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Generalized Guidance Law for Collision Courses
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A new generalized guidance law for collision courses is presented. When the missile and target axial
accelerations or decelerations are constant, there exists a rectilinear collision course. The guidance law pre-
sented, which is called the true guidance law, gives theoretical lateral acceleration commands to guide the missile
on a collision course. However, since it is very difficult to realize the true guidance law on most existing tactical
missiles, this paper shows a method for simply implementing the guidance law, which is called the simplified
guidance law. The small perturbation equation of the true guidance law shows that the definition of an effective
navigation constant is the same expression as that in the case of conventional proportional navigation. The
performance of the two guidance laws presented is compared with that of proportional navigation using
simulation studies of a simple model of a short range air-to-air missile. The simulation results show that the
guidance laws presented can intercept the target using far smaller lateral acceleration commands than prepared
for proportional navigation. The inner launch envelope shows that the guidance laws presented provide an
overall performance improvement over proportional navigation.

Nomenclature
am = missile axial acceleration vector, am =
a( = target axial acceleration vector, at = | <
e\, e2 = unit vectors
F = desired acceleration command vector
MD = miss distance
N = navigation constant
Ne = effective navigation constant
«max = maximum lateral load factor
R = relative distance vector ( = rt — rm), R =
rm = missile position vector
rmc = correct missile position vector
rt = target position vector
5- = differential operator
Tm = missile time constant
tf = total flight time
/g0 = time-to-go
Vm = missile velocity vector, Vm = \Vm\
Vmc = correct missile velocity vector, Vm = \
Vt = target velocity vector, Vt = \Vt
x, y = elements of Arm
Arm —rm— rmc
AFm = Vm - Vmc
0 = missile flight-path angle
B = missile flight-path rate vector

a — LOS angle
a = LOS rate vector
0W = missile flight-path angle to LOS
4>t = target flight-path angle to LOS
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Introduction

I T is well known that a conventional proportional naviga-
tion (PN) is an adequate missile guidance law when the

missile and target velocities remain constant.1'3 In practice,
however, the missile and target velocities may change signifi-
cantly. For instance, a short range air-to-air missile (AAM)
has nearly constant axial acceleration during the boost phase.
Also, the axial deceleration of a surface-to-air missile due to
air drag after thrust cutoff can be assumed nearly constant.
On the other hand, a target may have constant axial accelera-
tion or slowdown. These kinds of axial accelerations or decel-
erations may seriously influence the performance of the mis-
sile guided by PN. Chadwick developed the approximate
analytical solution for the miss distance of a proportional
navigation missile with axial slowdown after sustainer motor
cutoff, but he mentioned nothing about a guidance law.4

When the missile and target accelerations or decelerations
are constant, there exists the rectilinear collision course. Then,
if we know the magnitudes of these accelerations or decelera-
tions and the initial time-to-go, the missile can be guided to a
collision course. A missile flying on this collision course does
not require further acceleration commands to hit the target.
For example, Fig. 1 compares the rectilinear collision course
with the trajectory achieved with PN. Since PN does not take
into account changes in velocity, the trajectory with PN is
curved, as shown in Fig. 1. In other words, the missile guided
by PN requires more acceleration commands as it gets close to
the target.

First, this paper presents the generalized guidance law for a
missile with constant axial acceleration against a target with
constant acceleration. Next, the small perturbation equation
of the guidance law is derived. This shows that the definition
of an effective navigation constant reduces to the same expres-
sion as that in the case of PN. An appropriate effective navi-
gation constant can then be determined by integrating the
small perturbation equation. Though the generalized guidance
law gives the theoretical acceleration to guide a missile on a
collision course, it is very difficult to implement this guidance
law on most existing tactical missiles. Therefore, this paper
shows a simplified method for implementing the guidance law.
Finally, the performance of the guidance laws presented is
compared with that of PN using simulation studies of the
simple A AM models.
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^COURSE WITH PN Substituting Eq. (6) into Eq. (5), we obtain

TARGETwn-ioiwi-t v^wvjr\,jL_ ^

"MISSILE '
Fig. 1 Rectilinear collision course and the course achieved with PN.
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COLLISION COURSE
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Fig. 2 Intercept geometry.

