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Abstract

In this paper, we implement fixed-structure controller syn-
thesis methods to the ACTEX flight experiment. We show
that the decentralized static output feedback formulation
of fixed-structure controller synthesis can directly account
for the control-structure constraints of the ACTEX flight
experiment. Finally, we show that the ACTEX controller
structure can be written as a decentralized static output
feedback problem and obtain feedback controllers for sup-
pressing broadband disturbances.

Introduction

The ACTEX flight experiment provides a unique opportu-
nity for users to implement and test controllers on a space-
based platform. In this regard, the hardware environment
has several features that must be accounted for in specifying
control algorithms.

First, the feedback control algorithms that can be imple-
mented on ACTEX are fixed gain, and thus adaptive con-
trollers cannot be used. Furthermore, these fixed-gain con-
trollers are analog, which avoids sampling effects. Finally,
the implementable analog controllers have a prespecified
structure in which only filter gains and natural frequencies
can be modified. Since this constraint does not permit im-
plementation of dynamic compensators of arbitrary struc-
ture, standard LQG and H,, methods cannot be applied.

In this paper we apply fixed-structure controller synthesis
methods to the ACTEX flight experiment. Fixed-structure
methods have been extensively developed in H; and H,
/Hoo settings in continuous and discrete time [1]-[8]. In its
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most general form, fixed-structure synthesis has been devel-
oped for affinely parameterized closed-loop dynamics which
corresponds to a decentralized static output formulation [6].

In the present paper we show that the decéntralized static
output feedback formulation of fixed-structure controller syn-
thesis can directly account for the control-structure con-
straints of the ACTEX flight experiment. Specifically, we
show that the ACTEX controller structure can be written
as a decentralized static output feedback problem. Having
done this, we then proceed to apply the techniques of [6] to
obtain feedback controllers for suppressing broadband dis-
turbances.

Structural Dynamics Modeling of
the ACTEX Flight Experiment

The ACTEX flight experiment consists of a plate connected
to a satellite by 3 struts. Each strut is equipped with its
own control piezo-actuator as well as a colocated and nearly
colocated sensor. A disturbance can be introduced to the
experimental package through each of the 3 control actu-
ators, or through a disturbance actuator on the plate. In
addition, each of the 3 control actuators has an independent
decentralized analog controller.

The dynamics of the ACTEX experiment can be represented
by the continuous-time system

#(t) = As(t) + Bu(t) + Dyw(t), ()

y(t) = Cxz(t) + Du(t) + Daw(t), (2)

where x € R*, u € R™, y € R}, and w € R? are the state,
input, measurement, and disturbance, respectively. The dis-
turbance w is a standard zero-mean white noise process.
The performance variables are given by

2(t) = BEya(t) + Byu(t) + Dow(t). 3)

Several experiments have been run on the ACTEX package,
with telemetry returned for identification purposes. Mea-
surements were taken from onboard accelerometers, sensor
inputs, and actuator outputs, sampled at 4 kHz. Using-
this data, identification was performed on the plant from
the strut 1 actuator to the strut 1 nearly-colocated sensor.
For frequencies below 200 Hz, these dynamics can be repre-
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In this paper, wé will consider this SISO problem, with input’

- at the strut 1 sensor, and output at the strut 1 actuator. In
the next section,-we review the decentralized static output
feedback framework, and -express the ACTEX model in this
representation.

Review of Fixed-Structure
' Synthesis

In this section we use the fixed-structure control framework
given in [6] to transform the Hs-optimal ACTEX control
problem to a decentralized static output feedback setting.
Consider the 4-vector input, 4-vector output decentralized
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Figure 1: Decentralized Static Output Feedback Framework

system shown in Flgure 1, where & (s) represents the linear,
time-invariant dynamic system

AZ(t) + Y Buwi(t) + Buw(t), t € [0,00)(4)

i=1

#(t) =

Cy,% )+ Dyuiu(t) + Dywi'w(t):

y1<t) = i= 1:2: 3, (5)
B 3 )
2(t) ‘= CEE)+ ) Danstilt), - (6)
: =1 )
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and rewriting the decentralized control signals (7) in the
compact form

the system matrices A, D, and E in the closed- loop dynam-
ies: -

#(t) = Az(t)+ Dw(t), telo, oo) : (10)

