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ABSTRACT 
Three new methods to compute pressure within a 

vortex method are developed and presented. 
Although demonstrated in a Vortex-Boundary 
Element Method, these pressure methods are suitable 
for any vortex method. They have computational 
savings of 2-3 orders of magnitude over a standard 
Poisson pressure method when surface pressure at a 
small set of locations is desired. This savings is 
significant as the computational time needed to solve 
for the pressure field using a Poisson method exceeds 
that of the VBEM. for cases similar to those studied 
here.. These methods are validated for flow on the 
front face of a cube set orthogonal to a uniform 
freestream flow. Flow about a cube yawed at 30” to 
the streamwise direction is simulated. Time- 
averaged ‘flow field data and surface pressure spectra 
are presented for Reynolds numbers of 500 and 1500. 
The results of the calculations correctly predict an 
overall sound pressure level increase with increasing 
Reynolds numbers. The VBEM also captures the 
different levels of pressure fluctuations associated 
with different flow regions. This work also serves as 
a successful first step in demonstrating the potential 
of the VBEM for use in computing unsteady flows to 
predict the pressure spectrum associated with the 
unsteady surface pressure fluctuations. 

INTRODUCTION 
The increased capabilities of computers both in 

terms of memory and speed have caused fluid 
mechanics researchers to move from simulating 
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steady state flows to modeling fully transient flow 
phenomena. Accurate time-dependent solutions give 
hope that industrial acoustic problems, such as 
automotive aerodynamic noise, can be addressed 
directly rather than relying on approximate analytical 
and phenomenological methods. 

Automobile aerodynamics noise is defined as the 
noise generated by the flow of air around the exterior 
of the car. This noise is of concern to those both 
inside and outside of the vehicle. The unsteady flow 
around the car exterior can cause sound internal to 
the vehicle by vibrating its panels and windows 
which then radiate sound to the vehicle interior. The 
exterior flow can cause noise which is propagated 
away from the automobile and heard by observers 
outside the vehicle. Of primary concern, especially 
in the U.S., is the interior sound caused by wind 
noise. 

Because traditional CFD methods such as finite 
difference RANS codes with turbulence closure 
models have not proven successful in computing the 
time-accurate external flow about an automobile for 
the purpose of predicting wind noise, alternative 
methods are being explored. Vortex methods are 
attractive because they only requires a surface mesh 
(rather than a complete volume mesh) and have, in 
some cases, reproduced unsteady vortex shedding for 
flow over a channel’**, highlighting its potential to 
predict the three-dimensional unsteady shedding of 
interest in the automotive applications. In order to 
predict aerodynamic noise, the problem of computing 
the surface pressure must be addressed. Since vortex 
methods work in terms of velocity and vorticity, the 
pressure must be determined through additional 
equation solving. 

The vortex method used in this work to compute 
the unsteady flow field is the Vortex-Boundary 
Element Method (VBEM) developed at MIT by A.F. 
Ghoniem and his colleagues’*2~3*4. The pressure 
methods implemented in this. code, however, are 
applicable to any vortex technique. 
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The most obvious way to obtain surface 
pressures from a vortex code is to solve the Poisson 
pressure equations throughout the flow field. Since a 
Poisson solver requires the use of a grid which fills 
the entire flow domain, it negates the benefits and 
beauty of the vortex method that uses only a surface 
mesh. Also, a vast amount of .unnecessary work is 
done to compute the pressure throughout the whole 
domain when it is only needed at specific points on 
the surface. While the Poisson method may be 
palatable when only steady state results are of 
interest, thereby requiring the Poisson equations to be 
solved only once, computations for the purpose of 
predicting the surface pressure spectra necessitate 
computing the pressure at each time step. 