Derivation of a Generalized Guidance Law
Figure 2 shows the intercept geometry of a missile intercept-

ing a target. Mand Trepresent the actual positions of a missile
and a target, respectively, at time t. From Fig. 2, the line-of-
sight (LOS) rate is given by the following vector equation:

R2 (1)
Assuming that the missile is flying at constant acceleration am
and the target is flying at constant acceleration at, let the
triangle ITM be a collision triangle—that is, 7 indicates the
point of impact. Vmc is the correct missile velocity vector to
obtain a collision at / and AFm is the deviation of missile
velocity vector from Vmc. Then we have

V — V + AF' m — * me ^ ^Y m

Substituting Eq. (2) into Eq. (1), we obtain

. Rx(Vt-Vmc) Rx(-&
R2

(2)

(3)

The first term of the right side of Eq. (3) represents the correct
LOS rate when the missile flies along the collision course. The
second term is the deviation of the LOS rate from the correct
one. If a missile is guided with a flight-path rate in proportion
to the deviation of the LOS rate, assuming no missile dynamic
lags, the missile flight-path rate becomes

J g x ( - A K f f l )
R2 (4)

where N is the navigation constant. Then, the required lateral
acceleration command for a missile to fly along the correct
collision course is given by

F=0x Vm

= -7V-{(Vmc- x Fm

R2

From Fig. 2, Vmc can be written as

v sin <t>m Vt
mc~ "

(5)

(6)

R2 Vt sin <t>t

If we let tgo be the time-to-go, from Fig. 2, we have

Vmctg0 + tl = R + Vttgo + %2
Q

(7)

(8)

—f.n ism

Dividing Eq. (9) by tgo sin </>,, we obtain

Wl+2£2Fm/ sin c/>,

Equation (10) can be rewritten as

Vm sin </>m 1 + e,

2K,/

Vt sin <t>t

where

From Fig. 2, the component of Eq. (8) perpendicular to R is
given by

(9)

(10)

(11)

(12)

(13)

(14a)

(14b)

This is the generalized guidance law for a missile with constant
axial acceleration to intercept a target with constant axial
acceleration. If both a missile and a target have no accelera-
tion, that is, constant velocity, em and et are zero and Eq. (14a)
reduces to a conventional proportional navigation guidance
law. Since the value of tgo is required in order to compute em
and e,, we derive the equation for tgo. From Fig. 2, we have

(15)

(16)

Substituting Eq. (11) into Eq. (7), we obtain

F = N/R2[(Vm-kVt)xR]xVm

where

k = l + et

Vm + /go cos p, = R cos 0, + K,^ + t

sin fj, = R sin

Squaring both sides of Eqs. (15) and (16) and adding them, we
obtain

2 _ V2 w2
t ym)Lgo

(17)

Assuming that Vm, Vt,am,at,R, and </>, are known, tgo can be
computed from Eq. (17); em and et can be obtained from Eqs.
(12) and (13); and the required guidance acceleration com-
mands are then computed from Eq. (14). We call this guidance
law the true guidance law.
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Small Perturbation Equation
Equation (14) gives the generalized guidance law for colli-

sion courses where time-to-go is computed from Eq. (17).
Since this equation is complicated, however, it is difficult to
select the value of the navigation constant N. To choose N, it
is useful to linearize Eq. (14a) about a correct collision course.
For simplicity, we will consider the problem in two dimen-
sions. Figure 3 shows the engagement model for linearization,
where the target is flying along the reference trajectory. In Fig.
3, O is the origin of the inertial frame, M0 indicates the
position that a missile would have had at the time t in the
correct trajectory case and M displays the actual position of a
missile at time t. The </>mc, 4>tc and /uc are the correct angles
such that MO/ and TI become the correct collision courses for
missile and a target, respectively. From Fig. 3, we have

