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CONTROL DESIGN FOR THE ACTEX FLIGHT EXPERIMENT USING THE 
ROBUST, FIXED-STRUCTURE TOOLBOX 

Scot L. Osburn*, Joe Corradot, Scott Erwint, Dennis S. Bernstei#, and Wassim M. Haddadll” 

Abstract 

In this paper, we implement fixed-structure controller syn- 
thesis methods to the ACTEX flight experiment. We show 
that the decentralized static output feedback formulation 
of fixed-structure controller synthesis can directly account 
for the control-structure constraints of the ACTEX flight 
experiment. Finally, we show that the ACTEX controller 
structure can be written as a decentralized static output 
feedback problem and obtain feedback controllers for sup- 
pressing broadband disturbances. 

Introduction 

The ACTEX flight experiment provides a unique opportu- 
nity for users to implement and test controllers on a space 
based platform. In this regard, the hardware environment 
has several features that must be accounted for in specifying 
control algorithms. 

First, the feedback control algorithms that can be imple- 
mented on ACTEX are fixed gain, and thus adaptive con- 
trollers cannot be used. Furthermore, these fixed-gain con- 
trollers are analog, which avoids sampling effects. Finally, 
the implementable analog controllers have a prespecified 
structure in which only filter gains and natural frequencies 
can be modified. Since this constraint does not permit im- 
plementation of dynamic compensators of arbitrary struc- 
ture, standard LQG and ZH, methods cannot be applied. 

In this paper we apply fixed-structure controller synthesis 
methods to the ACTEX flight experiment. Fixed-structure 
methods have been extensively developed in 3-1s and 7-tHa 
/I-& settings in continuous and discrete time [l]-[8]. In its 
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most general form, fixed-structure synthesis has been devel- 
oped for affinely parameter&xl closed-loop dynamics which 
corresponds to a decentralized static output formulation [S]. 

In the present paper we show that the decentralized static 
output feedback formulation of fixed-structure controller syn- 
thesis can directly account for the control-structure con- 
straints of the ACTEX flight experiment. Specifically, we 
show that the ACTEX controller structure can be written 
as a decentralized static output feedback problem. Having 
done this, we then proceed to apply the techniques of [S] to 
obtain feedback controllers for suppressing broadband dis- 
turbances. 

Structural Dynamics Modeling of 
the ACTEX Flight Experiment 

The ACTEX flight experiment consists of a plate connected 
to a satellite by 3 struts. Each strut is equipped with its 
own control piezo-actuator as well as a colocated and nearly 
colocated sensor. A disturbance can be introduced to the 
experimental package through each of the 3 control actu- 
ators, or through a disturbance actuator on the plate. In 
addition, each of the 3 control actuators has an independent 
decentralized analog controller. 

The dynamics of the ACTEX experiment can be represented 
by the continuous-time system 

k(t) = AZ(~) + Bu(t) + Dlw(t), (1) 

y(t) = Cx(t) + D?.&(t) + L%w(t), (2) 
where x E I?!“, u E 77?‘, y E I$, and w E Rd are the state, 
input, measurement, and disturbance, respectively. The dis- 
turbance w is a standard zero-mean white noise process. 
The performance variables are given by 

z(t) = &x(t) + E*u(t) + Dow(t). (3) 

Several experiments have been run on the ACTEX package, 
with telemetry returned for identification purposes. Mea- 
surements were taken from onboard accelerometers, sensor 
inputs, and actuator outputs, sampled at 4 kHz. Using 
this data, identification was performed on the plant from 
the strut 1 actuator to the strut 1 nearly:colocated sensor. 
For frequencies below 200 Hz, these dynamics can be repre- 
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sented by (l)-(3) where. hi(t) = q/$qt) + vvuiu(t) + q/+(t), i = 1: 2: 3, (5) 

