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Abstract 

The equation of motion and associated boundary conditions 
are derived for a uniform Bernoulli-Euler beam containing one 
single-edge crack. The main idea is to use a generalized vari- 
ational principle that allows for modified stress, strain, and 
displacement fields that enable one to satisfy the compatibility 
requirements in the vicinity of the crack. The concentration 
in stress is represented by introducing a crack function into 
the beam's compatibility relations. A displacement function 
is also introduced to modify the in-plane displacement and 
its slope near the crack. Both functions are chosen to have 
their maximum value at the' cracked section and to decay ex- 
ponentially along the beam's longitudinal direction. The rate 
of exponential decay is evaluated from finite element calcula- 
tions. The resulting equation of motion is solved for simply 
supported and cantilevered beams with single-edge cracks by a 
Gderkin and a local Ritz procedure, respectively. These theo- 
retical natural frequencies and mode shapes are confirmed by 
comparisons with experimental and finite element results, and 
in both cases a close match is obtained. The possibility of 
determining the cracked beams' damage properties from the 
changes of its dynamic behavior is discussed. 

Nomenclature 

crack depth 
ith generalized coordinate amplitude 
beam cross section area 
half breadth of rectangular beam 
: &, crack ratio 
half depth of rectangular beam 
Young's modulus of elasticity 
crack function 
a $, frequency ratio 
unit step function 
cross-sectional area moment of interia 
element stiffness matrix 
global stiffness matrix 
a SA z f d A  
a SA zcpdA 
G SA zcptdA 
a K 1 / I  
a K z / I  
length of beam 

length of subbeam (- A) 
= JA f2dA - S,, f cpdA . . 

G J* fcpldA - LII 
= L 1 / I  
= L2/I  
E JA f'cpdA - JA ffl'pdA 
G JA f"pldA 
integrated crack function 
stress magnification factor 
element mass matrix 
number of subbeams in the local Ritz method 
global mass matrix 
number of terms in the Galerkin expansion 
strain function 
stress function 
displacement components (=u, v, w) 
vector of nodal displacements in local Ritz method 
total volume 
bending deflection 
bending deflection amplitude 
crack position 
= 9 
stress decay constant 
Kronecker's delta, =1 for i = j and =O for i # j 
density 
strain tensor component 
stress tensor component 
free vibration natural frequency (cracked beam) 
free vibration natural frequency (uncracked beam) 
= 7 
displacement function 
position coordinate along a subbeam. 
- a 
13 
= ;7;E 

The development of damage identification techniques for 
vibrating structures such as turbines, generators, motors, air- 
craft structures, and large space structures has recently become 
the focus of substantially growing research efforts. Due to in- 

t Assistant Professor. Member AIAA, ASME 
Copyright 01990 by Mo-How H. Shen. Published by the 
American Institute of Aeronautics and Astronautics, Inc. with 
permission. 



creasing demands for safety, reliability, and time-efficiency, it 
is now believed that the monitoring of the global dynamics 
of the structure offers promising alternatives for damage de- 
tection. Consequently, the study of the dynamics of cracked 
structures is of importance. 

Relatively few investigators have examined the dynamics 
of cracked structures. For example, the effects of cracks on the 
dynamic behavior of beams was studied by Chondros and Di- 
marogonas [I], Dimarogonas and Massouros [2], and Dimarog- 
onas and Papadopoulos [3]. They modeled the crack by intro- 
ducing a local flexibility matrix connecting longitudinal, bend- 
ing, and shear forces and displacements. Later, Gudmundson 
[4] and several other researchers generalized this idea to a 6x6 
flexibility matrix relating all six generalized forces to the corre- 
sponding displacements, and applied it to a variety of dynamic 
problems. Torsion was also considered by Papadopoulos and 
Dimarogonas [5], who derived a more complicated flexibility 
matrix. They showed that a crack in a Timoshenko shaft in- 
troduces couping between torsion and shear. Since in the Tim- 
oshenko beam model there is coupling between the shear and 
bending deformations, the torsional motion is coupled to the 
bending one for a cracked shaft. 

Cawley and Adarns [6, 7) demonstrated the feasibility of 
using natural frequency test measurements to detect damage 
in a structure. Their approach consisted in comparing the nat- 
ural frequencies obtained from finite element analysis with the 
measured frequencies. They introduced damage in the finite el- 
ement model by a reduced stiffness element. The damage loca- 
tion was determined by replacing each element with a reduced 
stiffness element until the finite element frequencies matched 
best the measured frequencies. 

Recently, Christides and Barr [8] derived the equation of 
bending motion for a Bernoulli-Euler beam containing pairs of 
symmetric cracks. The cracks were taken to be normal to the 
beam's neutral axis and symmetrical about the plane of bend- 
ing. They used an exponential-type function (the so-called 
"crack function") to model the stress concentration near the 
crack tip. The rate of stress decay from the crack was con- 
trolled by a dimensionless parameter, a ,  that was determined 
by fitting the analytical results to  experimental data. However, 
Christides and Barr obtained the approximate cracked beam 
natural frequencies by a two-term Rayleigh Ritz procedure. 
Recently, Shen and Pierre [9] showed that this two-term solu- 
tion does not feature adequate convergence and that, indeed, 
convergence is very slow for this type of problems, because 

cracks affect the continuity characteristics of the solution. To 
insure adequate convergence, an approximate Galerkin solu- 
tion with as many as 150 terms was suggested in [9], which led 
to a redetermination of the stress decay rate a. To validate 
the theoretical results, a two-dimensional finite element ap- 
proach was also proposed in [9], which allows one to determine 
a without requiring the use of experimental results. 

