci 1- C;
Employing equations of mass normalization for the current and pro-
jected systems and substituting Eq. (9) for {A¢}; yields a quadratic

equation for ¢;. The desired root is the one that minimizes the con-
tribution of the homogeneous solution in Eq. (8) (i.e., the smaller of

the two roots):
a=1—-y1+§ (10)

vhere

& = {¢")T 1AM} + 2{"} M"YV} + (VY IM'{V}; (11)



1928 ELDRED, VENKAYYA, AND ANDERSON

First Order A)\;

} Iteration 0

Nelson's d for
particular soln. {V};

Yes
?

Oscillation of {V};
o G
(Compute weighting factor ¢; '

Compute {Ad};

Nonlinear A); update
s
Oscillation of AX;?
o GEw

Y
i?
No

Convergence ?

Fig.2 HOEP algorithm with under-relaxation.

The denominator (1 — ¢;) in Eq. (9) can never be zero, since this
occurrence would require that {V); = —{¢°}; from Eq. (8). This
solution for {V}; is known as the “spurious” solution and is avoided
by removal of the singularity with Nelson’s method® (see Ref. 4 for
more details).

Algorithm

The algorithm has evolved considerably since its original
publication.” Ithas been greatly simplified, and its convergence char-
acteristics have been improved. The current algorithm flowchart is
shown in Fig. 2. Iteration O consists of obtaining an initial estimate
of the eigenvalue perturbations from a first-order approximation to
Eq. (4). The nonlinear iterations are then performed, which consist
of solution of the almost singular eigenvector perturbation equa-
tion [Eq. (5)] followed by the full-order update for the eigenvalue
perturbation [Eq. (4)]. Solution for the eigenvector perturbation re-
quires the computation of the particular solution {V}; of Eq. (5) by
Nelson’s method,? calculation of ¢; from Eqs. (10) and (11), and
finally solution of Eq. (9) for {A¢};. These iterations continue until
the convergence criterion is satisfied. Nelson’s method is successful
despite the fact that [D']; is only approximately singular (for a A}
estimate that has not fully converged), as it removes the singularity
regardless of its condition. The important feature for mode tracking
is the fact that the computations involve data from the ith eigenpair
only, creating a direct correspondence between previous and current
modal data and eliminating the problems associated with frequency
crossings. The method is computationally intensive but can converge
for very large prescribed changes in design variables.?*

Computational expense of the HOEP algorithm is a major concern
for large finite element models, as decomposition of a full-order
matrix ([D'};) is involved each time the Nelson’s method step of
the HOEP algorithm is performed. As such, alternatives to repeated
decomposition, such as use of a Lanczos-based solution in place of
Nelson’s method (see Ref. 5), are worth investigating in the future.

Relaxation

Relaxation has proved to be useful in accelerating HOEP conver-
gence. If the design changes are large or if the convergence criterion
is not strict enough over a series of design cycles, the HOEP iter-
ations may oscillate and converge slowly. These oscillations result
from repetitive overprediction of the eigenpair changes. Detection
of these oscillations is straightforward and requires monitoring of
the sign of the changes in AX; and of the orientation of the vector
changes in {V}; from one HOEP iteration to the next. When os-
cillation of AX; or {V}; is detected, underrelaxation is performed.

This entails accepting only a portion (50-100%) of the predicted
change in AA; or {V};. For large oscillations, values closer to 50%
work better, and for mild oscillations, values closer to 100% work
better. A variable underrelaxation parameter is used in the example
problems that assumes values between 0.5 and 1.0 based upon the
magnitude of the oscillations.