(18)

(19)

(20)

(21)

(22)

(23)

V —V + \VY m — V mc^ ̂ r m

Arm=xel+ye2

^rt-rmc- Arm

RC = rt ~ rmc

Substituting Eqs. (18), (19), (22), (23) into the numerator of
Eq. (14a), neglecting terms higher than second order in Arm
and AFm, and using Eqs. (20) and (21) we obtain

= \NVm/R2)(-xR sin </>mc -xkVt sin jic

-yR cos <f>mc +ykVt cos /*c - Vmy)e2 (24)

Since the external force on the missile is not applied in the
direction of e\, except for the constant acceleration am, we
have

(25)

(26)

(27)

Assuming x(0) = x(0) = 0, we obtain

x(t) = 0

On the other hand, we have

F=ye2

CORRECT
COLLISION COURSE/

Vm

M0 CORRECT LOS T

Fig. 3 Engagement model for linearization.

Vm

W

Fig. 4 Definition of W.

Substituting Eqs. (26) and (27) into Eq. (24), we have

y = -•NVm cos
R

NVn(

R2 (-Vm+kVt cos fjic)y (28)

Let us define Vc and JFas follows:

Vc = Vm cos 0WC - Vt cos <t>tc (29)

W = (k2V2 + V2
m- 2kVtVm cos Me)0'5 (30)

Vc becomes the closing velocity, and H^is the length of the side
of the triangle, as shown in Fig. 4. From Fig. 4, we obtain

Vm - kVt cos IJLC = W cos <t>mc

From Eqs. (29) and (31), Eq. (28) can be written as

(31)

NVm cos <t> Wy + -y
(32)

where the parameter Ne is defined by

As is obvious from Eq. (33), Ne is the same expression as the
effective navigation constant in the case of PN. Thus we also
call Ne an effective navigation constant in this paper. Equa-
tion (32) is the small perturbation equation for Eq. (14a). The
initial conditions for a launch error are given by

(34)

(35)

and the miss distance is given by

MD=y(tf)

As mentioned earlier, we have assumed until now that there
are no missile dynamic lags. However, if we assume that the
missile dynamics can be represented as a linear system with
transfer operator Y(s), where s is the operator d/dt and Y(s)
is the ratio of two polynomials in s, then the perturbation
equation for the generalized guidance law becomes, instead of
Eq. (32),

y= - w
(36)

As a specific example, consider the case of a missile with a
simple time lag Tm. Thus, let

1
Y(s) =

Substituting Eq. (37) into Eq. (36), we obtain

" = _ Yl(- K+ y- - e^(y + R

(37)

(38)

Let us consider solving Eq. (38) numerically for a launch error
7o- From Eq. (34), the initial values become

- Vm (0)To, y (0) = 0 (39)

To solve Eq. (38), we assume tgo is given by

^go = tf-t (40)
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where // is the total flight time. Vm and Vt are given by

Vm = VmQ + amt (41)

Vt = Vfi + att (42)

where Vm0 and F/0 are the initial values of Vm and Vt. Letting
KWfl and Vta be the average velocities of the missile and target,
respectively, we have

(43)

Vta = Vn + (attf/2) (44)

Then, the average closing velocity Vca becomes

Vca = Vma cos </>mc - Vta cos </>/c (45)

The relative distance is given by

/ a A
\t= Vcatf ~ COS

(46)
If Fm0, K^, am,at, PC* and //are given, <£mc is computed from
the following equation:

(f)mc = sin att} (47)

where

h =

- 2 Vm0tf + cos (48)

Equation (38) was numerically integrated for the case where
Vm0 = 288 m/s, Vto = 288 m/s, #m = 154 m/s2, 0, - 0,
Tm = 0.4 s, and JAC - 90 deg. Selecting values of 7Ve = 3, 4, 5,
and 6, analysis of the dimensionless miss distance y(t/)/
VmaJoTm vs dimensionless time of flight tf/Tm, the deviation
histories from the correct position, and the lateral acceleration
command histories in normalized form, where //was set equal
to 4 s, showed that for this example a reasonable value of Ne
would be in the range of 4-5.

