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Abstract 

The effect of switching between nonstiff and 
stiff methods on the efficiency of algorithms for 
integrating chemical kinetic rate equations $5 
presented. Different integration methods are 
tested by application of the packaged code LSODE 
to four practical combustion kinetics problems. 
The problems describe adiabatic, homogeneous gas- 
phase combustion reactions. It is shown that 
selective use of nonstiff and stiff methods in dif- 
ferent regimes of a typical batch combustion prob- 
lem is faster than the use of either method for the 
entire problem. The implications of this result to 
the development of fast integration techniques for 
combustion kinetic rate equations are discussed. 

Introduction 

The ordinary differential equations (ODE'S) 
describing complex chemical reactions are char- 
acterized by widely different time constants. 
Although the differential equations are stable, 
standard numerical techniques such as the explicit 
Runge-Kutta and Adams methods are prohibitively 
expensive to use because of the severe steplength 
restriction imposed by the requirements for numer- 
ical stability. 
equation 

Such systems of differential 
re commonly referred to as "stiff" systems. ?-P 

The problem of stiffness has been recognized 
for some time, e.g.,6 and several techniques have 
been developed for stiff ODE'S. At the pre e t 
time, the packaged codes EPISODE' and LSODE3,g rep- 
resent the most extensively documented, tested and 
used routines for stiff ODE's. Amon s era1 codes 
examined in recent detailed studies,PO-(ix LSOOE was 
found to be the fastest for solvina chemical kinet- 
ic rate equations. 
combustion device modelers that LSODE is not fast 
enough for economical calculat' ns of multidimen- 

However, it is4recognized by 

sional reacting flow problems. 18 
The numerical solution of combustion kinetic 

rate equations is complicated by the existence of 
a narrow region ("heat release" zone) where the 
species concentrations and temperature change rap- 
idly, as illustrated in Fig. 1 for a typical batch 
reaction combustion problem. In the heat release 
regime, especially in the early part, many of the 
species and the temperature have positive time 
constants -- an indication that the governing ODE'S 
are unstable. Since small steplengths are required 
for solving unstable O D E ' S ,  the use of methods 
designed for stiff problems -- designated herein 
as "stiff methods" -- may be inefficient. During 
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early heat release explicit "nonstiff methods" -- 
i.e., methods suitable for nonstiff problems -- 
may be adequate. However, implicit methods are 
more accurate than explicit methods, which are 
therefore used only a predictors in predictor- 
corrector  algorithm^.^^ The corrector equations 
are iterated until convergence is obtained. 
not clear what corrector iteration technique is 
optimal in h nonstiff regime. t Slmple or 
functional 1i9p7 and J a c ~ b i - N e w t o n ~ ~ > ~ ~  iteration 
techniques have been used because they avoid the 
expense associated with forming and inverting 
Jacobian matrices, which is required by Newton- 
Raphson iteration. 
lengths can be used with Newton-Raphson iteration. 
For unstable ODE's this advantage may not be of 
much help and it is therefore not apparent which 
technique is the most efficient. 

During late heat release and equilibration the 
governing ODE's are stable so that Newton-Raphson 
iteration is the optimal convergence method. In 
these regimes, especially during equilibration, the 
different species approach the equilibrium state 
at different rates and the OOE's are stiff -- i.e., 
classical numerical techniques will require prohib- 
itive amounts of computer time in these regimes. 
Here, stiff methods are better suited to solving 
the problem. 

I n  developing an efficient algorithm to solve 
combustion kinetic rate equations, it is important 
to recognize and accommodate the widely different 
characteristics of the three regimes (induction, 
heat release and equilibration) encountered in a 
typical combustion problem. 
the problem changes character, occurs in other 
areas and schemes have been proposed for auto tic 
switching between stiff and nonstiff methods. 

It is 

However, much larger step- 

Such a situation where 

T% 
The objective of the present investigation is 

to examine the nature o f  the O D E ' S  arising i n  Corn- 
bustion chemistry. 
effect of switching between stiff and nonstiff 
methods on the computational work required to solve 
combustion kinetic rate eauations. We also examine 

I n  particular, we examine the 

the use of different corrector iteration techniques 
with nonstiff methods. 