The cracked beam theory in Refs. 18, 91 is restricted to  
pairs of symmetric cracks. This assumption was made to avoid 
the modeling difficulty due to  the discontinuities in the slope 
of the neutral axis and in the axial displacement along the 
neutral axis, which both occur with a non-symmetric crack 
configuration. The crack beam theory of Refs. [8] and [9] is 
further extended in the present study, which investigates the 
effects of single surface cracks on the modes of free vibration 
of beams. The analysis proceeds in several steps. First, we 
assume that the damage at a particular cross section can be 
viewed as a single surface crack, which is taken to be normal 
to the beam's neutral axis. According to the observations of 
Freund [lo-121, Bodner [13], and Freund and Herrmann [14] 

that the normal stress distribution on the prospective fracture 
plane is essentially linear before initiation of the fracture on 
the tensile side of the beam, a crack function f is introduced 
into the normal stress and strain expressions to account for this 
phenomenon. Also, a function is introduced in the representa- 
tion of the inplane displacement to model the disruption of the 
deformation field due to the crack. A generalized variational 
principle extended from the Hu-Washizu principle is used to 
develop the governing equations for a uniform beam with a 
single-edge crack. This procedure is similar to that used for 
the flexural vibration of beams with pairs of symmetric cracks 
[8,9]. These equations and boundary conditions are particu- 
larized for a cracked beam with a uniform rectangular cross 
section. The Galerkin and Ritz methods are then applied to 
predict the free vibration modes of cracked beams, for both 
simply supported and cantilevered configurations. The value 
of the stress decay factor a is determined by a least square 
fit of the natural frequencies calculated by Galerkin or Ritz 
methods with finite element results. The value of a is found 
to be 1.979 for simply supported beams and 1.930 for the can- 
tilevered beam - close to the values found in Ref. [9]. 

Two basic issues are addressed in this study. First, the 
adequacy of a model based on a simple beam theory for the 
prediction of the dynamic response of cracked beams is demon- 
strated. Second, the effects of a single surface crack on the free 
response of simply supported and cantilevered beams are in- 
vestigated. The possible use of this formulation to identify 
the crack position and size from changes in the beams' natural 
frequencies and mode shapes is also discussed. 

Cracked Beam Theory for Single-Edge 

Cracks 

Kinematic assumptions 

The distribution of stress and strain in an elastic body with a 
crack has been studied by Irwin [15] and Paris and Sih [16]. 
They divided the stress fields near the crack-tip into three basic 
types, each associated with alocal mode of deformation. These 
are mode I, the crack-edge opening mode; mode 11, the crack- 
edge sliding mode; and mode 111, the crack-edge tearing mode. 

In the case of free bending vibrations of a uniform beam 
with a single-edge crack, the bending moment and the lon- 
gitudinal force do not contribute to mode I1 and mode I11 
deformations. The shear force does contribute to mode I1 de- 
formation. However, for slender beams, this contribution can 
be neglected. 

Similar to the case of symmetric cracks, the normal stress, 
u,,, is the only stress that is affected by a single crack. The 
remaining normal and shear stresses out of the plane of bending 
are assumed to be zero. The in-plane shear stress component, 
o,,, is included in order to accommodate the possibility of 
shear loading on the lateral surfaces of the beam. Since a,, is 
not concentrated in mode I, the details of its distribution are 
not affected by the crack. 

In Refs. [15] and [16], the stress component o,, was found 
to be concentrated at  the crack-tip and to decay in inverse 
proportion to the square root of the distance from the crack- 
tip. This phenomenon is reproduced here by using a crack 
function f(x,z)  in the expressions of the stress o,, and the 
strain E,,, as follows: 

uzz(x,z,t) = (-2 + f ( ~ ,  z))T(z, 1) (1) 

~,,(x,z,t) = (-2 + f(x,z))S(x,t) (2) 
where T(x, t )  and S(z, t)  are defined as unknown stress and 



strain functions, respectively. 
The function f (x, z) has its maximum value at the crack- 

tip. It is taken to decay exponentially along the length of the 
beam and to vary linearly through the depth of the uncracked 
portion of the beam, according to: 

Here x,, a ,  and d represent the crack position, the crack length, 
and half the depth of the uncracked section, respectively, as 
shown in Fig. 1. The positive nondimensional constant a de- 
termines the rate of stress decay away from the crack tip. It 
was determined to be 1.936 in Ref. [9] for a pair of symmetric 
cracks. At the crack section xc and for z > (d-a) (i.e., within 
the crack), the unit step function H((d - a)  - z) has value zero 
so that f(x, z) reduces to z and the stress and strain in Eqs. (1, 
2) have value zero. The constant m represents the slope of the 
linear stress distribution at the cracked section. It can be es- 
timated by applying the condition that the same bending mo- 
ment is carried by both &acked and uncracked beams at the 
crack-tip section. 