Repeated Eigenvalues

The subject of repeated eigenvalues has recently received atten-
tion in the literature,®~® and it is of importance here since Nelson’s
method will fail when A! is repeated. The authors view repeated
eigenvalues as a rare occurrence for most complex structures, but
structures possessing multiple planes of symmetry, cyclic symmetry,
or axisymmetry (which cannot undergo model simplification based
on symmetry) certainly merit concern. The computation of the dif-
ferentiable mode shapes and their derivatives is well documented in
the references, and the differences here are that perturbations will
be computed instead of derivatives and that the rank deficiency of
[D]; occurs for repeated A} instead of for repeated AY (as it does
when calculating eigenvector derivatives). If a baseline eigenvalue
is repeated, then the differentiable mode shapes are computed for
use as the {¢°}; vectors in Eqgs. (4) and (7). If a perturbed eigenvalue
is repeated, then the additional singularities must be removed from
[D']; through additional matrix modifications.® Even though per-
turbed eigenvectors are not uniquely defined for repeated perturbed
eigenvalues, the {A¢}; vectors computed by HOEP are unique when
the additional singularities in [D']; have been removed. They, in
turn, define the differentiable perturbed eigenvectors for use as the
differentiable baseline eigenvectors on the next step of an incremen-
tal process. Thus, the computation of differentiable mode shapes
would only need to be performed if a repeated condition exists on
the first step of an incremental process.

A problem that has not been addressed in the literature is the
detection of repeated eigenvalue conditions. If all eigenvalues in a
range are extracted at each design step, then monitoring for repeated
baseline eigenvalues can be as simple as measuring eigenvalue sep-
aration. If, however, there are eigenvalues in the range that are not
extracted (such as when tracking only certain eigenpairs), the re-
peated baseline eigenvalue condition is not trivially determined,
and the rank of [K%] — AY[M"] must be monitored. Furthermore,
the repeated perturbed eigenvalue condition is never trivially de-
termined since the separation of these eigenvalues is not known.
For this case, the rank of [ D!]; must be monitored. One compu-
tationally expensive method for monitoring rank deficiency is by
singular value decomposition, and more economical methods may
be achievable.

Modified Eigenpair Extraction Routines

The block Lanczos, subspace iteration, and inverse power eigen-
pair extraction routines were identified as having potential for mode
tracking. In all cases, the idea was to preserve the baseline eigenpair
ordering by using the previous iteration eigenpair data for trial vec-
tors and shift values. In standard usage, random trial vectors are gen-
erated, shift values are widely spaced, and the converged eigenpairs
are returned in ascending eigenvalue order. This reordering destroys
the one-to-one correspondence if mode switching has occurred. The
goal of the modifications was to eliminate the reordering by altering
the convergence characteristics of the extraction methods. In each
case, however, the ability to track modes was not achieved.

Modification of the block Lanczos method'®!! was quickly
eliminated from consideration because the iterates in the Lanczos
recursion, the Lanczos vectors, are not directly related to the eigen-
vectors. Therefore, the use of baseline eigenvectors as trial vectors
is not appropriate.

The subspace iteration algorithm is an eigenpair extraction routine
that, unlike the Lanczos method, iterates directly on eigenvectors.'?
The modifications fail in the task of mode tracking because conver-
gence in the subspace iteration method occurs according to eigen-
value magnitude and not according to eigenvector similarity to trial
vectors. Although convergence is improved when using the baseline
eigenvectors since the starting subspace is an excellent approxima-
tion to the least-dominant (i.e., converged) subspace, convergence
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still occurs in eigenvalue order due to the minimization of the
Rayleigh quotient inherent in the method. Shifting was also ruled
out since it would be inefficient to shift on each baseline eigenvalue
and, more importantly, since the procedure would not be foolproof.
Itis easy to envision scenarios where the closest eigenvalue to a shift
is not the correct eigenvalue. This could occur for closely spaced
eigenvalues or for frequency crossings, the cases of most concern
in this paper.

Modifications to the inverse power method with shifting and
sweeping would be unsuccessful for the same reasons that subspace
iteration modifications were unsuccessful; that is, convergence oc-
curs on eigenvalue magnitude rather than trial vector similarity, and
shifting is neither fail safe nor efficient.

Thus, although some of the modified eigenpair extraction meth-
ods could be used for fast reanalysis due to their improved con-
vergence speed, none of the methods exhibit a reliable ability to
track modes.

