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Abstract

The effect of switching between nonstiff and
stiff methods on the efficiency of algorithms for
integrating chemical kinetic rate eguations is
presented, Different integration methods are
tested by application of the packaged code LSODE
to four practical combustion kinetics problems.

The problems describe adiabatic, hoemogeneous gas-
phase combustion reactions. It is shown that
selective use of nonstiff and stiff methods in dif-
ferent regimes of a typical batch combustion prob-
lem is faster than the use of either method for the
entire prablem., The implications of this result to
the development of fast integration techniques for
combustion kinetic rate equations are discussed,

Introduction

The ordinary differential equations {ODE's)
describing complex chemical reactions are char-
acterized by widely different time constants.
Although the differential equations are stable,
standard numerical techniques such as the explicit
Runge-Kutta and Adams methods are prohibitively
expensive to use because of the severe steplength
restriction imposed by the requirements for numer-
jcal stability, Such systems of differential
equationf gre commonly referred to as "stiff"
systems.*~

The problem of stiffness has been recognized
for some time, e.g.,° and severai technigues have
been developed for stiff ODE's. _At the preéegt
time, the packaged codes EPISODE’ and LSODE®>? rep-
resent the most extensively documented, tested and
used routines for stiff QDE's., Among si&era1 codes
examined in recent detailed studies, 0-18") 500 was
found to be the fastest for solving chemical kinet-
ic rate equations., However, it is recognized by
combustion device modelers that LSODE is not fast
enough for economical calcuiatigns of multidimen—
sional reacting flow problems.

The numerical solution of combustion kinetic
rate equations is complicated by the existence of
a narrov region ("heat release” zone) where the
species concentrations and temperature change rap-
idly, as illustrated in Fig. 1 for a typical batch
reaction combustion problem. In the heat release
regime, especially in the early part, many of the
species and the temperature have positive time
constants -- an indication that the governing ODE's
are unstable. Since small steplengths are regquired
for solving unstable ODE's, the use of methods
designed for stiff problems -- designated herein
as "stiff methods" -- may be inefficient, During
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early heat release explicit "nonstiff methods" —-
i.e., methods suitable for nonstiff problems --
may be adequate. However, implicit methods are
more accurate than explicit methods, which are
therefore used only ai predictors in predictor-
corrector aigorithms. 5 The corrector eguations
are iterated until convergence is obtained. It is
not clear what corrector iteration technique is
optimal inlghfynonstiff regime, ggtTgsjmp1e or
functionali®s1/ and Jacobi-Newton'®»*7 iteration
technigues have been used because they avoid the
expense associated with forming and inverting
Jacobian matrices, which is reguired by Newton-
Raphson fteration. However, much larger step-
lengths can be used with Newton-Raphson iteration.
For unstable ODE's this advantage may not be of
much help and it is therefore not apparent which
technique is the most efficient.

puring late heat release and eguilibration the
governing ODE's are stable so that Newton-Raphson
iteration is the optimal convergence method. In
these regimes, especially during equilibration, the
different species approach the equilibrium state
at different rates and the ODE's are stiff -~ i.e.,
classical numerical techniques will require prohib-
itive amounts of computer time in these regimes.
Here, stiff methods are better suited to solving
the problem,

in developing an efficient algorithm to solve
combustion kinetic rate equations, it is important
to recognize and accommodate the widely different
characteristics of the three regimes {induction,
heat release and equilibration) encountered in a
typical combustion problem. Such a situation where
the problem changes character, cccurs in other
areas and schemes have been proposed for autoT%tic
switching between stiff and nonstiff methods.

The objective of the present investigation is
to examine the nature of the ODE's arising in com-
bustion chemistry. In particular, we examine the
effect of switching between stiff and nonstiff
methods on the computational work required to solve
combustion kinetic rate equations. We also examine
the use of different corrector iteration techniques
with ponstiff methods.

Governing Ordinary Differential Equations

The first order ODE's describing the time rate
of change of species i(% = 1,NS) can be written as

dni
T - fi("k’T) ik = 1,NS

ni(t = 0) = given (1)

T(t = 0} = given

where nj s the mole number of species d; NS is
the tota} number of distinct species in the gas
mixture; T s the temperature; and f; is the net

rate of formation of species 3 dye to all forward
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and reverse reactions in which species i partici-
pates. A more detailed description of the govern-
ing ODE's is given in Refs. 12 and 13,

The initial value problem is to solve the sys-
tem of Eqs. (1) for the chemical composition and
temperature at the end of a prescribed time inter-
val, given the initial conditions and the reaction
mechanism. A1l problems considered in the present
study involve only adiabatic, homogeneous, gas
phase chemical reactions. The problems are, how-
ever, of two types -~ constant pressure and con-
stant density, The following conservation
equations serve as algebraic constraints on the
species rate equations