Three methods to obtain surface pressure are 
examined in this paper:, the Lagrangian method, the 
Eulerian method, and the vorticity flux method. The 
Eulerian method involves the insertion of small 
computational chimneys into the domain which 
connect the surface location where the pressure is 
desired to the free&ream or a point where pressure is 
know. The Lagrangian method computes the surface 
pressure by using a set of tracer particles which are 
released along a line connecting the point where 
pressure is desired to a point where the pressure is 
known, such as the freestream. These tracer particles 
are released at every time step an tracked for a single 
time step. Both of these methods are broadly 
applicable and can compute the pressure at arbitrary 
‘locations, including the body surface. The Eulerian 
method was found to be the more robust method. A 
computational saving of two to three orders of 
magnitude over a Poisson solver is seen when one of 
.the newly developed methods is used to compute the 
pressure at a small number of locations. The 
vorticity flux method computes the pressure only at 
surface locations by integrating the vorticity 
generated at the surface from a point where the 
pressure is assumed to be known, such as a 
stagnation point, to the surface location of interest. 
This method was found to be unsuitable for the 
particular application of interest due to its inability to 
integrate the surface pressure past points of flow 
separation, but is applicable for more streamlined 
geometries where there are no separation points. 

The present work uses flow around a cube as the 
test problem. Although the body is a very simple 
shape, three important flow regimes can be studied 
by simulating the flow around a cube yawed 30 
degrees: separated, attached, and transitional. The 
vortex shedding on the top and bottom of the yawed 
box is very similar to the vortex shedding which 
creates wind noise on automobiles. 

NUMERICAL METHODOLOGY 
Because the VBEM utilizes velocity and 

vorticity as its prime variables, it is necessary to 
develop a complimentary method to determine 
pressure. In the particular application of interest, 
only surface pressure at specific locations is desired; 
however, these surface pressures must be calculated 
at the conclusion of each step. The methods utilized 
in this work were chosen to be the most efficient for 
the intended purpose while other, more 
computationally intensive, methods for computing 
the entire pressure field are possible (Poisson solver 
and boundary integral method5), they were not 
explored. The methods for calculating time accurate 
surface pressure investigated are: the vorticity flux 
method, the Eulerian method, and the Lagrangian 
method. 

Vorticity Flux Method 
A method which arises as an extension of a two- 

dimensional vortex method developed by Lewis6 is to 
use the surface vorticity flux at each time step to 
determine the surface pressure gradient at any or all 
surface locations. These gradients can then be used 
to obtain absolute pressure values by integrating 
along a path from a known pressure (e.g., a 
stagnation point) to any other point on the surface. 
The complete vorticity flux method derivation is 
shown for a two-dimensional case by Lewis6. 

Lewis’ method equates the surface vorticity 
production to the surface pressure gradient as 

1 & MY _ (1) 
dt pds 

for a two-dimensional case where s denotes the 
direction tangent to the surface. The surface vorticity 
is equal to the slip velocity outside the boundary 
layer, 

Y (4 = v, (2) 
so Eq. (1) can be written as 

A=-Ldp. dv b> (3) 
dt P ds 

This equation is basically a statement of the Euler 
Equation, the momentum equation with the viscous 
diffusion is neglected. The acceleration of the fluid, 
dv, ! dt, can be computed via a spatial differencing 
of the square of velocity 

Sub@uting (4) into (3) results in a new 
expression for surface pressure gradient 
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(5) 

This equation can -be converted into a three- 
dimensional form; thus the surface pressure 
derivative in the x-direction is 

4J d us2 -=- & P&y ’ ( 1 (6) 

The pressure gradients are easily calculated from 
the slip velocities which are already available within 
the current code. To compute the surface pressure as 
a specific location, only integration of the pressure 
gradient along a path from a surface location of 
constant pressure to the desired surface location is 
necessary. 