Governing Ordinary Differential Equations 

The first order ODE'S describing the time rate 
i(i = 1,NS) can be written as of change of species 

dni 
- ii fi(nk,T) i,k = l,NS dt 

ni(t = 0) = given (1) 

T(t 5 0) = given 

where n '  is the mole number of species i; NS is 
the total number of distinct species in the gas 
mixture; T is the temperature; and fi is the net 
rate of formation of species i due to all forward 
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and reve rse  r e a c t i o n s  i n  which species i p a r t i c i -  
pates. 
i n g  O D E ' S  i s  g i ven  i n  Refs. 12 and 13. 

tem o f  Eqs. (1 )  f o r  t h e  chemical compos i t ion  and 
temperature a t  t h e  end of a p resc r ibed  t ime  i n t e r -  
va l ,  g i v e n  t h e  i n i t i a l  c o n d i t i o n s  and the  r e a c t i o n  
mechanism. A l l  problems cons idered i n  t h e  present  
s tudy  i n v o l v e  o n l y  ad iaba t i c ,  homogeneous, gas 
phase chemical reac t i ons .  The problems are, how- 
ever,  o f  two types  -- constan t  p ressure  and con- 
s t a n t  dens i t y .  The f o l l o w i n g  conserva t i on  
equat ions  serve  as a lgeb ra i c  c o n s t r a i n t s  on t h e  
species r a t e  equat ions 

Constant pressure:  

A more d e t a i l e d  d e s c r i p t i o n  of t h e  govern- 

The i n i t i a l  va lue  problem i s  t o  so l ve  t h e  sys- 

method devised by NordsieckP2 -- t o  p rov ide  an i n i -  
t i a l  es t imate  of t he  s o l u t i o n .  To c o r r e c t  t h i s  
es t imate  a range o f  i t e r a t i o n  formulas i s  inc luded 
i n  LSODE. The methods and c o r r e c t o r  techniques 
at tempted i n  t h i s  s tudy  a r e  examined b r i e f l y ;  
d e t a i l s  a r e  a v a i l a b l e  i n  Refs. 7, 23 and 24. 

can be genera l i zed  as f o l l o w s  

w 
The O D E ' S  presented i n  t h e  prev ious  sec t i on  

i 

. dYi  
(4a) yi 

o r  us ing  vec to r  n o t a t i o n  

aE- = fi(yk) i,k = l , N  

Constant dens i t y :  

NC 

n ( h  - RT) = U = cons tan t  (2b) 
i=l i i 0 

where h i  i s  t h e  m o l a l - s p e c i f i c  en tha lpy  of 
spec ies  i; R i s  t h e  u n i v e r s a l  gas constant;  Ho 
and Uo are  t h e  mass-speci f ic  en tha lpy  and i n t e r -  
n a l  energy, r e s p e c t i v e l y ,  of t he  i d e a l  gas mix tu re .  
Time d i f f e r e n t i a t i o n  of Eqs. (Za) and ( 2 b )  prov ide  
t h e  f o l l o w i n g  O D E ' S  f o r  t h e  temperature:  

Constant pressure:  

Constant dens i t y :  

NS 
- fi(hi - R T )  

(3b) 
dT i=l 
= =  N 5 ni(cpi - R )  

i =1 
where cp i  i s  t h e  constant-pressure mola l  s p e c i f i c  
heat  o f  species i. 

Methods and I t e r a t i o n  Techniques Examined 

The o b j e c t i v e  o f  t h e  present  i n v e s t i g a t i o n  was 
t o  examine t h e  e f f e c t  on t h e  computa t iona l  speed of 
us ing  s t i f f  and n o n s t i f f  methods i n  d i f f e r e n t  
regimes o f  a t y p i c a l  combustion k i n e t i c s  problem. 
TO ac o p l i s h  t h i s  o b j e c t i v e  t h e  packaged code 
LSDDE'*'was used because i t  con ta ins  b o t h  s t i f f  
and n o n s t i f f  methods and sw i t ch ing  between t h e  two 
methods i s  r e l a t i v e l y  s t r a i g h t f o r w a r d .  
i nc luded  i n  t h i s  package are a var iab le -s tep ,  
var iab le -order  i m p l i c i t  Adams method, s u i t a b l e  f o r  
n o n s t i f f  problems, and a var iab le -s tep ,  v a r i a  e 

s u i t a b l e  f o r  s t i f f  problems. 
among the  most e f f i c i e n t  c u r r e n t l y  a v a i l a b  
n o n s t i f f  and s t i f f  problems, r e s p e c t i v e l y .  
Both techniques employ a standard e x p l i c i t  p red ic -  
t o r  formula -- a Tay lo r  s e r i e s  expansion us ing  t h e  

The methods 

o rde r  backward d i f f e r e n t i a t i o n  formula (BDF), ?A - 

17,:Y 
These methods are  

2 

where 
y .  = n.  i = 1,NS 

1 1  

YNs+1 = 

(5 )  
N = N S + l  

and an underscore represents  a vec to ry  quan t i t y .  