Constant pressure:

NS
:E: n;h. = H, = constant (2a)
i=l
Constant density:
NS
> n(h -RT)=U = constant (2b)
i=l i i 0

where h; s the molal-specific enthaipy of
species i; R is the universal gas constant; Hg
and U, are the mass-specific enthalpy and inter-
nal energy, respectively, of the ideal gas mixture.
Time differentiation of Eqs. {2a) and {2b) provide
the following ODE's for the temperature:

Constant pressure:

KS
- f.h.
d7 isp (3
w )
1=1ﬂicp1
Constant density:
NS
- fi(h. - RT)
dT i=1
T (3b)
5 ni(cp1 - R)
i=1

where c¢,; 15 the constant-pressure molal specific
heat of species 1.

Methods and Iteration Techniques Examined

The objective of the present investigation was
to examine the effect on the computational speed of
using stiff and nonstiff methods in different
regimes of a typical combustion kinetics problem.
To acgogp1ish this objective the packaged code
LSODE®:7 was used because it contains both stiff
and nonstiff methods and switching betweer the two
methods is relatively straightforward. The methods
included in this package are a variable-step,
variable-order implicit Adams method, suitable for
nonstiff problems, and & variable-step, varia%&e—
order backward differentiation formula {BOF),
suitable for stiff problems, These methods are
among the most efficient currently ava11ab1§ f?r
nonstiff and stiff problems, respectively.

Both techniques empioy a standard explicit predic-
tor formule -- a Tayior series expansion using the

method devised by Nordsieck22 -- to provide an ini-
tial estimate of the solution., To correct this
estimate a range of iteration formulas is included
in LSODE. The methods and corrector technicues
attempted in this study are examined briefly;
details are avaiiable in Refs. 7, 23 and 24,

The ODE's presented in the previous section
can be generalized as follows

. dy.
vz g o= Fyly) fok = LN {43)

or using vector notation

. gy
Y=g = £) {4b)
where
y'l = n_i i= I,NS
Insey = T
(5)
N=NS+1

and an underscore represents a vectory guantity.

The techniques used in this study are
step by—step methods. They compute approximations
ynls yi, nsi o= 1,N) to the exact solution
?t ( n)s1 = 1,N) at discrete points in time
?n =1,2,.. Assuming that solutions Yn-1»
_n 25 ... have been obtained at times tp_1,
n-2s +»» the methods used in LSCDE to advance the
soiut1on {= y5 n) to time t, dinvelve linear
multistep formulas of the type

K Ko
. = Y. .+ Y. . 1= 1,N
Yi,n ééi °¥ineg " M géé 3im-g T
(6)
where hp {= is the size of the step-
length to be attempteé

{= filyy n). 15 the
approximation to the exact ger1vat1vé y1(t Yz
fily(tplrs and Kyq and are associ-
ated w\gh the formu1a se1e8ted to sg1ve the problem
over this time step, For the implicit Adams method
of order q, K] =1, Kp = g - 1 and Eg. {6} becomes

-1
Yin = Yi,n1 ¥ M j;% 8i¥i g 1 =LN (7

For a BDF of order q, Ky = =0 and £q. (6}

becomes

q
) 32% Y05 " PBdin = BN {8)

Equations (7) and (8) can be written in the general
form

- = . + v
Yion = Yin T MaBe¥in

=l‘,i n hsf'i(‘yk H) i =1,N (g)

where v ,n contains prevxously cemputed informa-
tion. In’ vector notation, Eq. {9) becomes

L



Lot P8ty (10)

A11 of the different corrector iteration tech-

niques used in the present study to solve Eq. (10}
can be generalized by the recursive relation

(1 - hnaoa)(l}]"‘*l) - y_‘(]m)) _— "nﬁoi(y_.gm)) -

I =

A

{11}

where 1 1is the identity matrix, the matrix J
depends on the jteration method selected,, {m) and
{(m+1} denote the iteration numbers -- &} is the
result obtained by the predictor step,

The choice J =0, called successive substitu-
tion,4 simgIe or functional iterationl®:17 and Jacobi
iteration,! results in

m+] m
= g gt (") (12

fquation (12) is very simple to use but this method
converges only linearly. in addition, for suc-
cessful convergence the step1eng}h hy may be
restricted to very small values.