-1.56 77.98 0 0 
-77.98 -1.56 0 

0 -0.25 
0 I -1.10 (6) 

i=l 
24.99 ’ B = 

II -0.21 
-0.11 ‘,wh&, 

’ 0 -24.99 -0.25 0.03 
w(t)= A,yl\rj, 'UZ(EJ = JAYZ\~I, 031~1= bc~3\‘1> (11 

c = [ -0.15 0.70 1.83 6.88 ] , D = 1, and 

0 

D1 [ -1.10 

-0.21 0 = 
-0.11 0 

1 ’ D2=[0 0.11, DO= [ i-‘i 1 . 
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In this paper, we wih consider this SISO problem, with input 
&,, : [ 0 In, ] , c,, b [ c 0 ] 1 c,, L [ 0 In. 1 9 

at the strut 1 sensor, and output at the strut 1 actuator. In 
the next sectionwe review the decentralized static output 
feedback framework, and-express the ACTEX model in this 

: 2) 

representation. 
2, Wl = A 0, Vvyw2 k Dz, ?&yw3 k 0, 

Review of Fixed-Structure : VZUl : 0, vzuz ii 0, 2) ru3 ii Ez. 

Synthesis Next, defining 

In this section we use the fixed-structure control framework 
given in [S] to transform the &optimal ACTEX control 
problem to a decentralized static output feedback setting. 
Consider the Cvector input, 4-vector output decentralized Bu b [ au, Bu,, au, 1, Gb~ [ nu1 'Dzuz %s 1, 

Z c 
b c, 2 5:. I &~ [q!u, q!q qw3 ] .I 1 2) 

,v$ 73;: , 

c 93 [ 1 v w3 

and rewriting the decentralized control signals (7) in the 
compact form 

f?(t) = kc(t), (8) 
where 

40 0 
Ee [ 0 Bc 0 1 , (9) 

0 0 cc 
the system matrices A, fi,, and E in the closed-loop dynam- 
ics 

i+(t) = AZ(t) + hII( t E [O,co) (10) 
z(t) = h(t), (11) 

can now be written as 

Figure 1: Decentralized Static Output Feedback Framework : A = A + B,,~LEi-‘C,, 
izJ = & + BuKL@J/y, 

system shown in Figure 1, where 6(s) represents the linear, 
time-invariant dynamic system 

E = c.i + l&ukLJ&, 

where 

i(t) = dqt) + 6 i%&(t) + LLw(t), t E [O, m)(4) 
i=l 
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Fixed-Structure Synthesis for the 
ACTEX Flight Experiment 

Since continuous-time controllers are implemented on ACTEX, 
hardware constraints place a limit on the form that the con- 
trollers may take. Each of the three struts on ACTEX has 
a decentralized controller, available in second order, third 
order, fourth order, and fifth order, in the following config- 
urations: 

and RI g ETE1, R2 fi EZE,, and Rlz 4 ETE, = 0. 

In order t,o design ‘&-optimal controllers for the ACTEX 
experiment; _ we pose the following optimization problem: 
Determine K that minimizes 

J(k) = tr Qii, (21) 
where s _> 0 satisfies, (19). The necessary conditions for 
optimality can be derived by forming the Lagrangian 

C(P, 0, I?) 
- -- 

= tr ofi + tr P(AQ + OAT + v), (22) 

G(s) = 
b-4 

s2 + .3wrs + wl” 
+ 

b-4 
2 Y9 (12) 

S2 + .%2S + W2 1 where P E lRirxir is a Lagrange multiplier and v = fiDT. 
The partial derivatives with respect to 0 and p in (22) are 
given by 

G3c(S) = 
ksw,2 WlS 

S2 + .3W2S + Wz” 
X 2y, 52 + .3wrs + w1 (13) 

G4c(S) = 
kw; 4 

S2 + .3W2S + W; x s2 + .3wlS + wTY1 
(14) 

ac 
as = ATP+FA+R, 
ac 
aP = A&+ijAT+V. 