Cross-Orthogonality Check (CORC)

This method, proposed by Gibson,'* performs a mass orthogo-
nality check after reanalysis. The same basic method was recently
proposed by Ting,'* who recognizes the equivalence of the modal
assurance criterion (MAC) used in ground vibration tests (GVTs).
The orthogonality information is held in the following mass triple
product,

(€] = [e%-1] [M®][2®] (12)

where k and k— 1 are the current and previous iterations, respectively.
If the [C] matrix is diagonally dominant, then no mode switching
has occurred; and if the matrix is not diagonally dominant, the loca-
tions of the dominant values can be used to recorrelate the current
iteration modes.

It is important to monitor the assurance with which the correla-
tions are made. This is accomplished through the computation of
“corruption indices.” A corruption index for a mode in the CORC
method is the largest magnitude value in the column of [C] different
from the correlated value (with a reference value of 1). For example,
if a column of [C7 has first and second largest component magni-
tudes of 1.2 and 0.3, then the value of 1.2 correlates the mode and
the corruption index for that mode is 0.3/1.2 = 0.25. The maximum
corruption index shows the largest corruption index over the num-
ber of correlated modes. The assurance of proper mode correlation
decreases as the size of the corruption indices increases. Typically,
a corruption value of 0.5 or higher merits concern.

The method does not attempt to directly track modes but rather
tries to reestablish correspondence after the changes in design and
mode switches have occurred. Although attractive due to its simplic-
ity, the method is unattractive in that the standard reanalysis does
not make use of available baseline information and, in a sense, starts
from scratch (exception: use of fast reanalysis techniques).

The use of mass matrix orthogonality information is not new,
and considerable work in this area appears in the system identifi-
cation and mode] correlation literature. Among these, Refs. 15 and
16 are concerned with enhancing the orthogonality of a set of mea-
sured modes from a GVT. Though the applications are different,
these methods share a common mathematical basis with the cross-
orthogonality check method.

Applications
Optimization with Frequency Constraints
Problems of structural optimization subject to frequency con-
straints can be formulated as follows:
Minimize

Fuph (13)
subject to
gi{bh =x —A; =0

where it is understood that an upper-bound frequency constraint
differs only in sign from the lower-bound constraint shown. The

Fig.3 Simple cantilevered wing box.
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Fig. 4 Simple wing box weight minimization with a frequency con-
straint.

linear sensitivity of this frequency constraint to the kth design vari-
able is

dg; _ ok _ 19 (2K/0b = 2,[0M/0b.]) (@)
by aby {¢},T[M]{¢}z

where the denominator is unity in the case of mass normalized
eigenvectors.

Since the eigenvectors do not appear in the preceding problem
formulation [Eq. (13)], it is tempting for the analyst to ignore the
eigenvectors altogether. Even with modest design changes, how-
ever, this practice can fail due to the possibility of mode switches.
When this possibility occurs, the optimization iteration history can
exhibit a “jump” since the constraint sensitivity is being calculated
for a vastly different mode shape. The iterations may even oscil-
late unpredictably if the mode switching is recurrent. Thus, even
if frequency constraints are the only concern, mode tracking is an
important technology.

(14

Example 1: Simple Cantilevered Wing Box

A simple cantilevered wing box (Fig. 3) is created here for use in
optimization with vibration constraints. The ASTROS multidisci-
plinary optimization code is being used with matrix programming
oriented language (MAPOL) coding and FORTRAN modules per-
forming all nonstandard tasks. The simple wing box is to undergo
weight minimization subject to frequency constraints. The third and
fourth frequencies are closely spaced in the original design and have
exhibited a tendency to switch under design changes.