2(8) = Ei(), (11)

can now be written as
A= A+B,K Lz7'Cy,
D= = Bw -+ BuKLK Dyw,
B = C; + DKLy Cy,
whéfe o
. Ly BI-D,K,
and Dyu = [Dmu Dﬁué » Dyﬁs] .
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Fixed-Structure Synthesis for the
ACTEX Flight Experiment

Since continuous-time controllers are implemented on ACTEX,

hardware constraints place a limit on the form that the con-
trollers may take. Each of the three struts on ACTEX has
a decentralized controller, available in second order, third
order, fourth order, and fifth order, in the following config-
urations:

kng k4w2
fe. = 1 2 12
2(5) [52 +.3wis+wi  $%+ 3w+ wd v (12
kg(.u'z w1 s
G e = 2 X 1 13
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k3w2 wz
Gac(s) = 2 L 1 14
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k3w§
Cels) = T st 12)
Wy w18
3Y;

x x
§2+ Bups +wi T s+ Bwis + Wi

and where w;, ws, ws, k3, and k4 are subject to the con-
straints

0<wywyws <1024, ~16<k; <16, —8 <k <S8.

(16)

Now, we consider the controller associated with strut 1, and
express the controller in the decentralized static output feed-
back framework. Controller configuration 1, given by (12),
in dynamic compensator form, can be expressed as

0 1 0 0 0
2
| —w? —03w; 0 0 |1
A=1 0 0 1 | B=lo
0 0 —wi —0.3uws 1
am)

C’c::[ksw% 0 k4w§ 0]

Controller configurations 2 through 4, given by (13)-(15),
can be expressed similarly, and are given in the Appendix.

Having specified the form of the controller, we consider the
‘H, synthesis problem. The H; norm of G, (s) is given by
IG-u(s)lIf = tr QR, (18)

where @ is the unique, 7 x 7 nonnegative-definite solution
to the algebraic Lyapunov equation

0= A0+ QAT + DD", (19)
where R 0
- é ET 1

20

(c)1999 American Institute of Aeronautics & Astronautics or published with permission of author(s) and/or author(s)’ sponsoring organization.

and R, 2 ETE,, R, 2 EFE,, and Ry, £ ETE, = 0.
In order to design Ho-optimal controllers for the ACTEX
experiment, we pose the following optimization problem:
Determine K that minimizes

J(K)=1tr QR, (21)

where Q > 0 satisfies (19). The necessary conditions for
optimality can be derived by forming the Lagrangian

L(P,Q,K) = tr QR+ tr P(AQ+ QAT+ V), (22)
where P € R**" is a Lagrange multiplier and~f/ = DDT,
The partial derivatives with respect to Q and P in (22) are
given by

ac

— = ATP+PA+R,
aQ .
oL x ow _
- = A + AT‘I‘V.
2P R+Q

To obtain the partial derivative of the Lagrangian with re-
spect to the free parameters in the controller gains, we first
specify the controller configuration. As an example, we con-
sider controller configuration 1, (12). The settings for each
of the other controller configurations are given in the Ap-
pendix.

For controller configuration 1, with (17), the block-diagonal
matrix K has the form (9). Note that this controller has
four free optimization parameters, namely, wy, ws, ks, and
k4. We construct the matrix

w 0 0 0
10 w0 O
K=19 0k o]

0 0 0 kK

and note that
K =Ko+ LiKRy + LoKKRy + L; KK M3 KRs,

where
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Now with X in terms of K, we can take the derivative of the
Lagrangian with respect to K. Define the following notation

T2 1+ KL Dy, ALrBIPOCTL;™T,
 DASBIPDDL LT, EETDLEQCIL; .

The derivative of the Lagrangian with respect to K, for each
controller configuration, is given by

2
oK

1
2
+KILTARTKMT + MTKKLTARY + LTDRT
+LTDRIK + KLTDRY + LTDRTKMIK
+KLTDRTKMT + M{KKLIDR} + LTERT
+LTERTK + KLTERT + LTERTKMIK
+KILTERTKMF + MY KKLTER].

Quasi-N ewtoh_ Algorithm

To solve the nonlinear optimization problem posed in Sec-
tion , a general-purpose BFGS quasi-Newton algorithm {9] is
used. The line-search portions of the algorithm were mod-
ified to include a constraint-checking subroutine to verify
- that the search direction vector lies entirely within the set of
parameters that yield a stable closed-loop system as well as
. lying within the allowable limits of the free parameters given
by (16). This modification ensures that the cost function J
remains defined at every point in the line-search process.