Simplified Construction of the Guidance Law
To construct the true guidance law given by Eq. (14), we

must measure or estimate Vm, K/, am, #,, R, and </>, and
compute tgo from Eq. (17) in real time. In general, however,
most present tactical missiles do not carry the kind of instru-
ments needed to measure all of these variables. Thus it be-
comes very difficult to realize Eq. (14). In this section, let us

consider the real mechanization of Eq. (14). The term
Vm - kVt in Eq. (14a) can be rewritten as

Vm-kVt = Vt

,l + €m/ \1 + C|S

Substituting Eq. (49) into Eq. (14a), we obtain

r_N(\ + et) {(Vm-Vt)xR}xVm

N(em-et)(VmxR)xVm

(49)

( 1 + C m ) R2
(50)

The first term represents proportional navigation with the
navigation constant N(l + et)/(l + em) and the second term
represents pure pursuit navigation with the navigation con-
stant N(em —et)/(l +em). We need the values of em and et to
determine the two navigation constants. Though Vm, Vt, am,
at,R, and 4>t must be measured to compute em and et precisely,
we do not necessarily need the correct values of em and et. This
is because, even if the navigation constants change somewhat
from the optimal values, the performances of the guidance law
will not be affected significantly. Therefore, if /y, am, at, Fm0,
and VtQ are given from the launcher or the parent aircraft
before launch, we can estimate the values of /go, Vm, and Vt as
follows:

tgo = tf-t (51)

(52)

(53)

Using these values, we can compute em and et from Eqs. (12)
and (13) and simply mechanize Eq. (50). The block diagram
representation of Eq. (50) is depicted in Fig. 5. Here, the
effective navigation constant Ne defined by Eq. (33) is used
instead of TV. We call this implementation the simplified guid-
ance law. In Fig. 5, Kp represents the gain for pure pursuit
guidance and is chosen so that the trajectory achieved with the
simplified guidance law approaches that with the true guid-
ance law as nearly as possible. In other words, if d(t) repre-
sents the relative distance between the two trajectories, Kp is
chosen to minimize the following PI:

PI = (54)

Application to a Short Range AAM
Let us apply the true guidance law and the simplified guid-

ance law to the simple model of a short range air-to-air missile

a
NeVc

1
cos«m

e

Fig. 5 Block diagram for the simplified guidance law.
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(SRAAM) and compare the results with that achieved with
PN. Since most SRAAM have solid rocket motors, their axial
accelerations can be assumed nearly constant during boost
phase. On the other hand, the target velocity can be consid-
ered nearly constant because it is very difficult to change
significantly the target velocity during the short intercept time.
Let us assume that both the missile and the target are particles;
their trajectories are limited to two dimensions; and the total
dynamics of the guidance system, including the missile dynam-
ics, a noise filter, etc., is given by a first-order lag with time
constant 0.4 s. The velocity of the target is constant at 288
m/s. The initial velocity of the missile is 288 m/s, and the
acceleration is 154 m/s2. Then, based on our previous discus-
sion, we set Ne =4.5. Figures 6 and 7 are the graphs used to
decide Kp. Figure 6 shows PI vs Kp, where /* = 90 deg and
tf = 4 s. From this figure, the optimal Kp is 0.2 for /* = 90 deg.
Figure 7 displays the optimal Kp vs p. Though the optimal
value of Kp depends on /* as shown in Fig. 7, we set Kp =0.2
because a broadside attack is the most severe case for a mis-
sile. Kp is also a function of tf\ however, simulation results
have shown that the optimal value of Kp does not depend very
much on t f . Figure 8 displays one of the simulation results
where the target is flying straight and the missile is launched
along the collision course. The figure shows that the missile
guided by the true guidance law flies straight without accelera-

200 r
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0.3

Fig. 6
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Fig. 7 Optimal Kp as a function of /*.
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Fig. 8 Missile and target trajectories and lateral load factor time
histories.