The techniques used i n  t h i s  s tudy  are  

y i  ,;i = 1,N) t o  t h e  exac t  s o l u t i o n  
step-by-step methods. They compute approximations 

tn I n  = 1,Z ,... ). 
b - 2 ,  ... have been ob ta ined a t  t imes tn-l, 
tn-z, ... t h e  methods used in LSODE t o  advance the  
s o l u t i o n  (=  ~ 3 , ~ )  t o  t ime tn i n v o l v e  l i n e a r  
m u l t i s t e p  fo rmulas  o f  t he  t ype  

- )(z 'y i ( tn) ; i  = 1,N) a t  d i s c r e t e  p o i n t s  i n  t ime 
Assuming t h a t  s o l u t i o n s  &,-I, 

where 
l e n g t h  t o  be attemptea; y i  3 [ s , f i ( y k  , ) , i s  t h e  
approximat ion t o  t h e  exac t '  e r i v a t i v 6  ~v;(t,.l{= 

hn (=  tn - tn- ) 1s t h e  s i z e  of t he  Step- 

- ,  ,, 
f i [ Y k ( t  1); and K1,  K2. a ' ,  and 6 .  are associ-  
ated wiph t h e  fo rmula  se les ted  t o  sd l ve  the  problem 
Over t h i s  t ime  s tep .  For  the  i m p l i c i t  Adam method 
of o rde r  q, K 1  = 1, K2 = q - 1 and Eq. (6 )  becomes 

q+ . .  1 = l , N  ( 7 )  
Yi,n = Yi ,n- l  + hn j=o 0jYi .n- j  

Fo r  a BDF of o rde r  q, K 1  = q, K2 = 0 and Eq. ( 6 )  
becomes 

q 
Yi,n = js aj,Yi ,n- j  + hn~oY i ,n  i = l , N  ( 8 )  

Equat ions ( 7 1  and ( 8 )  can be w r i t t e n  i n  the  general  
fo rm 

Yi ,n = ' i ,n + hneo i i ,n  

= Y ~ , ~  + hn60fi(yk,n) i = 1,N ( 9 )  

where Y ?  con ta ins  p r e v i o u s l y  computed informa- 
t i o n .  I n ' v e c t o r  no ta t i on ,  Eq. ( 9 )  becomes 

w 



- All of the different corrector iteration tech- 
niques used in the present study to solve Eq. (10) 
can be generalized by the recursive relation 

where I is the identity matrix, the matrix J 
depends on the iteration method selecte 
(m+l) denote the iteration numbers -- 
result obtained by the predictor step. 

The choice J - 0, called successive substitu- 
t i ~ n , ~  simple or functional i t e r a t i ~ n l ~ , ~ ~  and Jacobi 
iteration.1 results in 

Equation (12) is very simple to use but this method 
converges only linearl~.~ 
cessful convergence the stepleng h h,, may be 

In addition, for suc- 
restricted to very small values. r 

Newton-Raphson (NR) iteration, on the other 
hand, converges quadratically and can use muc 
larger steplengths than functional iteration.2*16 
For this method J is the Jacobian matrix and the 
elements Jik(i,k = 1,N) are given by 

For this iteration technique much computational 
work can be required in forming the Jacobian matrix 
and in performing the linear algebra necessary to 
solve Eq. (11). To reduce this computational work 
the iteration matrix is not updated at every itera- 
tion. For additional savings it is updated only 
when the solution to Eq. (11) does not converge. 
Hence the iteration matrix is only accurate enough 
for the iterations to converge and the same matrix 
may be used over several steps. 

can be obtained from the NR iteration method by 
neglecting all off-diagonal elements of the 
Jacobian matrix. Hence for this technique 

The Jacobi-Newton (JN) iteration techniquel2*19 

O ; k # i  
Jik = afi _. aYk, k = i 

This technique is as simple as functional iteration 
in the sense that no matrix inversion is involved. 
Also it converges faster than functional itera on 