Eulerian Method 
The Eulerian method involves the insertion of 

small computational chimneys into the domain which 
connect the surface location where the pressure is 
desired to the freestream or a point where the 
pressure is known. This method is named the 
Eulerian method because the calculations of the 
surface pressure are based on differencing the 
Navier-Stokes equations over -a fixed grid through 
which the fluid flows. To implement this method, a 
small 5xP grid stencil column is constructed which 
connects the body surface, at the location where the 
surface pressure is desired, to the freestream as 
shown in Fig. 1. The number of grid points in the y- 
direction, P, is chosen to adequately resolve the flow 
field. 

This methods starts with the Eulerian form of the 
Navier-Stokes equations 

’ the y-component of which is 

The pressure at the surface of the object can be 
obtained by integrating Eq. (8) along a line from a 
known pressure, p, , to a point s on the surface 

Y 

z -4 x 

Figure 1. Eulerian method schematic. 

This method introduces numerical error through 
the calculations of the first and second derivatives of 
the velocity. It is also somewhat tedious as these 
quantities must be determined at each of the grid 
points and at each time step. This method is 
somewhat similar to the most obvious method for 
computing the pressure field which involves solving 
the Poisson pressure equation at grid points which are 
distributed throughout the flow field by inverting a 
very large matrix or using an iterative Poisson solver. 
The three-dimensional Poisson equation which would 
be solved is 

v2p=2 
6llbiv alav . 
----- + 
&a 6k& )I 

(10) 

The Poisson method is similar to the Eulerian method 
in that they both involve the computation of velocity 
gradients at fixed grid locations; the Eulerian method 
used herein, however,’ is not as computationally 
intensive as solving the Poisson Equation for the 
entire domain at each time step. 

Lagrannian Method 
In this method the viscous portion of the Navier- 

Stokes equations is. ignored and the, Lagrangian 
version of the Euler Equation 

is exploited. Although this method uses the Euler 
Equation, it is called the Lagrangian method because 
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it uses a set a particles which are tracked in a 
Lagrangian fashion to compute the pressure. A 
diagram of this method is shown below in Fig. 2. 

u , 

Figure 2. Lagrangian method schematic. 

The method works as follows: 

1. At time t, a set of particles, each at a given 
location Z 

ko ’ 
are released into the flow which 

initially lie along a line L, say a line in the y- 
direction. The velocity at each point is 
iiko =iik(Zko,t)* 

2. These particles are then moved over Dt, 
according to their particle velocities at their 
original locations: 

~k((f+~)=jZko(f)+~~((Rk,,t)~. WI 
3. The velocity of the flow field at the new location 

of the particle is found 
zik (t + At) = “(Zk (t -I- At)) . (13) 

4.. The acceleration of the particle is then 
approximated using 

Dii iik - iiko ---. (14) 
Dt At 

5 -. The pressure gradient in the y-direction can be 
approximated at the locations along the line L, 
by the y-component of Eq.( 14) 

(15) 

6, The surface pressure can be found by integrating 
Eq. (15) from pm according to 

P surface (16) 

This process is repeated at each time step, with new 
particles being released at the initial points along line 
L and allowed to move position over 1 time step (the 
particles are not tracked after that). Since the 
movement of the particles is only tracked for one 

time step, the error associated with neglecting the 
diffusion term should be small. 

METHOD VALIDATION 
In order to validate the pressure schemes, the 

average surface pressure was computed by means of 
all three pressure methods at locations on the front 
face of the cube for the zero yaw cube and a 
Reynolds number of 500. The time-varying probe 
pressures were recorded and subsequently averaged 
to provide mean values. The time-averaged 
pressures are expressed in terms of pressure 
coefficient, Cp. 

Pressure coefficients as computed by the three 
methods for a vertical traverse (y-direction) and 
horizontal traverse (x-direction) from the center of 
the face to the top of the box are shown in Fig. 3. 
For comparison, surface pressure coefficient data as 
computed by the commercial lattice gas code, 
PowerFlow, are shown as solid circles. PowerFlow 
calculates pressure in addition to velocity as part of 
the flow solution. It is assumed that both the VBEM 
and PowerFlow correctly predict the unseparated 
flow field on the front of the cube and that these 
comparisons check the pressure computed by the 
newly implemented pressure methods in the VBEM. 