The axial displacement u(x, z , t )  is represented in terms 
of its derivative u' as 

where w(x,t) is the transverse beam deflection. The function 
y is chosen so that the surface of zero in-plane displacement 
and its slope coincide with the surface of zero normal stress 
and normal strain, respectively. For (kinematic) consistency 
between Eqs. (2) and (4) we choose q(x,z) to  be similar in 
form to f (x, z) in Eq. (3): 

The assumptions for a nominally uniform beam with a 
single surface crack are summarized as 

where the u; are the displacements referring to cartesian axes 
x, y,z; u,j and eij represent stress and strain; and Xi and p; 
are the body forces and velocity components, respectively. The 
shear stress uzz is included to permit the loading of the beam. 

Variational theorem 

Since S, T, P, and w are unknown functions, the compatibility 
and constitutive relations of the cracked beam are undefined. 
In the absence of these relations, classical variational principles 
such as Hamilton's principle are inadequate. However, these 
principles can be generalized by the introduction of Lagrange 
multipliers to yield a family of variational principles that in- 
cludes the Hellinger-Reissner principle in elastodynamic prob- 
lems and the Hu-Washizu principle in elastic static problems. 

Here, the Hu-Washizu principle is modified to include the 
virtual work done by the inertial forces. This yields the follow- 
ing functional: 

where p is the density, A(cij) is the strain energy density func- 
tion, the g:s are the surface tractions, V is the total volume 
of the system, and S is its external surface. The overbarred 
quantities g; and a; denote the prescribed values of surface 
tractions and surface displacements, respectively. 

The functional J in Eq. (7) is stationary for the actual so- 
lution in the independent quantities u;, p;, c;j, and a;j. There- 
fore, for arbitrary independent variations of 6u; (with condi- 
tions 6u(tl) = 6u(t2) = O), 6pi, 6ci, and 6u;, the first variation 
of J must be equal to zero, yielding 

Eauation of motion and associated boundarv 

conditions 

The assumptions (6) are substituted into the formulation (8), 
whereby the problem is reduced to a form corresponding to the 
beam model. After integration by parts and simplification, we 
obtain the following: 
Strain-displacement term 

The strain-displacement term in Eq. (8) is given by 

Using the following definitions, 

the right-hand side of Eq. (9) can be rewritten as 

Strain-stress term 
The strain-stress term in Eq. (8) is given as 

If the material is elastic and isotropic, we have 

so Eq. (12) becomes 

Velocity term 
The velocity term in Eq. (8) is 



g!, = 0 (23) 

Sz  = 0 

Accordingly, the condition that the lateral surfaces are traction- 
free corresponds to the requirement that u,, = 0 on these sur- 
faces. 

The boundary force term in Eq. (8) over the lateral sur- 
face is 

Dynamic equilibrium term 
The first term in Eq. (8) represents the virtual work done 

by the dynamic forces. In the absence of body forces, it can 
be written as 

Under the assumptions (6), the expression (16) becomes 

Integrating by parts over x yields 

+ (5 - p P ) b w ) d ~  ' 
ax (17) 

Using the definitions 

The second term in Eq. (25) cancels the last term in 
Eq. (21). The remaining force term in Eq. (21) can be in- 
tegrated by parts over z and results in a term that is cancelled 
by the first term in Eq. (25). The remaining term turns out to 
be the end condition: 

and integrating by parts the first two terms in Eq. (17), we 
obtain 

End surfaces: In the same way, we may determine v, to 
be -1 and +1 over the ends of the beam, x = O,l, by assuming 
the plane ends to be normal to the beam axis. According to 
Cauchy's formula (22), g, reduces to  *a,, and g, to f u z z  at 
x=0 and x = 1, respectively. The external tractions at the 
ends, g,, are prescribed as X and 2. The force boundary term 
in Eq. (8) is therefore 

- ~ { ( L I  - 4 ) T 1 ' +  2T1L3 + TLI + ( L 2  - K2)T1+ L5T)dwdx 

(19) 
Integrating by parts the last two terms of Eq. (17) yields 

~ L W ~ A ~ X +  { ( K -  I)T"+2TiK'+TK}6wdx (20) L L  a x  L  
Finally, substituting Eqs. (19,20) into Eq. (17) and integrating 
over the cross section A, we have 

By incorporating Eq. (26) with Eq. (27) and substituting 
the relations (6), the final boundary force terms become: 

(21) 
The last two terms in Eq. (8) represent the boundary condi- 
tions for the ends and the lateral surfaces of the beam. They 
are incorporated with the other boundary conditions as fol- 
lows: 
Boundary force terms 

0 Lateral surfaces: It is assumed that the lateral surfaces 
Boundary displacement terms 

With a and w as the prescribed displacements at the ends 
of the beam are free of external traction, i.e., gi=O on these x = 0, I, the boundary displacement terms in Eq. (8) are 

surfaces. This assumption comes from the relationship between 
gi and a,j (given by Cauchy's formula) 

where u; is the unit outer normal vector. Since v, and u, are 
zero and vz is 1 on the lateral surface, Eq. (22) becomes: Substituting for u and a,, from Eq. (6) and integrating 

over the cross section yields 



Derivation of equation of motion 
Finally, the variational terms ( l l ) ,  (14), (15), and (21) 

are substituted into Eq. (8) along with the boundary terms 
(28) and (30). Since the variations 6w, 6P, 6S, and 6T are 
independent, each quantity multiplied by the corresponding 
variation must equal zero. This leads to, from expression (11) 

where 

The above equation shows that ( I  - 2K + L) necessarily 
differs from zero. Therefore, from expression (14) 