In summary, functional and JN iteration tech- 

-- better than linear but not quite quadratic. €4 

niques require much less work per step than NR 
iteration but have to use smaller steplengths and 
converge at slower rates. For stable problems 
where the Jacobian changes slowly NR iteration is 
clearly the optimal method. For unstable regimes, 
however, where rapidly changing solutions may 
require frequent updating of the Jacobian for suc- 
cessful convergence, simple or JN iteration may be 
more efficient, which may also be the case when 

very accurate numerical solutions are required. 
Because any change in the steplength alters the 
iteration matrix, it i s  not economical to consider 
small changes in the steplength with NR itera- 
tion. On the other hand, simple and JN iteration 
techniques can take advantage o f  even modest in- 
creases in the steplength. JN iteration requires 
a little more work per step than simple iteration 
but it converges faster. Also, it can use step- 
lengths at east as large as those used by simple 
i teration.li The optimal corrector technique 
therefore depends on the nature of the problem, the 
basic method used and the accuracy required of the 
numerical solution. 

In LSODE both the basic method and the correc- 
tor iteration technique are selected via a method 
flag, MF. If NR iteration is employed, either the 
user can provide analytical expressions for the 
elements of the Jacobian matrix or the code will 
estimate these elements bv finite-difference 
approximations. 
option is not available and the code uses 

For JN iteration, however, this 

internally-generated finite-difference approxima- 
tions for the diagonal elements of the Jacobian 
matrix. For all results obtained with NR iteration 
analytical Jacobians were used. The basic methods 
and iteration techniques employed in the present 
study are sumnarized in Table I, together with the 
relevant values for MF. 

Test Problems 

Four practical combustion kinetics problems 
were used in the present study. All four cases 
described adiabatic, homogeneous, gas-phase, tran- 
sient, batch combustion reactions. Test problem 1 
described the ignition and subsequent combustion 
of a mixture of 33 percent carbon monoxide and 
67 percent hydrogen with 100 percent theoretical 
air at an initial temperature of 1000 K and pres- 
sure of 10 atm. 
species. Test problem 2, involving 30 reactions 
among 15 species, described the ignition and subse- 
quent combustion of a stoichiometric hydrogen-air 
mixture at 2 atm and 1500 K initial temperature. 
Both test cases 1 and 2 were at constant pressure 
and are discussed in more detail in Ref. 12. 
problem 3, taken from Burcat and Radhakrishnan, 
described the ignition and subsequent combustion of 
a stoichiometric propene-oxygen-argon mixture at 
an initial temperature and pressure of 1700 K and 
4 atm, respectively. This constant density test 
case consisted of 113 reactions among 31 species. 
The reaction mechanism and rat constants were 
taken from Westbrook and Pitz.56 Test case 4, 
taken from Bittker and S c ~ l l i n , ~ ~  was a lean 
methane-air ignition and combustion problem at a 
constant pressure of 1 atm and initial temperature 
Of 1645 K. 
among 24 species. 

the chemical species mole fractions and temperature 
for test problem 1. 
ture with the reaction time for all four test cases 
iS shown in Fig. 2. 
solved over a time period of 1 ms. This reaction 
period encompassed all three combustion regimes 
(induction, heat release and equilibration) for 
test problems 1-3. Test case 4, however, included 
the first two regimes (induction and heat release) 
but only the beginning of equilibration. 

It involved 12 reactions among 11 

T%t 

This test problem involved 58 reactions 

Figure 1 presents the variation with time of 

The variation of the tempera- 

All four test problems were 

3 



Results 

In this section we present the effects on the 
computational work of using stiff and nonstiff 
methods in different regimes of a typical combus- 
tion kinetics problem. All results were obtained 
on the NASA Lewis Research Center's IBM 370/3033 
computer using single-precision accuracy. 

section INTRODUCTION, a typical combustion kinetics 
problem consists of three distinctly different 
regimes: 
tion. During induction and early heat release 
when many of the ODE'S have positive time con- 
stants, small step- e ths must be used to insure 
solution accuracy. 1J,p9  In these re 'mes non- 
stiff methods may be more efficient.85 During 
late heat release and equilibration when the ODE'S 
are more stable, much larger steplengths can be 

method. ang,y5*ib In these later regimes, especially 
during equilibration, the ODE'S are stiff so that 
stiff methods are appropriate. 