6.6 
t 

. 

a 

-I -I 

Figure 3. Pressure coefficient on the front face of a 
cube yawed at zero degrees to the streamwise 
direction at Re=500. 

The pressures in the Eulerian and Lagrangian 
methods are computed with respect to the tieestream 
pressure whereas the pressure in the vorticity flux 
method is computed relative to a known pressure on 
the surface; in this case, it is computed relative to the 
stagnation pressure which is assumed to be constant 
and located at the geometric center of the face. 
Hence the Cp at the center of the front face is set to 
unity in the vorticity flux method but calculated 
absolutely in the Eulerian and Lagrangian methods. 

The results of the Eulerian method, shown for 
two traverses from the center of the face, agree well 
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with the PowerFlow data at all locations. The 
Lagrangian method shows a small amount of error 
toward the outside of the face where the pressure 
gradient is high. The underprediction of the pressure 
coefficient in the Lagrangian method is an artifact of 
the ,forward differencing of the velocity used to 
estimate the acceleration of the fluid at points along 
the line connecting the body to the freestream. The 
size of the error is a function of the magnitude of the 
velocity component tangent to the surface at the 
computational probe location and the size time step 
used. As the time step is decreased, the error always 
decreases. The error increases in areas where the 
velocity tangent to the surface increases. Thus near 
the center of the face where the velocity is normal to 
the face, decreasing from the freestream value to 
zero, the error is very small for a wide range of time 
steps. At position at greater radial distance from the 
face center where the velocity tangent to the face has 
increased, the errors increase. In this particular flow 
situation, the Lagrangian method predicts a pressure 
value at a location slightly further from the center 
than the computational probe. In Fig. 3, the error in 
the Lagrangian method is small but yet perceivable. 
Thus when using the Lagrangian method it is 
imperative that a small time step be used. For 
computations used to capture the sound spectrum the 
time step is sufficiently small for the two methods to 
yield nearly identical pressures. 

The four points shown for the vorticity flux 
method are computed at the surface tile centers (there 
are eight tiles in the y-direction and nine tiles in the 
x-direction with each traverse only crossing half of 
the tiles). The vorticity flux method results show 
good agreement with the other two methods and the 
PowerFlow data within the discretization limitations. 
Despite the favorable results shown for the pressure 
on the front of the cube, the vorticity flux method is 
not able to compute the pressure on the top of the 
cube because of the jump in pressure at the sharp 
comer of the box which is along the integration path. 
Other abrupt changes in the pressure due to flow 
structure (separation/reattachment) would also be 
problematic for the vorticity flux method. Due to 
these limitations and hence inapplicability to the 
problem at hand, no further work was conducted 
using the vorticity flux method in this investigation. 

The pressure coefficient distribution on the front 
face of the cube computed by the Lagrangian and 
Eulerian methods agrees well with data computed by 
another computational method. Furthermore, the 
results show agreement with experimental data corn 
similar geometric configurations. Thus it can be 
concluded that the pressure methods are capable of 
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computing the pressure at arbitrary points in the flow 
from the available VBEM flow field information. 

COMF’UTATIONAL RESOURCE 
COMPARISON 

The Lagrangian and Eulerian methods differ in 
computational resource demands, both in CPU usage 
and memory requirement. The Eulerian method 
requires both more memory and more CPU time. 
The memory requirements per probe are twice that of 
the Lagrangian method; however, as a portion of 
total memory required for a simulation similar to 
those computed in this work, the difference between 
the methods is quite small. The most significant 
difference between the two methods is the number of 
points at which the velocity must be computed, 
which requires the potential and vertical portions of 
velocity to be computed for an arbitrary spatial 
location. In the case of the Eulerian method, a fixed 
5xP stencil is used (P is the number of grid points 
between the probe location on the body and the 
freestream), requiring the velocity to be computed 5P 
times for each probe at each time step. The 
Lagrangian method uses a two-step method, which 
requires the calculation of velocities at 2P locations 
at each time step. The other computations associated 
with each of the methods are small relative to the 
computation of the velocities, hence the overall 
number of floating point operations required for the 
Eulerian method is over twice that-for the Lagrangian 
method. Thus, if the time step used for the 

.calculation is quite small, the Lagrangian method is 
recommended since it requires less resources than the 
Eulerian method. 