One requirement of g;adient-bé.sed'optinliZation algorithms
is an initial stabilizing design. Initial designs showed that

LTART + ITARTK + KLTAR] + LTARTKMIK
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for large values of w;, © = 1,2, 3, the cost function depended
very weakly upon these values. Therefore, w;, ¢ = 1,2,3,
were initially chosen to-be 48, 72,-and 96, respectively. Fur-
thermore, since the open-loop system was stable, an initial
stabilizing design could be obtained by setting ks = ks = 0.
With these values set, the BFGS quasi-Newton algorithm
was applied to find the Ho-optimal solution for-a given fixed-
structure controller configuration. .
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- Figure 2:. Open-Loop Impulse Response -

Simulation Results

The ACTEX experiment is a lightly damped flexible struc-

ture, as can be seen by the impulse response shown in Fig-

ure 2, where v i
z0)=[00 0 1]

For each of the four different controller configurations, three
different controllers were designed by setting.the control
weighting matrix Rs to 1, 0.01, or 0.0001. The H; cost
of these controllers can be seen in Table 1. It is seen that
the H; cost is generally best for the first controller configu-
ration. In fact, the other controller configurations ran into
stability constraints, -as explained in Section . Therefore,
the optimization routine terminated due to a boundary

Config. 3

Config. 1 | Config. 2 Config. 4
Ry=1 . 0.6457 0.7076 0.5833 0.7216
R, =10.01 0.2444 0.5012 0.6264 0.3769
R, =0.0001 | 0.1910 0.5942 0.6246 0.5618

Table 1: Hp Costs for Vatious

Controller Configurations and
Weightings ' .



wi ] ks kg

Ry=1 31.081 | 70.702 | 0.184 { -0.125
Ry =0.01 36.443 | 99.118 | 0.320 | 0.402
Ry = 0.0001 || 37.366 | 123.840 | 0.208 | 0.631

Table 2: Optimal Controller Parameters for Controller Con-
figuration 1

constraint rather than a small gradient condition. However,
the optimization routine worked well for the first controller
configuration, and it can be seen from Table 1 that the
Ha cost of the closed-loop system decreases with increasing
controller authority.

The optimal controller parameters for this controller config-
uration are given in Table 2. In fact, with Ry = 1, we can
see from the output signals of the impulse response in Fig-
ure 3 that this controller does not attenuate the vibrations
significantly. However, as the authority is increased, the
attenuation becomes greater, as seen in Figure 4 and Fig-
ure 5, though this does increase the control effort expended,
as shown in Figures 6-8, which could lead to actuator sat-
uration.

Finally, Figure 9 shows the Bode plots of the open-loop and
closed-loop systems. It is seen that the size of the first peak
in the closed-loop response is decreased as the controller
authority is increased. Another important feature of the
closed-loop frequency response is the high-frequency roll-
off. Since the ACTEX system model has a relative degree
of zero, the system possesses gain at all frequencies, thus
unmodeled high-frequency dynamics could destabilize the
open-loop system, whereas these dynamics would be atten-
uated with a strictly proper dynamic controller.
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Figure 3: Closed-Loop Impulse Response, Ry =1
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Conclusions

In this paper we showed that the control algorithm structure
implemented on the ACTEX flight experiment has the form
of a decentralized static output feedback controller. This
controller structure is amenable to fixed-structure optimiza-
tion methods. Using the Robust, Fixed-Structure Toolbox,
we synthesized several feedback controllers and we assessed
their performance under a variety of conditions.
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Figure 4: Closed-Loop Impulse Response, Ry = 0.01
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Controller Configuration 4

For this configuration, the controller given by (15) can be

expressed as
o 1 0 0 0 0
—w? =03, 0 0 0 0
| 0 0o 0 1 0 0
A=l 0w —w 08w, 0 0 |
o 0 0 0 0 1
0 0 wg 0 —U)g —,0.30.13
B.= , Ce=[0000 kw? 0].

CSCOOCCO MO

Note that there are four free parameters, namely, w1, wo,
ws, and ks. Thus

Contro! Effort

L
35 4

40 L 1 ' s 2 s e
25 3 45 5

0 05 1 15. 2/
- Timeo
= 0.0001
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