a nonstiff method during induction and early heat 
release, the variation of the computer time with 
the reaction time was examined for all values of 
the method flag, MF (=  10,11,13, and 2 1  -- see 
Table I ) ,  used in this study. Pure relative error 
control is app priate for the problems employed 
in this study.y4 However, it could not  be used 
because many of the mole numbers had zero initial 
values. A mixed relative and absolute error con- 
trol was therefore used. Sufficiently small values 
for the local absolute error tolerances for the 
species were used to make the error control sub- 
stantially relative for mole fractions greater than 
0.1 ppm. For temperature pure relative error con- 
trol was used. To ensure that a comparison of com- 
putational work was made among comparably accurate 
methods, the same values for the absolute error 
tolerances were used with all methods and corrector 
iteration techniques. For clarity in presentation, 
methods corresponding to method flag MF = 10, 11, 
13; and 21 will hereafter be designated as methods 
10, 11, 13, and 21, respectively. 

Figures 3 and 4 present the variation of the 
computer (i.e., CPU) time (in seconds) with the 
reaction time for test problem 1 using values f r 

As illustrated in Fig. 1 and discussed in the 

induction, heat release and equilibra- 

eration is the optimal convergence 

To investigate if it is more efficient to use 

the local relative error tolerance (EPS) Of 10- 9 
and respectively. For method'l0 (implic't Adams with functional iteration) and EPS = 10- > the 
CPU time required up to the onset of heat release 
(reaction time -9 US, see Figs. 1 and 2) exceeded 
that required by method 21 (BDF with NR iteration 
using an analytical Jacobian) to solve the complete 
problem (Fig. 3) .  For EPS = however, the CPU 
times required during induction and early heat 
release were about the same for both methods 
(Fig. 4 ) .  For methods 11 (implicit Adam with NR 
iteration using an analytical Jacobian) and 13 
(implicit Adams with JN iteration using internally 
generated approximations for the diagonal elements 
of the Jacobian matrix), the CPU times required 
during induction and early heat release compared 
favorably with, or were less than, those required 
by method 21. Note, however, that the CPU time 
required by method 21 for the complete problem was 
less than that required by all the nonstiff meth- 
ods, indicating that the problem was stiff. 

The results given in Figs. 3 and 4 show that 
JN and NR iteration techniques are more efficient 
than functional iteration in the nonstiff regime. 
These results indicate also that the use of a non- 
stiff method during induction and early heat re- 
lease and a stiff method for the remainder of the 
problem would be more efficient than using either 
method for the complete problem. To examine the 
effects of such a switch the following procedure 
was used. The code was run up to reaction time 
t = tswitch with a nonstiff method. After every 
step successfully executed by the routine, the 
value of the time reached by the integrator was 
checked to ensure that it did not exceed tsWitch. 
If the time exceeded 
switched to 21 and the probfem was run to comple- 
tion with the stiff method. Upon completion of the 
problem, the CPU time required to solve the problem 
was calculated. In addition, the following per- 
formance parameters which give an indication of the 
computational work required to solve the problem 
were noted: total number of steps required to 
solve the problem (NSTEP), total number of func- 
tional (i.e., derivative) evaluations (NFE) and 
total number of Jacobian evaluations (NJE). 

u 

tswit h, the method was 

, 

Different values for tswi ch were attempted 
and the value resulting in the {east CPU time to 
solve the problem was obtained by a trial-and-error 
process. Since the objective of the present inves- 
tigation was only to determine if switching methods 
resulted in efficiency increases and if so, to 
identify the optimal iteration technique to be used 
in the nonstiff regime, no attempt was made to in- 
corporate automatic method selection procedures. 

Table I 1  presents the minimal CPU times ob- 
tained for test problem 1 using the two-stage solu- 
tion scheme outlined above and different iteration 
techniques in the nonstiff regime. In this table 
t witch is the reaction time (in up to which 
the proqram was run with the nonstiff method and 

w 

the indicated iteration technique. 
reaction time t > t 'tch the solution was 
obtained with the st?# method 21. 