From expression (15) 

From expression (21) 

Equation (35) can be rewritten in terms of the displace- 
ment w by substituting S ,  T, and P from (31), (33), and (34). 
This leads to the equation of motion 

Derivation of boundary conditions 
The boundary conditions are of two kinds: 
A. Specified displacements. The boundary conditions are 

obtained by equating the surface integral expression (28) to  
zero when the displacements u and w are prescribed on the 
boundary. 

B. Specified forces. The boundary conditions are obtained 
by equating the surface integral expression (30) to zero when 
the external forces T and o,, are prescribed on the boundary. 

For example, let us consider a cantilevered beam with a 
fixed end at  x = 0. The virtual displacements 6u (i.e., 6w') 
and 6w must vanish at  x = 0. From Eq. (28), this implies 
that the virtual forces 6T and 60,, are arbitrary. With zero 
displacements, a and w, a t  x = 0, Eq. (30) gives 

At x = I, the external forces and 2 are zero, and 
Eq. (28) gives 

T ( I  + L1 - K - Kl)  = 0 (38: 

and 
T1(I + L1 - K - K1) + T(L3 - Kt)  = O (39) 

Since ( I  + L1 - K - K1) differs from zero, the above two equa- 

Clearly, if there is no crack, the functions L, Ll, K and 
Iil are zero, and Q1 becomes unity. The equation of motion 
and associated boundary conditions are then reduced to those 
of the uniform uncracked Bernoulli-Euler beam. 

As pointed out earlier, the above cracked beam theory is 
based on the stress and strain distributions, Eqs. (1, 2), and 
the slope of the in-plane displacement, Eq. (4). The stress (or 
strain) distribution is characterized by the crack function (3), 
with the parameters a and m defining the stress profiles in the 
x and z directions. The parameter a is evaluated in section 
3, in a least square sense. Since the stress along the z axis is 
assumed to be linear, its decay rate m can be estimated from 
the condition that the same bending moment is carried by the 
cracked beam the uncracked beam at the crack section: 

where A, represents the cross sectional area at the crack-tip 
(x = x,), and the left-hand side of Eq. (40) is for the uncracked 
beam. 

At the crack-tip section, we have, from Eqs. (3), (31), 
and (32), 

f(xc, Z) = z - m(z + a) 2 (41) 

1 
Ql(xC) = ; (42) 

S(xc, t)  = Ql(xc)wl'(xc, t) (43) 

Substituting the above results into Eq. (40) and integrating 
over the cross section, we find 

where 
Ir = L z2dA (45) 

and 
A = LC q z d ~  (46) 

are the second and first moments of the area of the reduced 
section with respect to z (the origin is at the centroid of the 
uncracked section). 

Application to Beams with a 

Rectangular Cross Section 

The cracked beam theory is used to examine the modes of free 
vibration of simply supported and cantilevered beams with 
one single-edge crack. We consider a beam of rectangular 
cross section of depth 2d and breadth 2b, with one crack of 
depth a located at  x = x,. The constants I, I,, I,, K, K1, Kz, 
L, Ll ,  Lz, L3, L4, L5, and m in Eqs. (lo), (18), and (44) are 

I z - x c l  L = CIexp(-20- 
d 

) where C = (m - I), (50) 
tions imply that wl' = 0 (from T = 0) and that w'" = 0 (from 
T' = 0). 



I x - G I  1 K1 = IClexp(-a- 
d 

) where C1 = (1 - -), 
m 

1 L2 = L3 = -L1 ' . , L 4 + L 5 = L i = - L 1  1 .  ; K  - 
2 2 - K i  (51) 

The equation of motion of the unloaded beam is, from 

(36) 

E ( I  + L1 - II1)Q1wl'" + E[2(I + L1 - K1)Q; 

+ (2-h + L2 - K2)Ql]wNt + E[(I  + L1 - II1)Q;l 

The modes of free vibration of the cracked beam are ob- 
tained by assuming simple harmonic motion of frequency, wc. 
Taking w(x, t) = w(x)ejwct leads to 

For an uncracked beam, Q1 equal 1, and L1, K1, L2, K2, 
L3, L4, and Ls equal 0. Thus, Eq. (53) reduces to the standard 
Bernoulli-Euler beam equation. 