Newton-Raphson (NR)} iteration, an the other
hand, converges quadratically and can use mucg
larger steplergths than functional iteration, »16
For this method J 4is the Jacobian matrix and the

elements Jix(i,k = 1,N} are given by
of,
J'ik = —ay—k- 'I,k = l,N {13)

For this iteration technique much computational
work can be required in forming the Jacobian matrix
and in performing the linear algebra necessary to
sotve Eq. (11). To reduce this computational work
the iteration matrix is not updated at every itera-
tien. For additional savings it is updated only
when the solution to Eg. (11} does not converge,
Hence the iteration matrix is only accurate erough
for the iterations to converge and the same matrix
may be used over several steps.

iteration techniquelz:lg
iteration method by
elements of the

this technigue

The Jacobi-Newton (JN}
can be obtained from the NR
neglecting all off-diagonal
Jacobian matrix. Hence for

{14}

This technique is as simple as functional iteration
in the sense that no matrix inversion is involved.

Also it converges faster than functional iterafaon

-~ better than linear but not quite quadratic.

In summary, functional and JN iteration tech-
niques require much less work per step than NR
iteration but have to use smaller stepltengths and
converge at slower rates. For stable problems
where the Jacobian changes slowly NR iteration is
clearly the optimal method. For unstable regimes,
however, where rapidly changing solutions may
require frequent updating of the Jacobian for suc-
cessful convergence, simple or JN iteration may be
more efficient, which may also be the case when

very accurate numerical solutions are required,
Because any change in the steplength alters the
iteration matrix, it is not economical to consider
small changes in the steplength with NR ftera-
tion. On the other hand, simple and JN iteration
techniques can take advantage of even modest in-
creases in the steplength., JN iteration requires
a little more work per step than simple iteration
but it converges faster. Also, it can use step-
Tengths at éeast as large as those used by simple
iteration.18 The optimal corrector technique
therefore depends on the nature of the problem, the
basic method used and the accuracy required of the
numerical selution. ‘

In LSODE both the basic method and the correc-
tor iteration technique are selected via a2 method
fiag, MF., If NR iteration is employed, either the
user can provide analytical expressions for the
elements of the Jacobian matrix or the code will
estimate these elements by finite-difference
approximations. For JN iteration, however, this
option is not available and the code uses
internally-generated finite~-difference approxima-
tions for the diagonal elements of the Jacobian
matrix. For all results obtained with NR iteration
analytical Jacobians were used., The basic methods
and iteration techniques employed in the present
study are summarized in Table I, together with the
relevant values for MF.

Test Problems

Four practical combustion kinetics probiems
were used in the present study. A1l four cases
described adiabatic, homogeneous, gas-phase, tran-
sient, batch combustion reactions. Test problem 1
described the ignition and subsequent combustion
of a mixture of 33 percent carbon monoxide and
67 percent hydrogen with 100 percent theoretical
air at an initial temperature of 1000 K and pres-
sure of 10 atm, It involved 12 reactions ameng 11
species. Test problem 2, involving 30 reactions
among 15 species, described the ignition and subse-
quent combustion of a stoichiometric hydrogen-air
mixture at 2 atm and 1500 K initial temperature.
Both test cases 1 and 2 were at constant pressure
and are discussed in more detail in Ref. 12. ngt
problem 3, taken from Burcat and Radhakrishnan,
described the ignition and subsequent combustion of
a stoichiometric propene-oxygen-argon mixture at
an initial temperature and pressure of 1700 K and
4 atm, respectively, This constant density test
case consisted of 113 reactions among 31 species.
The reaction mechanism and rate constants were
taken from Westbrook and Pitz, Test case 4,
taken from Bittker and Scullin,®’ was a lean
methane-air ignition and combustion problem at a
constant pressure of 1 atm and initial temperature
of 1645 K. This test problem involved 58 reactions
among 24 species.

Figure 1 presents the variation with time of
the chemical species moie fractions and temperature
for test problem 1. The variation of the tempera-
ture with the reaction time for all four test cases
is shown in Fig, 2, Al1 four test problems were
solved over a time period of 1 ms, This reaction
period encompassed all three combustion regimes
{induction, heat release and equilibration) for
test problems }-3. Test case 4, however, included
the first two regimes (induction and heat release)
but only the beginning of equilibration.



Results

In this section we present the effects on the
computational work of using stiff and nonstiff
methods in different regimes of a typical combus-
tion kinetics problem. A1l results were obtained
on the NASA Lewis Research Center's IBM 370/3033
computer using single-precision accuracy.

As illustrated in Fig. 1 and discussed in the
section INTRODUCTION, a typical combustion kinetics
problem consists of three distinctly different
regimes: induction, heat release and equilibra-
tion., During induction and early heat release
when many of the ODE's have positive time con-
stants, smaill step-%eegths musi be used to insure
solution accuracy.1 s In these reggmes non-
stiff methods may be more efficient. During
late heat release and equilibration when the ODE's
are more stable, much larger steplengths can be
used ang yg {5eration is the optimal convergence
method.?s > In these later regimes, especially
during equilibration, the ODE's are stiff so that
stiff methods are appropriate.