TARGET PATH
1000 (m)

Fig. 9 Launch boundaries for miss and maximum lateral load factor
to be 3 m and 30 g, respectively: true guidance law.

(m)
nmax=30g
MD=3m

TARGET PATH 1000 (m)

Fig. 10 Launch boundaries for miss and maximum lateral load fac-
tor to be 3 m and 30 g, respectively: simplified guidance law.

TARGET PATH

Fig. 11 Launch boundaries for miss and maximum lateral load fac-
tor to be 3 m and 30 g, respectively: proportional navigation.

1000 2000 (m)TARGET PATH

Fig. 12 Inner launch envelopes of AAM.

tion commands. The trajectory achieved with PN is curved
and requires large acceleration commands. The effective navi-
gation constant for PN was set equal to 4.5. The trajectory
achieved with the simplified guidance law is also curved, but
the deviation from the ideal trajectory is much smaller than
the deviation with PN. Also, the required acceleration com-
mands are smaller. Figures 9-11 show the launch boundaries
for the miss distance and the maximum lateral load factor
specified as 3m and 30 g, respectively. Figure 9 is based on the
true guidance law, Fig. 10 is with the simplified guidance law,
and Fig. 11 is with PN. Here it is assumed that the target is
flying straight and the missile is launched against the target
without lead angle; other conditions are the same as those
described before. The inner launch envelope for SRAAM
must simultaneously satisfy at least these two boundaries.
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Figure 12 compares the three inner launch envelopes achieved
with the different guidance laws. Figures 11 and 12 show that
the envelope with PN mainly depends on the boundary of the
maximum load factor.

Conclusion
A new generalized guidance law for collision courses has

been presented. When the missile and target axial accelera-
tions or decelerations are constant, there exists a rectilinear
collision course. The guidance law presented, which is called
the true guidance law, gives the theoretical guidance accelera-
tion commands to guide a missile on the collision course. The
implementation of the true guidance law requires values of
missile velocity, missile axial acceleration, target velocity, tar-
get axial acceleration, the relative distance between the missile
and the target, and the target flight-path angle to LOS. In
general, however, most present tactical missiles do not carry
instruments to measure all these variables. Thus, it is very
difficult to realize the true guidance law. Therefore, this paper
has presented a method for approximately implementing the
true guidance law by use of only the target and missile initial
velocities and accelerations, and the initial values of time-to-
go, which are given from a launcher or a parent aircraft at
launch. This implementation is called the simplified guidance
law.

The small perturbation equation of the true guidance law
has shown that the definition of an effective navigation con-
stant is the same as that in the case of proportional navigation.
Also, the appropriate value of the navigation constant can be
defined by integrating the small perturbation equation. The
guidance laws presented as well as proportional navigation

were applied to a simple model of a short range air-to-air
missile with constant acceleration. From simulations, the in-
ner launch envelopes were generated and the following results
were obtained.

1) The missile guided by the true guidance law flies straight
and hits the target without further acceleration commands,
provided there is no initial heading error.

2) The trajectory achieved with proportional navigation is
quite curved, and large acceleration commands are required
near the trajectory end even if the missile is launched along a
collision course.

3) The trajectory with the simplified guidance law is also
curved, but the deviation from the true collision course is far
smaller than that with proportional navigation. Also, the re-
quired acceleration commands are smaller.

4) The inner launch envelope has shown that the guidance
laws presented provide an overall performance improvement
over proportional navigation.
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