The first optimization procedure is the unmodified ASTROS pro-
cedure that makes use of a standard reanalysis. When a lower-bound
constraint is placed on f3 (fs > 110 Hz), optimization without
mode tracking exhibits large oscillations (see Fig. 4). The modes
first switch on iteration 3, causing the constraint sensitivity to be
calculated using the wrong mode shape and resulting in an erro-
neous search direction for the iteration 4 design. Since ASTROS
uses approximation concepts exclusively in the line search step, the
poor search direction is not detected with eigenproblem analyses,
and the new design point is not an improvement. The modes have
switched back in the iteration 4 design and the optimization begins
its nonconverging oscillations. The design never achieves feasibility,
i.e., the frequency constraint is never satisfied. When mode tracking
by the HOEP or CORC algorithms is inserted in place of the re-
analysis routine, the mode switch on iteration 3 is properly tracked
and the correct sensitivities are calculated. Feasibility is achieved
on iteration 4 and Fig. 4 shows convergence to the optimal design
in 6 iterations.

Mode tracking handles frequency crossings by enabling con-
straint enforcement on specific modes that are ordered for all it-
erations according to their positions in the initial design. For the
current case, mode 3 in the initial design satisfies the 110-Hz con-
straint in the final design, even though its frequency has become the
fourth lowest. If the design objective in this example had been to
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Table 1 Performance of CORC and HOEP for simple
cantilevered wing box

ASTROS Givens + CORC HOEP

iter. no. CPU Max. corr. CPU Iters.
2 2.6 0.0758 33 2
3 2.6 0.128 32 2
4 2.6 0.163 43 3
5 2.6 0.0239 32 2
6 2.6 0.00121 2.0 1

raise the third lowest frequency regardless of the mode to which it
belongs, then that goal would not have been met due to improper
problem formulation. This illustrates a very important point. It is es-
sential to clearly distinguish the difference between the design goal
of controlling the frequency of a specific mode, as in this example,
and the goal of controlling the nth ordered frequency regardless of
the mode to which it belongs. Examples of the latter case are gener-
ally simpler and might involve avoidance of a resonance condition
in some frequency band where the modal character of the resonance
is unimportant. Examples of the former case involve more sophisti-
cated design goals, such as in test and analysis model reconciliation,
where analytical modal data are driven towards experimental modal
data and the modal character of frequencies is always important.
An example of this importance is the fact that driving together the
analytical and experimental frequencies of different modes would
be meaningless. Mode tracking provides an automatic means to
achieve the goal of precise modal control, which otherwise could
not be achieved, whereas the case of ordered frequency control can
be handled with or without mode tracking so long as an appropri-
ate problem formulation is used (e.g., to smooth the oscillation in
Fig. 4, apply identical constraints on each of the switching modes
and either use exact analyses in the line search or, if employing
the approximation concepts approach, use a more limit decreasing
strategy). In general, mode tracking provides more precise control
of modal data for the cases where more precise control is needed.

Both HOEP and CORC are robust enough to handle the mode
switching in this example problem. In general, the difficulty of an
optimization mode tracking task is dependent upon the structure in-
volved and the optimization move limits that are used. The optimiza-
tion move limits constrain how large a move in the design space the
line search can make and therefore largely determine the magnitude
of the changes in mode shape that can occur. The mode tracking
task becomes more difficult as larger changes in mode shape are
allowed from one iteration to the next. Thus, if one is willing to pay
the penalty of higher optimization iterations to reach the structural
optimum, one can generally decrease the mode tracking difficulty by
decreasing the move limits. ASTROS uses a factor of 2.0 design vari-
able move limit as its default. This means that any design variable
can, at most, halve or double during a design change. This default
was employed in this example, and both mode tracking methods
performed well for this relatively generous move limit.

The question of relative efficiency depends on several variables,
including the method of reanalysis used and the range of modes
extracted before CORC and the number of modes tracked and the
convergence tolerance used in HOEP. The reanalysis before CORC
must find eigenpairs in a range of frequency to ensure that the modes
to be tracked are extracted. HOEP, on the other hand, has the ad-
vantage of tracking only the constrained eigenpairs. In this exam-
ple, CORC augments a Givens method extraction that computes
eigenvectors for frequencies less than 200 Hz (7 eigenvectors), and
HOEP tracks eigenpair 3 with a convergence tolerance of 0.01%
on A; change (HOEP convergence is indicated when the change in
the A; estimate between iterations is less than 0.01%). CPU time is
measured in seconds for a DEC 5000 workstation. Table 1 shows
the performance data for the five optimization iterations following
the baseline analysis.