To investigate if it is more efficient to use
a nonstiff method during induction and early heat
release, the variation of the computer time with
the reaction time was examined for all values of
the method flag, MF {= 10,11,13, and 21 -- see
Table I}, used in this study., Pure relative error
control is appggpriate for the problems employed
in this study. However, it could not be used
because many of the mole numbers had zero initial
values. A mixed relative and absolute error con-
trol was therefore used. Sufficiently small values
for the local absolute error tolerances for the
species were used to make the error control sub-
stantially relative for mole fractions greater than
0.1 ppm. For temperature pure relative error con-
trol was used. To ensure that a compariscon of com-
putational work was made among comparably accurate
methods, the same values for the absolute error
tolerances were used with all methods and corrector
iteration techniques. For c¢larity in presentation,
methods corresponding to method flag MF = 10, 1i,
13, and 21 will hereafter be designated as methods
16, 11, 13, and 21, respectively.

Figures 3 and 4 present the variation of the
computer (i.e., CPU} time (in seconds} with the
reaction time for test problem 1 using values fgr
the locgl relative error tolerance {EPS} of 10—
and 1077, respectively. For method 10 (imp1ﬁc%t
Adams with functional iteration} and EPS = 107¢ the
CPU time required up to the onset of heat release
(reaction time =9 us, see Figs., 1 and 2) exceeded
that required by method 21 (BDF with NR iteration
using an analytical Jacobian) to_solve the complete
problem (Fig. 3). For EPS = 1073, however, the CPU
times reguired during induction and early heat
release were zbout the same for both methods
(Fig. 4). For methods 11 {implicit Adams with NR
iteration using an analytical Jacobian) and 13
{implicit Adams with JN iteration using internally
generated approximations for the diagonal elemenis
of the Jacobian matrix), the CPU times required
during induction and eariy heat release compared
favorably with, or were less than, those required
by method 21. Note, however, that the CPU time
required by method 21 for the complete problem was
less than that required by alt the nonstiff meth-
ods, indicating that the problem was stiff,

The results given in Figs. 3 and 4 show that
JN and NR dteration technigues are more efficient
than functional iteration in the nonstiff regime,
These results indicate also that the use of a non-
stiff method during induction and early heat re-
lease and a stiff method for the remainder of the
problem would be more efficient than using either
method for the complete problem. To examine the
effects of such a switch the following procedure
was used. The code was run up to reaction time
t = teyitch With a nonstiff method. After every
step successfully executed by the routine, the
vatue of the time reached by the integrator was
checked to ensure that it did not exceed igyitch-
If the time exceeded tg,igchs the method was
switched to 21 and the problem was run to comple-
tion with the stiff method. Upon completion of the
problem, the CPU time required to soive the problem
was calculated. In addition, the following per-
formance parameters which give an indication of the
computational work required to solve the problem
were noted: total number of steps required to
solve the problem (NSTEP), total number of func-
tional (i.e., derivative) evaluations {NFE) and
total number of Jacobian evaluations {NJE}.

Different values for tgyirep were attempted
ang the value resulting in the Teast CPU time to
solve the problem was obtained by a trial-and-error
process. Since the gbjective ef the present inves-
tigation was only to determine if switching methods
resulted in efficiency increases and if so, to
identify the optimal jteration technique to be used
in the nonstiff regime, no attempt was made to in-
corporate automatic method selection procedures.

Table 11 presents the minimal CPU times ob-
tained for test problem 1 using the two-stage solu-
tion scheme outlined above and different iteration
techniques in the nonstiff regime. In this table
towiteh 1% the reaction time (in ws) vp to which
tﬁe pragram was run with the nonstiff method and
the indicated iteration technique. For values of
reaction time t > tg itch the selution was
obtained with the st1ff method 21. Also given in
Table Il is the computational work required by
method 21 to solve the gomp1ete probiem. For
method 10 and EPS > 107" the CPU times required up
toe the onset of heat release exceeded those re-
quired by method 21 to solve the complete problem.
Therefore no switching was attempted for thgse
values of EPS and method 10. For EPS = 1077, how-
ever, the combination of methods 10 and 21 was
about 20 percent faster than method 21 for the com-
plete problem (Table II). Note that fewer steps
and functional evaluations were required by the
stiff method, indicating that the average step-
length was smaller for method 10. However, the
use of method 10 during induction and early heat
release resulted in significantly fewer Jacobian
evaluations. This was due to (a) not computing
the Jacobian in the initial regime and {b) fewer
Jacobian evaluations being reguired in the second
regime because of the use of smailer stepiengths.