For a cracked beam, the continuity characteristics of the 
solution are altered by the crack: the solution has a continu- 
ous second derivative w" but only a piecewise continuous third 
derivative w"', with a jump at the crack-tip section (for details 
see [9]). This weaker continuity of the solution significantly de- 
teriorates the convergence of the Rayleigh-Ritz method or the 
weighted residual method used to estimate the normal modes 
from Eq. (53). 
Free vibration of a simply supported beam 

with a mid-span crack 

The modes of free vibration of a simply supported beam with 
a rectangular cross-section and a mid-span single-edge crack 
are studied. Since Q1 in Eq. (53) is a function of the rate of 
stress decay, the latter cannot be determined by the above the- 
ory alone. Thus, to both validate the theoretical formulation 
and determine the stress decay rate a, numerical results are 
obtained first from a finite element analysis. 
Finite element mesh 

Fig. 2a shows the finite element mesh with four quarter- 
point rectangular elements to  model the crack tip. Transition 
elements [17] are used above and below the crack tip elements 
[18,19] to capture the stress singularity which is assumed to 
cover the entire thickness of the beam. This mesh is designed 
to yield accurate results which rapidly converge as the mesh is 
refined, both for uncracked and cracked beams. It consists of 
forty 8-noded, plane stress, two-dimensional elements, totaling 
151 nodal points and 298 degrees of freedom. In Fig. 2a the 
beam's slenderness ratio ( &) is equal to 20.0. The 16 nod 
displacements for each element are the in-plane displaceme f? ts 
u and w at  each node. The size of the quarter-point elements 
at the crack tip is chosen to capture the effect of the singu- 
larity. The elements cover & of the beam's length in the ax- 
ial direction, such that theiextend over nearly all the stress 
concentration. Quarter-point elements of various sizes were 
tested, such that the elements' length was much smaller or 
much greater than the range of the stress concentration. Too 
narrow or too wide crack-tip elements led to considerable er- 
rors. It was demonstrated numerically that the finite element 
mesh shown in Fig. 2a gives a nearly optimal result for the 
present problem. Since no special procedure is needed to com- 
pute the stiffness and mass matrices for the distorted crack tip 

element, any general purpose finite element code can be used. 
Fig. 2b illustrates an alternative finite element mesh, which 

essentially replaces every rectangular quarter-point element in 
Fig. 2a by two triangular quarter-point elements. The mesh 
consists of 44 elements, 157 nodal points and 310 degrees of 
dreedom. All the results obtained by the triangular elements 
are very close to  those given by the rectangular ones. 

To validate the finite element model, the lowest three 
natural frequencies of the uncracked beam were compared to 
Bernoulli-Euler theory results. As shown in Table 1, the finite 
element frequencies are respectively 0.24,0.96, and 1.8% lower 
than the Bernoulli-Euler results. Since there are no geometri- 
cal assumptions for the finite element formulation, the natural 
frequencies are expected to  be lower, especially for the higher 
modes. 
Finite element results 

The modes of vibration were computed for crack depths of 
i, i, and i of the total beam thickness. The natural frequen- 
cies, as shown in Table 1 and Figs. 3 and 4, are presented in the 
form of the frequency ratio (FR), the ratio of the frequency of 
the cracked beam to that of the uncracked beam, against the 
crack depth ratio (CR), the ratio of the depth of the crack to 
the beam thickness. The first three mode shapes for cracked 
beams with crack ratios of 4, 5 ,  and 3 are plotted in Figs. 5- 
7 and compared to the modes of the uncracked beam. The 
changes in the first and third mode shapes are significant for 
large crack ratios only (CR> a). The second mode shapes are 
unaffected by the crack for all ratios examined. This is because 
the crack is located at  mid-span, where compressive or tensile 
stresses equal zero in the even vibration modes. Therefore, for 
a beam pinned at both ends, a single-edge crack at the middle 
will not affect the even, antisymmetrical modes of vibration. 

It has been shown in Ref. [9] that for a pair of cracks, 
the strain energy in the odd modes decreases, while in the 
even modes it remains unchanged. Similarly, for single-edge 
cracked beams, Table 1 shows that the strain energy in the 
first and third modes decreases as the crack depth increases and 
that the strain energy for the second mode remains unchanged. 
This is consistent with the above frequency and mode shape 
observations. 
Galerlcin procedure 

Because the modes of the cracked beam have a discontin- 
uous third derivative, their Galerkin expansion in a series in 

the infinitely differentiable modes of the uncracked beam [9], 

requires at  least 100 terms ( N  2 100) to satisfy the conver- 
gence criterion 

where AWN is the change in the i-th frequency from the N- 
term to the ( N  + 1)-term calculation, w: is the N-term esti- 
mate of the ith frequency of the cracked beam, and E is a small 
real number. For all cases presented in this paper, convergence 
is considered to be achieved when the relative frequency change 
is less than E = 2.0 x 

Substituting Eq. (54) into Eq. (53) and ipplying the Galerkin 
procedure, we obtain a discrete eigenvalue problem of size N 
in the generalized coordinates, ai: 



is the mass matrix, [I] is the identity matrix, the vector g is 
defined as [al, a2, ...., aNIT, and 

Determination of the stress decay constant a 

Once the number of terms yielding satisfactory conver- 
gence is determined, the rate of stress decay cr is obtained by 
fitting the natural frequencies calculated by Galerkin's method 
best with the finite element results, in a least square sense. 
Only the fundamental frequency is considered for simplicity. 