The CPU time for the Givens reanalysis alone was 2.2 s per analy-
sis, and so the actual orthogonality check is inexpensive (0.4 s). The
largest corruption value for CORC was 0.163, an acceptable value.
HOEP converged very quickly but was 23% more computationally
expensive on average. These data show that the mode tracking task

Fig. 6 ICW baseline mode shape 2.
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Il

Il
Il
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Fig.7 ICW baseline mode shape 3.

was not difficult for this example. The reason for this is that the mode
shapes are well differentiated in this example, since the box cross
section is doubly symmetric and the design variables are linked so
as to retain one plane of symmetry. In example 2, such symmetries
do not exist and the mode shapes are less well differentiated.

Example 2: Intermediate Complexity Wing

The intermediate complexity wing (ICW) shown in Fig. 5is a
well-known benchmark optimization model.}”*® This wing is to
undergo weight minimization subject to a constraint on its second
frequency (f> > 8 Hz). The mode tracking task is more difficult than
in example 1, because the mode shapes are less well differentiated.
Figures 6 and 7 show the physical similarity between baseline modes
2 and 3 (second bending and first torsion, respectively).

Figure 8 shows the history for optimization without mode tracking
and for optimization with HOEP and CORC mode tracking. As for
example 1, the default factor of 2.0 design variable move limit was
employed. Once again, a mode switch causes optimization without
mode tracking to exhibit oscillations. For optimization with mode
tracking, the mode switch on iteration 4 is properly tracked and the
correct sensitivities are calculated. Figure 8 shows convergence to
the optimal design in 10 or 12 iterations. The histories for HOEP and
CORC were not identical because the optimizer was sensitive to very
small differences in mode shape for this example. That is, very small
differences in the modes calculated by Givens reanalysis and by
perturbation expansion caused noticeable differences in the design
path taken by the optimizer. This result should not be interpreted
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Table 2 Performance of CORC and HOEP for ICW

ASTROS Givens + CORC HOEP
iter. no. CPU Max. corr. CPU Iters.
2 233 0.956 423 7
3 23.0 0.254 28.0 5
4 232 0.299 28.1 5
5 23.3 0.591 38.8 7
6 232 0.286 335 6
7 23.6 0.129 39.5 7
8 23.5 0.183 68.1 13
9 23.6 0.0342 59.8 11
10 237 1.4e—13 79.1 13
11 _ — 45.8 8
12 S S 73 1
60
——a—— Designed Weight with HOEP
mode tracking
50 T
~0— Designed Weight with CORC
= 40 1 mode tracking
&0
'g ———— Designed Weight without
- 30 + mode tracking
:‘i
g 207
a
10 +
0 — +
1 3 5 7 9 1 13 15

ASTROS iteration number

Fig.8 ICW weight minimization with a frequency constraint.

as an advantage of one mode tracking method over the other, since
the observed variations in design paths did not consistently favor
either method.

Performance data for the two mode tracking methods are shown
in Table 2. To minimize the differences in mode shape between
HOEP and CORGC, the convergence tolerance for HOEP was kept
strict: less than 107%% change in A between iterations indicates
convergence. CORC augments a Givens reanalysis that computes
eigenvectors for frequencies less than 25 Hz (seven, eight, or nine
eigenvectors, depending on the iteration).

It is evident from the higher CORC corruption indices and higher
HOERP iterations to convergence that this mode tracking task was
more difficult than in example 1. The maximum corruption index of
0.956 on ASTROS iteration 2 is unacceptably high, but it was not
for the correlation of mode 2 and thus was not critical. However,
the maximum corruption index of 0.591 on ASTROS iteration 5 did
occur for the correlation of mode 2 and therefore shows near failure
of CORC for this design task. The higher number of HOEP iterations
needed to satisfy the convergence criterion was due partly to the
stricter criterion and partly to the increased difficulty of the mode
tracking task. As a result of the higher number of iterations needed,
HOEP is noticeably more expensive than CORC in this example.
HOEP, however, did not exhibit any convergence difficulties and
therefore appears to be more robust than CORC for this difficult
mode tracking task.