To obtain the partial derivative of the Lagrangian with re- 

G5dS) = 
k& spect to the free parameters in the controller gains, we iirst 

s2 + .3W3s + w$ 
(15) specify the controller configuration. As an example, we con- 

X W2 

52 + 34s + wz” 
X WlS 

2y7 
sider controller configuration 1, (12). The settings for each 

s2 + .3wlS + w, of the other controller configurations are given in the Ap- 
pendix. 

and where wr, wz, w3, k3, and k4 are subject to the con- 
straints For controller configuration 1, with (17) the block-diagonal 

matrix k has the form (9). Note that this controller has 
0 _< wr, w2, w3 5 1024, -16 _< k3 5 16, -8 5 k4 5 8. four free optimization parameters, namely, wl, ws, k3, and 

(16) k4. We construct the matrix 

Now, we consider the controller associated with strut 1, and 
express the controller in the decentralized static output feed- 
back framework. Controller conIiguration 1, given by (12), 
in dynamic compensator form, can be expressed as 

Wl 0 0 0 
K= 0 w2 0 0 [ 1 0 0 k3 0 ’ 

0 0 0 k4 

4,= -;;" -ob3"1 ; ; 

[ 

0 1 0 0 

0 0 -wz" -0.3!d2 

Cc = [ k3wf 0 k4w; 0 ] . 

Controller configurations 2 through 4, given by (13)-(15), 
can be expressed similarly, and are given in the Appendix. 

Having specified the form of the controller, we consider the 
Ns synthesis problem. The ‘l-L2 norm of G,,(s) is given by 

IIG,,(s) II; = tr OR, (18) 

where 0 is the unique, fi x ii nonnegative-definite solution 
to the algebraic Lyapunov equation 

o=AQ+QAT+imT, (19) L1= 

where 

0 0 00 
-0.3 0 0 0 

0 0 00 
0 -0.3 0 0 
0 0 00 
0 0 00 
0 0 00 
0 0 00 
0 0 00 

, RI= 

0 0 0 0 
1000 

‘0 0 0 0 
‘0100 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
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Now with r?- in terms of K, we can take the derivative of the 
Lagrangianwith respect to K. Define the foIIowing notation 

7fiI+kLpvvur a%TBp,sC,TLk-T, 

fi E 7T@j3bvT .L _ -T u yw K 1 leTTz?T,E:QC;LW-? 

The derivative of the Lagrangian with respect to K, for each 
controller configuration, is given by 

Quasi-Newton Algorithm. 

To solve the nonlinear optimization problem posed in Sec- 
tion , a general-purpose BFGS quasi-Newton algorithm [9] is 
used. The line-search portions of the algorithm were mod- 
ified to include a constraint-checking subroutine to verify 
that the search direction vector lies entirely within the set of 
parameters that yield a stable closed-loop system as well as 
lying within the allowable limits of the free parameters given 
by (16). This modification ensures that the cost function J 
remains defined at every point in the line-search process. 

One requirement of gradient-based’optimization algorithms 
is an initial stabilizing design. Initial designs showed that 

for large values of w,: i = 1,2,3, the cost function depended 
very weaMy upon these values. Therefore, WJ, i = 1,2: 3: 
were initially chosen to be 48, 72, and 96, respectively. Fur- 
thermore, since the open-loop system was stable, an initial 
stabilizing design could be obtained by setting k3 = k4 = 0. 
With these values set: the BFGS quasi-Newton algorithm 
was applied to find the x2-optimal solution for a given fixed- 
structure controller configuration. 

Figure 2: Open-Loop Impulse Response 

I 

, 

4 

6 

Simulation Results 

The ACTEX experiment is a lightly damped flexible struc- 
ture, as can be seen by the impulse response showrrin Fig- 
ure 2, where 

z(O)=[O 0 0 11’. 