The combinations of methods 11 and 21 and of
13 and 21 resulted in decreased CPU times (i.e.,
relative to method 21 for the complete problem) for
most of the error tolerances {Table II). Alsg, in
all cases the combination of nonstiff and stiff
methods was faster than using the nonstiff method
for the complete problem. Note that the time at
which methods had to be switched generally
increased with decreasing EPS, i.e., increasing



accuracy requirement. This implies that when EPS
is decreased, accuracy requirements control the
step size for a longer time. When accuracy re-
quirements, and not numerical solution stability
requirements, control tg? size of the step, the
problem is not stiff.%s Hence, the time over
which it was more efficient to use a nonstiff
method increased with decreasing EPS.

The combination of methods 11 and 21 resulted
in CPU time decreases ranging from negligibly small
to over 30 percent for test problem 1 (Table II),
This switching process, i.e., use of a nonstiff
method during induction and early heat release and
of a stiff method for the remainder of the problem,
is not entirely satisfactory in that it does not
always result in significant savings over the use
of the stiff method 21 for the complete problem..
Simitar remarks apply to the use of method 13 in
the initial regimes. Note that for method 13 NJE
includes two types of Jacobian matrix evaluations
~— the first number is the total number of complete
(i.e., analytical} Jacobian matrix evaluations re-
guired and the second number is the total number
of diagoral matrix approximations (Table II}). One
difficulty encountered with the use of method 13
was that it returned inaccurate solutions when
relatively large values of EPS were Eéeg This
problem has been reported by others,<9 9 It is
not clear if this was caused by poor approximations
for the diagonal elements or by an unreliable con-
vergence test, Another difficulty encountered with
this method was serious numerical instability for
some test problems and values of EPS. Because of
these problems with method 13 it was not attempted
with the other three test cases.

For the other three test problems and most of
the error tolerances used, the runs with method 10
required more CPU time until the onset of heat
release than method 21 for the complete problem,
{e.qa., Fig. 5). Hence, method I0 was also not
gtgemgted in the nonstiff regime for test problems
o 4.

Tabies III, IV and V present the effects of
switching between methods 11 and 21 for test prob-
lems 2, 3 and 4, respectively. For purposes of
efficiency comparisen, the computational work re-
quired by method 2} for the complete problem is
also given in these tables. The results for test
problem 2 (Table III} were very similar to those
obtained for test problem 1. The use of the two-
region scheme resulted in efficiency increases for
most of the error tolerances and, as EPS was de-
creased, the switching had to be performed at later
times, '

For test problem 3, however, no significant
efficiency increases could be obtained by using
the nonstiff method 11 during induction and early
heat release and then switching to the stiff method
21, But significant efficiency increases could be
obtained by switching before the onset of heat re-
lease (Table IV). Note that for EPS = 107 switch-
ing from method 11 to method 21 a2t t = 0.03 us
(for this problem heat release started at about
3 us, Fig. 2) resulted in a CPU time decrease of
over 40 percent. For test problem 3, unlike test
probtems 1 and 2, the temperature dropped by a $ig-
nificant amount f~21 K} during induction, This
decrease in temperature was diagnosed by the code
as an indication of stiffness, especially when low
values were used for EPS. HNpte the sharp increase

in CPU time incurred by the nonstiff methods during
induction (Fig. 5).

Test problem 4 was also quite different from
test problems 1 and 2. Although the temperature
drop during induction was not significant (less
than 1 K), this problem was characterized by a
fairiy long ignition delay period (Fig. 2). In
addition, when the temperature started to increase
{at t ~ 20 us) it did so gradually and not as
rapidly as for the other problems. For example,
at t = 100 us the temperature had risen by only
about 10 K. Unlike the other three test problems,
test problem 4 included only the beginning of the
equilibration regime. A nonstiff method was there-
fore expected to be more efficient for most of the
problem. However, the results given in Table V
show that for increased efficiency switching had to
be performed during induction. This indicates that
for test problem 4 also it was more efficient to
use a stiff method duriag induction, as illustrated
in Fig. 6 for EPS = 1077, Note the large increase
in CPU time for method 11 between t = 1 and 20 us.
For method 21 the CPU time showed a large increase
between approximately 300 and 350 us, corresponding
to the rapid increase in the temperature between
these times (Fig., 2). In this interval method 11
was more efficient (Fig. 6) because accuracy re-
quirements control the step size. The effect of
using a nonstiff method in this therval Was
examined as follows for EPS = 1077. The program
was run with method 11 up to 2.% us and between
300 and 350 ws., At all other times method 21 was
used, This resulted in a total CPU time reguire-
ment of 7.6 s —— which was significantly faster
than both the simple switch performed earlier
{i.e., two-stage solution scheme} and method 21
for the complete problem (Table V).