Optimization with Mode Shape Constraints

An extension of the frequency-constrained optimization problem
is to include constraints on the mode shapes. This new capability
would enable an analyst to constrain a mode to have some speci-
fied shape. This might involve controlling nodal lines to minimize
vibration in a region of the structure or minimizing discrepancies
with experimentally measured mode shapes. Although constraints
of this type can be formulated in numerous ways due to the vector
nature of a mode shape, the approach employed here will involve
vector norms. If, for example, it is desired to keep the ith mode
shape close to some specified shape, then the optimization problem
can be formulated as follows:

Minimize

F{bY (15)

subject to
g =u —ui =0
where
wi = (A |
and

(D@} = (¢} — (¢™)i

Here, {¢}; is the current mode shape and {¢*}; is the specified mode
shape. The p} is user specified to denote how close the current
eigenvector must be to the prescribed eigenvector. To lead to a sim-
pler sensitivity formula, the constraint can be reformulated with the
square of the vector norm:

g = W)= {Ad}I* > 0 (16)
or equivalently
g = (u)? — (A} (Ag); = 0 a7

This does not alter the nature of the constraint. The sensitivity of
this new constraint to a design variable is

= _o(Rpyr ek (18)

% )
ob

ob
where the fact that

AAP)  B{p);
ab b

has been used, since

g™}
b

In an alternate approach, the current mass matrix could be used
to weight the different vector components in the inner product of
Eq. (17). This adds a term involving [0M/3b] to the sensitivity
expression but might be desirable depending on the application.

Implementing the sensitivity in Eq. (18) requires calculation of
the eigenvector derivative 3{¢};/3b (by Nelson’s method? or other
methods). The {A¢}; vector, the difference of the current and pre-
scribed eigenvectors, should not be confused with the {A¢}; vector,
the eigenvector perturbation in the HOEP algorithm.

This constraint formulation is very general since any portion of an
eigenvector can be prescribed. If only certain degrees of freedom are
to be constrained, then only those freedoms appear in the vector cal-
culations of Egs. (17) and (18) . Common choices for the prescribed
eigenvector would include a mode shape from the initial design (en-
forcing minimum change), an experimental mode shape (enforcing
correlation), or a region of zero vibration (enforcing a nodal line).

Once again, mode tracking will be very important for successful
optimization, since the vector norm constraint formulation will be
very susceptible to mode switches. The same convergence problems
could occur as in the frequency-constrained case if mode switches
are not properly tracked.

The augmentation or replacement of a standard eigenproblem
analysis routine with a mode tracking algorithm is entirely separate
from the prescription of vibration constraints, and once this change is
made, all types of vibration constraints can be imposed without fear
of mode switching difficulties. Strictly from a mode tracking point
of view, then, optimization with mode shape constraints presents no
new challenges over those of frequency-constrained optimization.
The new challenges with mode shape constraints surface in the areas
of 1) code modification for constraint inclusion, 2) development of
practical methods for user specification of mode shapes with a large
number of degrees of freedom, and 3) development of conventions
that allow for meaningful comparison of eigenvectors from different
optimization iterations. Because of the first challenge, specifically
a large developmental overhead with ASTROS, examples of op-
timization with mode shape constraints have not been performed.
Instead, the following example explores the third challenge through
the new concept of iteration invariance.

=0
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Testing has been conducted on the simple cantilevered wing box
(Fig. 3) to define “iteration-invariant” normalization and sign con-
vention methods. The goal is to enable the vector norm calculations
of Egs. (17) and (18) to measure differences in mode shape only, sep-
arate from differences in sign or normalization. To accomplish this,
both the current eigenvectors and the prescribed eigenvectors ({¢});
and {¢*};) must reflect the same sign and normalization convention
for all optimization iterations.