For values of 

Also given in 
Table I1 is the computational work required by 
method 21 to solve the omplete problem. For method 10 and EPS > IO- fi the CPU times reauired UD 
to the onset of heat release exceeded those re- 
quired by method 21 to solve the complete problem. 
Therefore no switching was attempted for th$se 
values of EPS and method 10. For EPS = 10- , how- 
ever, the combination of methods 10 and 21 was 
about 20 percent faster than method 21 for the cam- 
plete problem (Table 11). 
and functional evaluations were required by the 
Stiff method, indicating that the average Step- 
length was smaller for method 10. However, the 
use of method 10 during induction and early heat 
release resulted in significantly fewer Jacobian 
evaluations. This was due to (a) not computing 
the Jacobian in the initial regime and (b) fewer 
Jacobian evaluations being required in the second 
regime because of  the use of smaller steplengths. 

The combinations of methods 11 and 21 and of 
13 and 21 resulted in decreased CPU times (i.e., 
relative to method 21 for the complete problem) for 
most of the error tolerances (Table 11). Also, in 
all cases the combination of nonstiff and stiff 
methods was faster than using the nonstiff method 

which methods had to be switched generally 
increased with decreasing EPS, i.e., increasing 

Note that fewer steps 

for the complete problem. Note that the time at W 



accuracy requirement. 
is decreased, accuracy requirements control the 
step size for a longer time. When accuracy re- 
quirements, and not numerical solution stability 
requirements, control t size of the step, the 
problem is not stiff. 2,9p Hence, the time over 
which it was more efficient to use a nonstiff 
method increased with decreasing EPS. 

This implies that when EPS 

~4 

The combination of methods 11 and 21 resulted 
in CPU time decreases ranging from negligibly small 
to over 30 percent for test problem 1 (Taole 11). 
This switching process, i.e., use of a nonstiff 
method during induction and early heat release and 
of a stiff method for the remainder of the problem, 
is not entirely satisfactory in that it does not 
always result in significant savings over the use 
of the stiff method 21 for the complete problem. 
Similar remarks apply to the use of method 13 in 
the initial regimes. Note that for method 13 NJE 
includes two types of Jacobian matrix evaluations -- the first number is the total number o f  complete 
(i.e., analytical) Jacobian matrix evaluations re- 
quired and the second number is the total number 
of diagonal matrix approximations (Table 11). One 
difficulty encountered with the use of method 13 
was that it returned inaccurate solutions when 

y3% It is 
relatively large values of EPS were 
problem has been reported by others. 
not clear if this was caused by poor approximations 
for the diagonal elements or by an unreliable con- 
vergence test. Another difficulty encountered with 
this method was serious numerical instability for 
some test problems and values of EPS. Because of 
these problems with method 13 it was not attempted 
with the other three test cases. 

For the other three test problems and most of 
the error tolerances used, the runs with method 10 
required more CPU time until the onset of heat 
release than method 21 for tne complete problem, 
(e.q., Fig. 5 ) .  Hence, method 10 was also not 
attempted in the nonstiff regime for test problems 
2 to 4. 

This 

Tables 111, I V  and V present the effects of 
sw'itching between methods 11 and 21 for test prob- 
lems 2. 3 and 4. resoectivelv. For Durnnses of ~~. ~ ~ , -  ~ ? ~ . - - - - -  - 
efficiency comparison, the computational work re- 
quired by method 21 for the complete problem is 
also oiven in these tables. The recultz f o r  t e s t  ~~. ~.~ ~ . .  .. . ... ._ .___ 
problem 2 (Table 111) were very similar to those 
obtained for test problem 1. The use of the two- 
region scheme resulted in efficiency increases for 
most of the error tolerances and, as EPS was de- 
creased, the switching had to be performed at later 
times. 

For test problem 3, however, no significant 
efficiency increases could be obtained by using 
the nonstiff method 11 during induction and early 
heat release and then switching to the stiff method 
21. 
obtained by switching before the onset of eat re 
lease (Table IV). Note that for EPS = lo-! switch- 
ing from method 11 to method 21 at t = 0.03 US 
(for this problem heat release started at about 
3 us. Fig. 2) resulted in a CPU time decrease If 
over 40 percent. For test problem 3, unlike test 
problems 1 and 2 the temperature dropped by a sig- 
nificant amount 1-21 K) during induction. 
decrease in temperature was diagnosed by the code 
as an indication of stiffness, especially when low 
values were used for EPS. Note the sharp increase 

But significant efficiency increases could be 

This 

in CPU time incurred by the nonstiff methods during 
induction (Fig. 5). 