The results discussed above indicate that the
induction regime is not necessarily nonstiff so
that the use of a nonstiff method in this regime
does not guarantee minimal computationat work. In
this regime the use of either a stiff method or a
combination of nonstiff and stiff methods may re-
quire the teast computational work. To test this
hypothesis the following procedure was adopted.
The program was run with the stiff method 21 until
the onset of heat release and also during late
heat release and equilibration. During eariy heat
reiease, however, & nonstiff method was used.

Table VI presents the minimal CPU time
obtained for test problem 1 using the three-region
solution scheme discussed above -- all iteration
technigues were attempted during early heat
release. In this table to, 1 and t are the
times at which the methods wére switcheg’ErOm nan-
stiff to stiff and from stiff to nonstiff, respec-
tively. Note that as EPS was increased tgy j had
to be decreased because heat release was predicted
to start at an earlier time. As discussed previ-
ously tey 2 had to be increased with decreasing
EPS. A comparison of Tables II and VI shows that
for almost all iteration tecnniques and error tol-
erances the three-stage solution scheme was faster
than both the two-stage solution scheme proposed
earlier and the stiff method 21 for the complete
problem. Note that the use of this combination of
stiff and nonstiff methods has resulted in about a
50 percent reduction in the CPU time for EPS = 105
and method 13 during early heat release, Although
the use of method 10 also resulted in efficiency



increases, a very low value of EPS (10'5) was re- 5.
quired for significant reductions in the CPY time

{Table VI). The use of such low values of EPS is
wasteful, especial;a for multidimensional reacting

flow calculations. This indicates that either JN

or NR iteration should be used during early heat

release. For small values of EPS JN iteration

(method 12) is more efficient. But for large 6.
values of EPS NR iteration (method 11) is superior

(Table VI).

The results presented above indicate that for 7.
efficient solution of combustion kinetic rate equa-
tions, nonstiff methods should be used during early
heat release. However, It is not clear if JN or NR
iteration should be used in this regime. For large
values of the local error tolerance JN iteration
resulted in significant errors. This could be due 8.
to the approximations for the Jacobian elements
used in LSOPE. NT such problem was encountered
with CREK101Z:14:19 unich employs JIN iteration but
with an analytical Jacobian, This suggests that
JN iteration with an analytical Jacobian should be 9.
attempted during early heat release. During late
heat release and equilibration, however, a stiff
method should be used, During induction eijther a
stiff method or a combination of nonstiff and stiff
methods appears to be the optimal choice.

10.

Lonclusions

A major conclusion of the present work is that
the combination of a nonstiff method during induc-—
tion and early heat release and a stiff method dur-
ing late heat release and equilibration does not
atways result in the optimal algorithm for solving
combustion kinetic rate equations. ODuring induc-
tion the use of either a stiff method or the combi-
nation of nonstiff and stiff methods is indicated.
During early heat release a nonstiff method should
be employed. However, it is not evident if Newton-
Raphson or Jacobi-Newton iteration is the optimal
convergence technigue in the nonstiff reqime. For
large values of the local relative error toierance
the Jacobi-Newton iteration technique included in
the packaged code LSODE produced large errors and
also resulted in unstable solutions. This may be
the result of poor approximations for the Jacobian.
Further experimentation, especially with an analyt-
ical Jacobian, is necessary to resolve the gquestion
of which iteration technique to select. During
late heat release and equilibration stiff methods
are optimal,

11,

i2.

13,

14,

References
15,
1. Lapidus, L. and Seinfeld, J.H. Numerical
Solution of Ordinary Differential Equations,
Academic Press, lnc., NY, 1971.

2. Gelinas, R.J, "Stiff Systems of Kinetic
fquations -- A Practicioner's View," J. Comp.
Phys., 9, 1972, pp. 222-236. 16.

3. Llambert, J.D. Computational Methods in
Ordinary Differential £quations, John Wiley

and Sons Lid., NY, 1973. 17.

4, Finlayson, B.A. Nonlinear Analysis in Chemical
Engineering, McGraw Hiil Inc., NY, 1980,

Pratt, D.T. and Radhakrishnan, K. "Physical
and Numerical Sources of Computational
Inefficiency in the Integration of Chemicai
Kinetic Rate Equations: Etiology, Treatment
and Prognosis,” submitted for publication in
Combustion and Flame,

Curtiss, C.F, and Hirschfelder, J.0.
“Integration of Stiff Equations,” Proc. Nat.
Acad, Sci., 38, 1952, pp. 235-243.

Hindmarsh, A.C. and Byrne, G.D, "EPISODE: An

Effective Package for the Integration of s
Systems of Ordinary Differential Equations,”

UCID-30112 Rev. 1, Lawrence Livermore

taboratory, 1977.