The fundamental frequency drop in terms of crack depth 
is shown in Fig. 3 and Table 1. The least square fit of the 
100-term Galerkin solution with the finite element results de- 
termined the rate of stress decay a to be 1.979. As we expect, 
this value should be very close to 1.936 that was determined for 
beams with symmetric cracks (the discrepancy can be consid- 
ered as a computational error). This is based on the physical 
argument that the normal stress decays at the same rate for 
both symmetric and single cracks, because the stress decay rate 
is one of the beam's material properties. A similar argument 
was made for the static problem in fracture mechanics [15,16]. 
Examination of the mode shapes 

The mode shapes obtained by the Galerkin and finite el- 
ement formulations are compared in Fig. 5-7. One observes 
that Galerkin results are consistently in good agreement with 
the finite element ones. 
Combination of the higher modes information 

The prediction of a crack's location and depth based upon 
only one mode could be misleading. For instance, by review- 
ing only the data for second mode, as given in Table 1 and 
Fig. 6, one would conclude that the beam is not damaged. 
This implies that different modes viewed separately might yield 
different predictions of damage, i.e., crack position and depth. 
Moreover, from Figs. 5(c) and 7(c), the effect on the third mode 
is more severe than that on the first. Therefore, it is expected 
that a multi-mode analysis would be needed to determine the 
position and size of the crack. 

Fig. 4 and Table 1 show the variation of the third natural 
frequency with the crack ratio. Similar to the fundamental 
mode, there is excellent agreement between Galerkin and finite 
element results for crack ratios smaller than :. Crack ratios 
larger than 3 were not considered, as failure would occur before 
such a value is reached. 

Free vibration of cracked cantilevered beams 

The cracked beam theory derived in the previous section is 

applied to a cantilevered beam (see Fig. 8). However, the nu- 
merical integration of the free bending modes of the uncracked 
beam, required to generate the mass and stiffness coefficients in 
the Galerkin procedures, causes a computer overflow, because 
these modes involve hyperbolic functions and many modes are 
required. Therefore, the Galerkin procedure with 100 terms is 
impractical in the cantilevered case. 
Local Ritz method 

To circumvent this problem, a local Rayleigh-Ritz ap- 
proach which uses a piecewise fit to the deflection shape is 
presented. The displacement, G(x), is approximated by piec- 
ing cubic polynomials, each defined over only a portion of the 
structure, or subbeam. The coefficients of the cubic polynomi- 
als can be determined uniquely in terms of the displacements 
and slopes at  the end points. The displacement at  a point 
within the ith subbeam is approximated as 

where F = [Fl, F2, F3, F ~ ] ~  is a vector of prescribed (shape) 
functions of position and gi is avector of end displacements and 
slopes for the i-th subbeam. The shape functions (Fj)j=l,...,4 
are listed in the Appendix. This piecewise polynomial interpo- 
lation amounts to a finite element solution of the cracked beam 
differential equation (53). In this example, a local Rayleigh- 
Ritz model with four shape functions, M identical subbeams, 
M+1 nodes, and 2M DOF is used for the analysis. 

The free vibration eigenvalue problem is expressed as 

where g is the vector of nodal displacements, and [K,] and [Me] 
are (2M x 2M) stiffness and mass matrices for the entire beam. 
The assemblage process to obtain [I(,] and [Me] is symbolically 
described by 

where 9, [ki] and [mi] are the nodal displacements, stiffness 
and mass matrices, respectively, for the i-th subbeam, and the 
summation is over all M subbeams. The (4 x 4) mass and 
stiffness matrices of the ith subbeam in the local coordinate 
system are 

[mi] = Joi* E ~ E ~ V  (63) 

and 

where = &F and B = $F, the so-called strain-displacement 
vector. 

The value of a was determined to be 1.930 by a least 
square fit with the finite element results (see Fig. 9). The 
eigenvalue problem (61) was then solved for increasing number 
of subbeams, M, until a frequency convergence test was satis- 
fied. The frequency convergence criterion used in the present 
example was similar to that used in the Gderkin approach, 
Eq. (55), except that here the number of subbeams, M ,  is in- 
creased instead of the number of uncracked modes, N. At least 
50 subbeams ( M  2 50) were needed in the local Rayleigh-Ritz 
procedure co satisfy the convergence criterion ( e  = 2.0 x 



for the fundamental mode. 
Experimental verification 

The effects of cracks on the natural frequencies of beams 
have been studied experimentally by Wendtland [20] and Wendt- 
land and Wiederuh [21]. In Ref. [20], the cracks were modeled 
by sawing cuts of width 0.0035 times the length of the beam 
(see Fig. 8). The five lowest natural frequencies were obtained 
experimentally for various crack ratios and positions. Here, we 
compare our theoretical results with the experimental ones in 
Ref. [20]. 