test problems 1 and 2. Although the temperature 
drop during induction was not significant (less 
than 1 K ) ,  this problem was characterized by a 
fairly long ignition delay period (Fig. 2 ) .  In 
addition, when the temperature started to increase 
(at t - 20 US) it did so gradually and not as 
rapidly as for the other problems. For example, 
at t e 100 US the temperature had risen by only 
about 10 K .  Unlike the other three test problems, 
test problem 4 included only the beginning of the 
equilibration regime. 
fore expected to be more efficient for most of the 
problem. 
show that for increased efficiency switching had to 
be performed during induction. This indicates that 
for test problem 4 also it was more efficient to 
use a stiff method duri g induction, as illustrated 
in Fig. 6 for EPS = 10- . Note the large increase 
in CPU time for method 11 between t = 1 and 20 "s. 
F o r  method 21 the CPU time showed a large increase 
between approximately 300 and 350 u s ,  corresponding 
to the rapid increase in the temperature between 
these times (Fig. 2). 
was more efficient (Fig. 6) because accuracy re- 
quirements control the step size. The effect of 
using a nonstiff method in this i terval was 

was run with method 11 up to 2.5 us and between 
300 and 350 u s .  At all other times method 21 was 
used. This resulted in a total CPU time require- 
ment of 7.6 s -- which was significantly faster 
than both the simple switch performed earlier 
(i.e., two-stage solution scheme) and method 21 
for the complete problem (Taole V ) .  

induction regime is not necessarily nonstiff so 
that the use of a nonstiff method in this regime 
does not guarantee minimal computational work. 
this regime the use of either a stiff method or a 
combination of nonstiff and stiff methods may re- 
quire the least computational work. To test this 
hypothesis the following procedure was adopted. 
The program was run with the stiff method 21 until 
the onset of heat release and also during late 
heat release and equilibration. During early heat 
release, however, a nonstiff method was used. 

Table V I  presents the minimal CPU time 
obtained for test problem 1 using the three-region 
solution scheme discussed above -- all iteration 
techniques were attempted during early heat 
release. In this table tsw 1 and ts are the 
times at which the methods w&re switchey'from non- 

Test problem 4 was also quite different from 

A nonstiff method was there- 

However, the results given in Table V 

1 

In this interval method 11 

examined as follows for EPS = 10- a . The program 

The results discussed above indicate that the 

In 

stiff to stiff and from stiff to nonstiff, respec- 
tively. Note that as EPS was increased tsW 1 had 
to be decreased because heat release was predicted 
to start at an earlier time. As discussed previ- 
ously tSW 2 had to be increased with decreasing 
EPS. A comparison of Tables I1 and VI shows that 
for almost all iteration tecnniques and error tol- 
erances the three-stage solution scheme was faster 
than both the two-stage solution scheme proposed 
earlier and the stiff method 21 for the complete 
problem. Note that the use of this combination of 
Stiff and nonstiff methods has resulted in about a 
50 percent reduction in the CPU time for EPS = 
and method 13 during early heat release. Although 
the use of method 10 also resulted in efficiency 
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increases, a very low value of EPS (10-5) was re- 
quired for significant reductions in the CPU time 
(Table VI). The use of such low values of EPS is 
wasteful, especial for multidimensional reacting 
flow calculations.j8 This indicates that either JN 
or NR iteration should be used during early heat 
release. For small values of EPS JN iteration 
(method 13) is more efficient. But for large 
values of EPS NR iteration (method 11) is superior 
(Table VI). 

The results presented above indicate that for 
efficient solution of combustion kinetic rate equa- 
tions, nonstiff methods should be used during early 
heat release. However, It is not clear if JN or NR 
iteration should be used in this regime. For large 
values of the local error tolerance JN iteration 
resulted in significant errors. This could be due 
to the approximations for the Jacobian elements 
used in LSO N such problem was encountered 
with CREKlDp5;14,pg which employs JN iteration but 
with an analytical Jacobian. This suggests that 
JN iteration with an analytical Jacobian should be 
attempted during early heat release. 
heat release and equilibration, however, a stiff 
method should be used, 
stiff method or a combination of nonstiff and stiff 
methods appears to be the optimal choice. 