A rough analysis was made of the total floating 
point operations required for .the Lagrangian and 
Eulerian pressure method as compared to an estimate 
of the number of operations needed to compute the 
entire pressure field using a direct Poisson solver. 
The operation count for the Poisson solver comes 
from work by Babu and Korpela7. The parameters 
used in this analysis are: 

N = 
M = 
P = 

I,J,K = 

number of vortices in the domain 
number of boundary elements on surfaces 
number of points connecting the surface 
to freestream in Eulerian and Lagrangian 
methods 
number of x-, y-, and z-direction grid 
points for Poisson method 

The number of operations for the basic VBEM 
(not computing pressure) is O(Nz+NM). The 
operation count for the Eulerian and Lagrangian 
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pressure methods as compared to the Poisson method 
are: 

n,,,,,,,=(N+M+20)*I*J*K + 2*(I*J*K2 + I*K*J’) (17) 
nEuletian = 5*P*(N+M) + 34P - S*P*(N+M) (18) 

nLagrangian = 21’P*(N+M) -I- 13P - 2*P*(N+M) (19) 

Operation count estimates for the three methods 
are compared in Table 1 for a range of parameters. 
These estimates show that for a typical case where 
there are 10,000 vortex elements in the system, 700 
boundary elements, 200 points are used to connect 
the freestream and the body, and a 100x100x100 
grid is used for the Poisson solver, only 0.04% of the 
operations necessary to compute the entire pressure 
filed are needed to compute the pressure at a single 
probe locations using the Lagrangian method (or 

0.1% for the Eulerian method). In other words the 
pressure at 2500 locations could be computed in the 
same number of operations as using the Poisson 
method. Thus, in applications where the pressure at 
only a few locations is desired, either of the proposed 
methods would reduce the computational 
requirement by 2-3 orders of magnitude. 

The savings gained by using one of the new 
pressure methods is of great significance since the 
computational time necessary to solve the pressure 
field using a Poisson Method exceeds that of the 
VBEM when the number of grid points on which the 
pressure is solved exceeds the number of vortex 
elements. For example, a 22x22~22 mesh has grid 
points in excess of 10,000 and a 28x28~28 mesh has 
over 20,000 grid points. Thus, for cases similar to 
those in this work, the computational time of the 
Poisson method would far exceed that of VBEM. 

Table 1. Floating point operation count comparison 
iv A4 P IJ K Eulerian Lagrangian Poisson E/L P/E P/L 

10000 700 200 50 1.07E-t-07 4.28EtO6 1.35EtO9 2.5 126 316 

10000 700 200 75 l.O7E+O7 4.28E+06 4.59E+O9 2.5 428 1071 

10000 700 100 50 5.35E+06 2.14E-tO6 1.35E-tO9 2.5 253 632 

10000 700 300 50 1.6lEtO7 6.42EtO6 1.35E+09 2.5 84 211 

20000 700 200 100 2.07E+07 8.28E-t06 2.09EtlO 2.5 1010 2526 

RESULTS 
The geometry studied is a free-floating cube 

located in the center of a large channel of square 
cross section. The channel or tunnel dimensions are 
16x16~10 in non-dimensional units, where a cube 
side has the dimension of unity. The cube is located 
along the tunnel centerline with three cube lengths 
upstream of the cube and six lengths downstream of 
.the cube. Each tunnel wall is divided into 16 
elements and each cube side into 100 elements for 
.use in the boundary element portion of the 
computations. The tiles which produce the vortices 
carpet only the sides of the cube, with the tiling set at 
9x8x8 (i.e., 9x8 on the x-y sides, 8x8 on the y-z 
sides, 9x8 on the x-z sides) for all the simulations. 
The geometry configuration considered is the cube 
yawed at 30” to the streamwise direction. The 
simulations were run at Reynolds numbers of 500 
and 1500. The flow was impulsively started at t=O, 