We obtained the lowest five eigenfrequencies for rectangu- 
lar beams with cracks at  7 = XC = 0.2,0.3, 0.55,0.6,0.7, and 
0.8. Selected theoretical results are compared with the experi- 
mental data obtained by Wendtland [20] in Figs. 9 to 14. The 
data is presented in the form of the frequency ratio (FR) ver- 
sus the crack depth ratio (CR). Observe that, our theoretical 
frequencies correlate very closely with the experimental ones 
for crack ratios up to 0.8. This excellent comparsion confirms 
the validity of our theory. 
Examination of the mode shapes 

The first five mode shapes of cracked beams with crack 
ratios of 0.13, 0.5, and 0.8 and various locations are compared 
to those of an uncracked beam in Figs. 15 to 19. Observe the 
severe deformation near the crack tip for large cracks, which 
can be used to detect crack position. 
Efects of crack position on the dynamical response of a 
cracked beam 

The effect of crack position on the natural frequencies and 
mode shapes has been discussed in Ref. [9] and section 3.1 for 
a simply supported beam with cracks at mid-span. In both 
cases it was shown that only the odd, symmetrical, modes are 
affected by cracks. As was indicated earlier, it is clear that 
to have an adequate basis to estimate damage from frequency 
and mode shape information, a multi-mode analysis should be 
considered. 

Similar conclusions can be drawn from the analysis of a 
cantilevered beam with a single-edge crack. The first bending 
frequency is shown in Fig. 20 as a function of the crack ratio 
for four crack positions, XC = 0.2,0.4,0.6, and 0.8. The drop 
in frequency is greater for cracks near the clamped end, while 
the frequency is almost unchanged when the crack is located 
near the free end. This result can be explained by noting that 
the compression and tension, or the bending moment, are dis- 
tributed heavily near the fixed end for the fundamental mode, 
leading to a severe loss in bending stiffness due to the crack. 
However, this drop in frequency does not occur in the higher 
modes. The solid curves in Fins. 21 and 22 show that the sec- - 
ond and third frequencies are comparatively much less affected 
for CR = 0.2, but are strongly affected for different crack lo- 
cations ( X C  = 0.6 and 0.8 for the second and third modes, re- 
spectively). In order words, the frequency drop is greatest for 
a crack located where the bending moment is largest. Clearly, 
the sensitivity to cracks depends highly on the mode number 
and crack position. 

Figs. 23 and 24 are for the same crack depths as Figs. 
17 and 18, but for slightly different crack positions ( X C  = 0.4 
instead of 0.3 and 0.5). One observes that the effect of the crack 
on the mode shapes is somewhat different from that in Figs. 17 
and 18, such that the modes are less altered by the crack. Thus, 
the sensitivity of the modes of vibration to  cracks can very 
substantially depending on the crack position. This provides 
an indication of how the effect on the mode shapes can provide 
useful information in the crack identification procedure. 

Several observations can be made from the above discus- 
sion. First, for a specific mode, the effects on the bending 

frequency and mode shapes of a cracked beam become more 
severe as crack depth grows. Second, for a certain crack ra- 
tio, crack position strongly affects the dynamic behavior of a 
cracked beam. Third, if the position of the crack is known 
information, one specific mode may be sufficient to obtain ac- 
curate results in the crack identification problem. Finally, if 
the crack position is unknown, the uniqueness and accuracy of 
the identification process becomes questionable. But in gen- 
eral, the more modes are used for crack identification, the more 
accurate and reliable the result will be. 

Conclusions 

A theory for the Rexural motion of a Bernoulli-Euler beam 
containing a single-edge crack is presented. It is based on two 
key kinematic assumptions made to satisfy the compatibility 
requirements in the vicinity of the crack. First, the stress con- 
centration near the crack tip is accounted for by introducing a 
crack function into the beam's compatibility relations. Second, 
a function is introduced that modifies the in-plane displace- 
ment and its slope to avoid a discontinuity in the slope of the 
neutral axis and in the axial displacement at the crack, which 
occurs with a non-symmetric crack configuration. 

The equation of motion and associated boundary condi- 
tions are derived. The validity of the theory is established 
by studying two different sets of boundary conditions. The 
analytical solutions show excellent agreement with both ex- 
perimental results and finite element predictions. The effects 
of cracks on frequency and mode shape are found to be very 
sensitive to crack location and mode number. 

The present theory could be extended easily to  beams 
with nonrectangular cross section and account for shear defor- 
mation (Timoshenko beam). Other future work includes the 
development of an inverse analysis procedure to identify the 
cracks properties from dynamical measurements. 
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Appendix 

F i n  2. Fi teekmenr pdwork for a sunply supported kamcmuuung a smgle edge crack3 
a1 mid-span. r. s $. 
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Figure 3. Fundamental natural frequency in terms of crack depth. Theoretical and 
finite element results are shown for a simply supported beam (&=20) with a 

r indcedge crack a t  m i d - s p a  (z, = 4). 
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Figure 4. Third natural frequency in terms of crack depth. Theoretical and finite 
element reaults are shown for a rimply supported beam (&=20) wlth a s i d e -  
edge crack at mid-span jr, = ;). 

+ : Fini te  element (rectangular) 

x : Finite element ( t r i u r p l a r )  - Calerkin w l u t ~ o n ;  a r [.!Jig, .V = LOO 

F i g u r e  5. First mode shape of a s~mply supporred beam ' ~ = 1 0 )  w t h  a single-edge 
crack at md.jpan ( r ,  = i). G d e r h n  and finite element results are shown for 
varlouscrack ratios: ( a )  C k f ,  tbl C R = i .  I C I  C R = $ .  