Mass normalization of all eigenvectors to the mass matrix of the
initial design has been identified as the best invariant normaliza-
tion method. This normalization deletes changes in scaling from
the vector norms. Care must be taken in calculating the eigenvalue
sensitivities from Eq. (14), however, since the scaling of {¢}; af-
fects the sensitivity calculation and the subsequent search direction.
Maximum component normalization can also be rendered iteration
invariant by setting the same component to unity throughout the
optimization iterations (even if the maximum component location
changes). This normalization may be needed when use of a mass
matrix is inconvenient (e.g., for experimental mode shapes from
modal testing), but it lends itself to certain potential ill-conditioning
that mass normalization avoids.

The best sign convention method involves making the maximum
magnitude baseline eigenvector component greater than zero and
retaining the same component as positive in all subsequent eigen-
vectors. Through this use of the baseline eigenvectors as a reference,
the sign convention is consistent for all iterations. A separate sign
convention enforcement is not needed if the iteration-invariant max-
imum component normalization is used.

For an ASTROS weight minimization subject to a fundamental
frequency constraint without mode tracking, Figs. 9 and 10 show a
before and after view of iteration invariance. Vector norms of eigen-
vector change measured from the initial design are shown for the
seven lowest modes of the cantilever wing box. In Fig. 9, changes
in sign and normalization obscure the changes in mode shape.
Figure 10 shows the effect of using an invariant sign convention
and normalization (note plot scale change). Pure changes in mode
shape are plotted, and a mode switch has become evident through
the relatively large vector norms for the switched modes.

This concept of iteration invariance is easily extended to nonself-
adjoint eigenvalue problems, e.g., for aeroelastic vibratory modes,!
which will be important if constraining these modes during
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Fig. 10 After iteration-invariance.

optimization for flutter or divergence characteristics [using a con-
straint similar to Eq. (17)] or if measuring changes in vibratory
modes between the parameter increments of an aeroelastic analysis.

Conclusions

Mode tracking techniques have been developed and applied to
problems in optimization with free vibration constraints. These tech-
niques are important bookkeeping tools that allow the analyst to
maintain proper association of modal data, thereby avoiding con-
fusion caused by mode switching. In addition, these techniques al-
low for more sophisticated design goals involving precise modal
control, such as in test and analysis model reconciliation, which
could not otherwise be automatically handled in the presence of
frequency crossings.

In optimization with frequency constraints, higher order eigenpair
perturbations (HOEP) and the cross-orthogonality check (CORC)
have both been shown to be effective in eliminating convergence
problems caused by mode switching. For optimization with mode
shape constraints, the concept of iteration invariance has been shown
to be an important issue that allows for the measurement of pure
changes in mode shape, separate from changes in normalization or
sign convention.

Factor of 2 design variable move limits (halve or double) have
been shown to be acceptable, even for difficult mode tracking tasks
(although near failure of CORC is observed for these move limits in
the ICW example). Relative efficiency of the methods depends on
several variables, including the method of reanalysis used and the
range of modes extracted before CORC and the number of modes
tracked and the convergence tolerance used in HOEP. The CORC
reanalysis must find all eigenpairs in a range of frequency to ensure
that the modes to be tracked are extracted. HOEP, on the other
hand, has the advantage of tracking only the constrained eigenpairs.
HOEP is shown to be more robust, although more computationally
expensive, than CORC in the example problems.

If the problem requiring mode tracking technology is fairly well
behaved, then the orthogonality check method may be preferable
due to its simplicity. If, however, the problem is more difficult and
large mode changes are possible, then the eigenpair perturbation
method is recommended due to its robustness for optimization with
free vibration constraints. A hybrid method using CORC for recorre-
lation that activates HOEP in times of high CORC corruption could
potentially exploit the different strengths of the two methods and
maximize overall robustness and efficiency.
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