For each of the four different controller configurations, three 
different controllers were designed by setting the control 
weighting matrix R2 to 1, 0.01, or 0.0001. The ‘Hs cost 
of these controllers can be seen in Table 1. It is seen that 
the ‘H2 cost is generally best for the hrst controller configu- 
ration. In fact, the other controller configurations ran into 
stability constraints, as explained in Section . Therefore, 
the optimization routine terminated due to a boundary 

Config. 1 Config. 2 Config. 3 Config. 4 
Rz= 1 0.6457 0.7076 0.5833 0.7216 
R2 = 0.01 0.2444 0.5012 0.6264 0.3769 
R2 = 0.0001 0.1910 0.5942 0.6246 0.5618 

Table 1: 7-12 Costs for Various Controller Configurations and 
Weightings 
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Jl w2 Ic3 h 

JR,=1 tI 31.081 t 70.702 1 0.184 I-O.125 t 
R; = 0.01 1 36.443 99.118 0.320 0.402 
R2 = 0.0001 1 37.366 123.840 0.208 0.631 

Table 2: Optimal Controller Parameters for Controller Con- 
figuration 1 

constraint rather than a small gradient condition. However, 
the optimization routine worked well for the lirst controller 
conllguration, and it can be seen from Table 1 that the 
3ts cost of the closed-loop system decreases with increasing 
controller authority. 

The optimal controller parameters for this controller config- 
uration are given in Table 2. In fact, with R2 = 1, we can 
see from the output signals of the impulse response in Fig- 
ure 3 that this controller does not attenuate the vibrations 
significantly. However, as the authority is increased, the 
attenuation becomes greater, as seen in Figure 4 and Fig- 
ure 5, though this does increase the control effort expended, 
as shown in Figures 6-8, which could lead to actuator sat- 
uration. 

Finally, Figure 9 shows the Bode plots of the open-loop and 
closed-loop systems. It is seen that the size of the first peak 
in the closedloop response is decreased as the controller 
authority is increased. Another important feature of the 
closed-loop frequency response is the high-frequency roll- 
off. Since the ACTEX system model has a relative degree 
of zero, the system possesses gain at all frequencies, thus 
unmodeled high-frequency dynamics could destabilize the 
open-loop system, whereas these dynamics would be atten- 
uated with a strictly proper dynamic controller. 

Figure 3: Closed-Loop Impulse Response, Rz = 1 

l- 

:, i 

5 

Conclusions 

In this paper we showed that the control algorithm structure 
implemented on the ACTEX Ilight experiment has the form 
of a decentralized static output feedback controller. This 
controller structure is amenable to fixed-structure optimiza- 
tion methods. Using the Robust, Fixed-Structure Toolbox, 
we synthesized several feedback controllers and we assessed 
their performance under a variety of conditions. 

P 
b 

Figure 4: Closed-Loop Impulse Response, R2 = 0.01 
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Controller Configuration 2 

For this configuration, the controller given by (13) can be 
expressed as 
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0 Wl -w; -0.3w2 

Figure 6: Closed-Loop Control Effort; Ra = 1 
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Controller Configuration 3 

For this configuration, the controller given by (14) can be 
expressed as 

r0 1 0 01 
-;wp; y , 

4 0 -wz" -&SW2 I 

Cc = [ 0 0 k3w; 0 ] . 

Note that there are three free parameters, namely, ~1, ~2, 
and ks. Thus Wl 

K= i 0 
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W2 0 

, 

0 0 ks 1 
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Figure 7: Close&Loop Control Effort, R2 = 0.01 
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Controller Configuration 4 

For this configuration, the controller given by (15) &I be 
expressed as 

A,= 

0 1 0 0 0 0 
-wl” -0.3w1 0 0 0 0 

0 0 0 1 0 0 
0 Wl -w; -0.3wz 0 0 
0 0 0 0 0 1 

-0 0 4 0 -w; -0.3w3 

Cc= [ 0 0 0 0 ksw; 01. 

Note that there are four free parameters, namely, ~1, ~2, 
03, and k3. Thus 

rwl 0 0 01 

Figure 8: Closed-Loop Control Effort, & = 0.0001 

500 ' I 
10' IO' 

Figure 9: Bode Plots for Open-Loop and Closed-Loop Sys- 
tems . 
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