Hindmarsh, A.C. "LSODE and LSODI, Two New
Initial Value Ordinary Differential Equation
Solvers," SIGNUM Newletter, 15, 1980, pp.
10-11.

Hindmarsh, A.C. "ODEPACK: A Systematized
Collection of ODE Solvers," UCRL-88007,
Lawrence Livermore Laboratory, 1982.

Radhakrishnan, K. "A Comparison of the
Efficiency of Numerical Methods for
Integrating Chemical Kinetic Rate Equations,”
NASA TM-83590, 1984, in Computational Methods,
CPIA Pubtication 401, 1984, pp. 69-82.

Radhakrishnan, K, "Fast Algorithms for
Combustion Kinetics Calculations: A
Comparison," in Combustion Fundamentals
Research, NASA (P-2309, 1984, pp. 257-267.

Radhakrishnan, X. "Comparison of Numerical
Techniques for Integration of Stiff Ordinary
Differential Equations Arising in Combustion
Chemistry," NASA TP-2372, 1984,

Radhakrishnan, K. "New Integration Technigues
for CThemical Kinetic Rate Equations. 1.-
Efficiency Comparison," submitted for
pubtication in Combustion Science and
Technology.

Radhakrishnan, K. "New Integration Technigues
for Chemical Kinetic Rate Equations. II.
Accuracy Comparisen,™ NASA TM-86893, 1984, to
be presented at the ASME 30th Internationa)
%ggSTurbine Conference, Houston, TX, March,

Pratt, D.T. "Exponentially-Fitted Methods for
Integrating Stiff Systems of Ordinary
Differential Equations: Applications to
Homogeneous, Gas-Phase Chemical Kinetics,” in
Computational Methods, CPIA Publiication 401,
1984, pp. 53-67.

Shampine, L.F. "Type-Insensitive 0DE Codes
Based on lmplicit A-Stable Formulas,” Math.
Comp., 36, 1981, pp. 499-510.

Petzold, L. "Automatic Selection of Methods
for Solving Stiff and Nonstiff Sysiems of
Ordinary Differential Equations,” SIAM J.
Sci. Stat. Comput., 4, 1983, pp. 136-148,



18.

19.

20.

21.

22.

23.

24,

Shampine, L.F. "Type-insensitive 0Dt Codes
Based on Implicit A(e)-Stable Formulas," Math.
Comp. 39, 1982, pp. 109-123.

Pratt, D.T. and Radhakrishnan, K. “CREX1D: A
Computer Code for Transient, Gas-Phase
Combustion Kinetics," NASA TM-83806, 1984,

Gear, C.W, “"The Numerical Integration of
Ordinary Differential Equations," Math. Comp.,
21, 1967, pp. 146-156.

Shampine, L.F. "Stiffness and the Automatic
Selection of QDE Codes,” J. Comp. Phys., 54,
1984, pp, 74-86.

Nordsieck, A, "On the Numerical Integration
of Ordinary Differential Equations,” Math.
Comp., 16, 1962, pp. 22-49.

Hindmarsh, A.C. “"Linear Multistep Methods for
Ordinary Differential Equations: Method
Formulations, Stability, and the Methods of
Nordsieck and Gear,"” UCRL-51186 Rev. 1,
Lawrence Livermore Laboratory, 1972.

Hindmarsh, A.C. "Construction of Mathematicatl
Software Part 111: The Control of £rror in
the Gear Package for Ordinary Differential
Equations," UCID-30050 Part 3, Lawrence
Livermore Laboratory, 1972.

25.

26.

27.

28.

29,

30.

Burcat, A. and Radhakrishnan, K, “"High
Temperature Oxidation of Propene,"Combustion
and Flame, to appear.

Westbrook, C.W. and Pitz, W.J. "A

Comprehensive Chemical Kinetic Reaction

Mechanism for Oxidation and Pyrolysis of

irggane and Propene," UCRL Preprint 89391,
943.

Bittker, D.A. and Scullin, V.J. "GCKP84--
General Chemical Kinetics Code for Gas Phase
Flow and Batch Processes Including Heat
Transfer,” NASA TP-2320, 1984,

Ryrne, G.D., Hindmarsh, A.C., Jackson, X.R,
and Brown, H.G. "A Comparison of Two ODE
Codes: GEAR and EPISODE," Comput. Chem. Eng.,
1, 1877, pp. 133-147.

Shampine, L.F. "Implementation of Implicit
Formulas for the Solution of QDEs," SIAM J.
Sci. Stat. Comput,, 1, 1980, pp. 103-118.

Young, T.R. and Boris, J.P. "A Numerical
Technique for Solving Stiff Ordinary
Differential Equations Associated with the
Chemical Kinetics of Reactive-flow Problems,”
J. Phys. Chem., 81, 1977, pp. 2424-2427.