+ Finite element (a) 
- Lncradied beam 

. . - - Galerkln solut:on. o = k 379 .  .L = :I0 

Pigun 0. Second mode shape of asimply supported beam (&=20) w t h  a single-edge 
crack a t  mid.sp+n (o, = ;). Cderkm and fiaite element results are shown for 
vrrioua crack ratios: (a) C R = f ,  ( b )  C R = f ,  (cl C R = ) .  
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F i g u r e  7.  T h r d  mode shape of a simply supparted beam I e=LOI w ~ r h  a i ~ n d e - e d s e  
c r x k  at md-span i i i  = j ) .  Galerhn and s a t e  element reruits are shown for 
&lour crack ratms la1 C R = f .  ( b j  CR=;, r c )  C R = i  

+ : Finite element (rectangular) 

o : Experiment; Wendtlrnd [20] - - : Local Ritz method; a ;. 1.930. 
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F i g u n  0. Fundamental na tnrd  frequency in terms of crack depth. Theoret~cd. finite 
dement. and experirnentd results are shown for a cantilevered beam (h=25.64) 
with a single-edg crack a t  z. = 0.21 (.YC = 0.2). 
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F i g u r e  10. Third natural frequency In terms of crack depth. T h e o r e t d  and exper- 
irnentd results are shown for a canttlevered beam : h=25 64) w ~ t h  a single-edge 
crack at r c  = 0 31 (.YC = 0.3). 
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F i g u r e  11. Third natural frequency In terms o i  crack depth. Theoret:cal and exper- 
~ m e n t d  raul t s  are shown for a cantilevered beam I +=25 64) w ~ t h  a stngle-edg 
crack at r,  = 0.71 I.YC = 0.7).  
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~i~~~ 12. k o n d  naturd  frequency in terms of crack depth. Theore'lcd and exper- 
i m e n t ~  r e d m  are b r  a cantilevered beam i $=25 64) with a slngie-edge 

crack a t  z, = 0.551 (XC = 0.53) .  
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F i g u n  13. Fourth natural frequency In terms of crark depth Theoreticd and exper 
menta l  results are shown for a cantilevered beam &=!5  6.1) with a m g l e  edge 
crack a t  p08it10n I, = 0 81 (XC = 0 8) 
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o : Experiment; Wendtland [ZOj 
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F i g u n  14. Fifth natural frequency In te rns  of crack depth. Theore t~cd and expen. 
mentll  r a u l t s  are shown for a cantilevered beam (,$=25.64) w ~ t h  a rmgie-edg 
crack at posltion z, = 0.61 (XC = 0.6).  



F i g u r e  15. First mode shape of a cantilevered beam ($=15.641 w t h  a jingle-edge 
crack a t  IC = 0 21 (.YC = 0.2). Ritz's result is shown f o ~  various crack iatlos. 
CR = 0.0. 0.13. 0.5. 0.8. 

F i g u r e  17. Third mode shape of a cantilevered beam (h=25 64) w ~ t h  a singie.edge 
crack a t  t, = 0.31 (XC = 0 31. Ibtz's result is  shown for var~ous crack ratios: 

CR = 0.0. 0 13. 0.5. 0.8. 

F i g u r e  16. Second mode shape of a cantilevered beam (&=25.641 w t h  a single-edge 
crack a t  r .  = 0.551 (XC = 0.35). Ritz's result 1s shown lor vanous crack ratios: 
CR = 0.0. 0.13. 0.5, 0.8. 

F i 8 u r a  18. Fourth mode shape of a cantilevered beam ( 6 ~ 2 5 . 6 4 )  with a single-edge 
crack a t  r ,  = 0.S (XC = 0.5). Ritz's result IS shown for vanous crack ratios: 
CR = 0.0, 0.13. 0.5. 0.8. 



Figure 18. Fifth mode shape of a cant~levered beam i & = 2 5  641 w ~ t h  a jingle-edge 
crack a t  I, = 0.71 I X C  = 0.7). h t z ' s  result 1s shown for vanous crack ratios. 
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Figurn 20. Fundunentat natural frquency in terms of crack depth for a cantilevered 
berm ($=25.64). Rirr's result is shown for various crack positions: .XC= 0.2. 
0.4, 0.6. 0.8. 
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Figure 21. Second natural frequency in terms of crack depth for a canttievered beam 
(&=25.64). Ritz's result is shown for var~ous crack posltlons: XC= 0 2. 0.4. 0.6. 
0.8. 
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Figure 22. Third natural frequency In terms of crack depth for a cant~levered beam 
($=25.64). Ritz's r n u l t  1s shown for varrous crack posit~ons: .YC= 0 2. 0 4. 0.6. 
0.8. 



Figure 23. Third mode shape of a cantilevered beam !&=25.64) mth a s~ngle-edge 
crack at 2, = 0 41 ( X C  = 0 4).  Ritz's result is shown for varlous crack ratios- 
CR = 0.0. 0.13, 0 .5 .  0.8. 

Table 1. Nanrnl frequency of uncracked andcracked beams (single crack) 
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Figure 24. Fmnh mode shape of a cantilevered beam ($=25  64) w t h  a single-edge 
crack at r. = 0.41 (XC = 0.4) &tz's result is shown lor varlous crack ratios 
CR = 0.0, 0.13. 0.5. 0.8. 