During late 

During induction either a 

Conclusions 

A major conclusion of the present work is that 
the combination of a nonstiff method during induc- 
tion and early heat release and a stiff method dur- 
ing late heat release and equilibration does no t  
always result in the optimal algorithm for solving 
combustion kinetic rate equations. During induc- 
tion the use of either a stiff method or the combi- 
nation of nonstiff and stiff methods is indicated. 
During early heat release a nonstiff method should  
be employed. However, it is not evident if Newton- 
Raphson or Jacobi-Newton iteration is the optimal 
convergence technique in the nonstiff regime. For 
large values of the local relative error tolerance 
the Jacobi-Newton iteration technique included in 
the packaged code LSOOE produced large errors and 
also resulted in unstable solutions. This may be 
the result of poor approximations for the Jacobian. 
Further experimentation, especially with an analyt- 
ical Jacobian, is necessary to resolve the question 
of which iteration technique to select. 
late heat release and equilibration stiff methods 
are optimal. 

During 
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H e t h o d  
f l a g .  
Hi 

10 
11 

13 

backward dif- 
ferentiat ion 

B a s i c  method I t e r a t i o n  technique 

V a r i a b l e - s t e p .  Simple or f u n c t i o n a l  
variable  Order Wewton-PaDhiOn w i t h  

i m p l i c i t  A d d m  a n a l y t i c a l  J a c o b i a n  

f i n i t e  difference 
q e n e r a t e d  Jacobian 

Jacobi-Newton w i t h  

TABLE I ! .  - S W R I  OF COWVVTATIOHI IL  YOQ< 

REQUIRE0 B Y  1YO-RiGlON SOLUTION FOR 

lis1 VROBLLX 1 

&For  Method 13 the f i r s t  number i s  the  t o t a l  
nvmDer O f  Complete  J a ~ o b i a o  matrix e u a l u d t i o n i  
and t h e  second number i s  the t o t a l  number af 
d i a g o n a l  m t n x  a p p r o x i m a t i o n s .  

Hefnod 

1ABLE 111. - S U M M R I  OF COWPUTATIONAL WORK 

REQUIRLO BY TWO-REGION SOLUTION FOR 

T i 8 1  VROBLEK 2 

i p s  fsxitCh. NSlEP NFE HJE CVU, 
"I 

TABLE I V .  - S U W R I  OF COMVUlAlIONAL YORK 

RLQUlRtO BI 1YO-REGION SOLUlIOH FOR 

T i 8 1  PROBLEM 3 

TABLL Y. . SUHMRI OF COHPUTATlOlillL YORX 

RtQUIRiO B Y  1YO-REGION SOLUTION FOR 

T i 8 1  VROBLLM 4 

TABLE V I .  - S U H M R I  OF COHPUIIITIONAL YORK R i Q U I R t O  B Y  

I H R E E - R I G I O N  SOLUTION FOR TEST PROBLEM I 

a 
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r e a c t i o n  t i m e  ( 5 )  f o r  t e s t  problems 1-4 
F ig .  2: V a r i a t i o n  of t h e  temperature ( K )  w i t h  
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klethcd 
10 

Reaction time, I 

F i g .  3:  V a r i a t i o n  o f  t he  CPU t ime  ( 8 )  w i t h  
r e a c t i o n  t i m e  ( 5 )  f o r  methods 10, 11, 
13, and 21 ( t e s t  problem 1 ,  l o c a l  -7 
r e l a t i v e  e r r o r  t o le rance ,  EPS = 10 - )  

Reaction time. I 

F ig .  5 :  V a r i a t i o n  of t h e  CPU t i m e  ( s )  w i t h  
r e a c t i o n  t ime  ( 5 )  f o r  methods 10, 11, 
13, and 21 ( t e s t  problem 3, l o c a l  -5 
r e l a t i v e  e r r o r  t o le rance ,  EPS = 10 

Reaction time. s 

F ig .  4: V a r i a t i o n  o f  t h e  CPU t ime  ( 5 )  w i t h  
r e a c t i o n  t i m e  ( 5 )  f o r  methods 10, 11, 
13, and 21 ( t e s t  problem 1, l o c a l  -5 
r e l a t i v e  e r r o r  t o le rance ,  EPS = 10 ) 

Method 

Reaction time. I 

Fig.  6: V a r i a t i o n  o f  t h e  CPU t ime  ( 8 )  w i t h  
r e a c t i o n  t ime  f s )  f o r  methods 11 
and 21 ( t e s t  pkblem 4, l o c a l  
r e l a t i v e  e r r o r  t o le rance ,  EPS = 10 1 
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