.



TABLE 1. - SUMMARY OF METHODS AND CORRECTOR

FTERATION TECHRIQUES EXAMINED

Baéic methed

yariable order,
backward dif-
ferentiation
formula

Method Iteration technique
flag,
MF
10 Yariahle-step, Simple or functional
1t varizgble prder | Mewton-Raphson with
implicit Adams analytical Jacobian
13 Jacobi-Hewton with
finite difference
qenerated Jacobian
21 Variable-step, Newton-Raphson with

analytical Jacobian

TABLE 11, - SUMMARY OF COMPUTATIONAL WORx
REQUIRED BY TWO-REGION SOLUTEGN FOR
TEST PROBLEM™ 1

Method] EPS | towitchr | NOTEP | RFE NI ] CPU,
us %

10721 | l0-5 17 1701 | 2803 | 51 3.87
121 | 1072 15 99 | 166} 30 0.40
103 21 173 | 297 | 33 .63

104 23 336 | sS40 | €6 1.17

105 4q 923 | 1675 |139 .33

1320 | 3002 13 157 308 |al6;45 0,49
103 14 244 450 | 14;60 | .64

104 13 466 958 | 24;1351.29

105 15 956  |1747 | 40;14¢ | 2.52

21 10 - 115 183 | 30 G.a4
mg — 207 34€ | 46 .78

10 — 308 504 | 57 1.08

Tiatd . 1263 | 2429 |255 4.95

2Fgr Method 13 the first number is the tota
number of complete Jacobian matrix evaluations
and the second nymber is the total number of
diagonal matrix approximatiens.

TABLE 11T. - SUMMARY OF COMPUTATIONAL WORK
REQUIRED BY TWO-REGION SOLUTION FOR

TEST PROBLEN 2

Method| EPS [t., ir.n. | NSTER [NFE | 8JE [cPu,
T3] 3
11/21 10‘5 3 96 | 1587 29 | 0.70
17 5 158 | 255| 43 | 1.07
104 4.5 237 | 381 a3 | 1.38
105§ 20 2846 {4686 | 422 |16.5
21 1602 | e 100 | 163} 29 |0.71
m'a3 _— 157 | 283} 36 | 1.03
10 _— 295 | 471 63 { t.87
1o ) o 3587 5705 (579 J20.5

TABLE — SUMMARY OF COMPUTATIONAL WORK
REQUIRED BY TWO-REGION SOLUTION FOR
TEST PROBLEM 2
Method Towitchs | NSTEP I NFE T NJET CPU,
us s
11121 163 | 273% s8 3.87
368 | 5901 94| 7.83
689 | 1133{212{15.8
.03 | 1148 | 1794 {200 | 20.9
21 228 1 3800 74| 5.45
373 | 612|124 | g.88 |
783 [ 1355 (273 | 19.5
1634 | 2706 | 448 35.U

TABLE V. - SUMMARY OF COMPUTATIONAL WORK
REQUIRED BY TWO-REGION SOLUTION FOR

TEST PROBLEM 4

Method tswitcha | NSTEP | NFE | NJE |CPU,
ws ]

1ir21 157 264 | 45 4 2,24
12.5 anz 5211 80 1 4,14
2.5 673 | 11761192 | 9.78

1530 | 2543 (210 l16.8
21 198 3261 B4 § 2,93
433 860 (172 { 7.57

723 | 1195 [ 207 {10.0

2000 | 3708 {452 (27,1

TABLE V1, - SUMMARY OF COMPUTATIONAL WORK REQUIRED BY
THREE-REGION SOLUTION FOR TEST PROBLEM |

Method | EPS tow. 2y [NSTEP | AFE KIE | CPU,
ug ug 5

2uner| 102 | el 9.0 | 107 | 168 | 31 0.42
131 9.0 10.0 | 203 | 349 | 37 N

14 5.8 12.5 § 406 | 633 1 39 1.09

1005 | 9.0 14.0 }loz6 [1726 | 70 2.81
2] 12§ g5 15 104 | 157 | 30 0.38
173 | 8.% 22 167 | 263 ] 34 .58

104 ] 9.0 55 278 | 435 | a3 .90

105 | s 65 866 {1534 [132 2.98
21413211 102 | 8.0 13.0 | 136 } 231 1223;24 | 0,42
13| 8.0 13,6 | 230 | 403 | 32341 | .70

104 | 5.0 13,8 1 297 | 499 ] 32533 | .89

15| 9.0 25 981 | 1691 | 58;153] 2.62

3For Method 13 the first number is the tota) aumber of
compliete Jacobian matrix evaluations and the second

number i% the tota) number of diagonal matrix approxi-

mations.
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