using a uniform nondimensional velocity U=l.O 
throughout the domain. The inlet velocity was 
maintained at Ui,,= 1 .O for the entire simulation. 

With the flow started impulsively at time t=O a 
start-up period is initially observed, followed by a 
fully developed state. A fully developed or steady 
state is reached when the number of vortex elements 
resident in the domain remains nearly constant form 
time step to time step, the number of new vortex 
elements generated balancing the number exiting the 
domain. Although the fully developed flow is 
transient in nature, these computed flow fields are 
most compactly viewed in terms of time-averaged 
results. 

Time-averaged flow results are shown in Figs. 4 
and. 5 for Reynolds numbers of 500 and 1500, 
respectively. These figures display horizontal slices 
through the flow field just above the top cube 
surface. In these cases, one might expect that two 
vortices would be shed off the front two edges of the 
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cube as indicated by work of Stapleford and Cat? 
and Hucho’. However, since these comparative 
experimental studies were performed at much higher 
Reynolds numbers, it is unclear what type’ of flow 
might develop in the lower Reynolds number regime. 

Figure 4. Time-averaged flow results for flow past a 
yawed cube at Re=500. Horizontal slice is just above 
the top surface. 

Figure 5. Time-averaged flow results for flow past a 
yawed cube at Re=1500. Horizontal slice is just 
above the top surface. 

In both the cases simulated, a recirculation zone 
develops behind the leading comer of the cube. The 
flow turns around these recirculation zone, but true 
vortices are not shed from the leading edges. One 
can observe the flow features becoming stronger with 
increased Reynolds number. In Fig. 5 the 
recirculation zone has moved upstream on the cube 

causing the flow to turn more sharply. Further 
increase in Reynolds number would likely show 
separation occurring. Simulations were not 
performed at higher Reynolds numbers due to 
computational limitations. 

Pressure-time data for seven probe locations 
were gathered at each Reynolds number. The probe 
locations are shown in Fig. 6. The time step for 
these simulations was chosen based on Nyquist 
sampling theory in order to capture frequencies up to 
1000 Hz. The simulations were fun for at least 10 
periods of the lowest desired frequency, 50 Hz. The 
data was analyzed using a power spectrum analysis 
method. The output of this method, p”,,, was 
converted to sound pressure level (SPL); the data was 
further processed using one-third octave analysis and 
subsequent A-weighting as is customary in the wind 
noise community. 

Flow Direction 

+ 

Figure 6. Surface pressure probe locations. 

The results of the two cases for the cube at thirty 
degrees yaw are presented in Figs. 7 and 8. 
Comparison of the two spectra show an increased 
spread among the probes with increased Reynolds 
number. The difference between the highest and 
lowest probe SPL is approximately 9 B. The 
positions of the probes relative to the averaged flow 
field structures can be determined by using Figs. 4 
and 7. The loudest probe, probe 3, is located in the 
recirculation zone. Since true vortices do not form 
behind the leading edges, the most unsteady region 
on the top face of the cube would be this 
recirculation region. The next loudest probe, probe 
2, is at the edge of the same flow region. Probes 4 
and 5 comprise the intermediate range with probes 1, 
6, and 7 being the quietest. It should be noted that 
the three quietest probes lie very close to the edges 
over which the oncoming flow turns. Although the 
velocity magnitude in these regions is quite high, the 
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flow is still angles upward from the body as it 
recovers from turning the comer; the low noise level 
indicate that the flow surrounding these regions 
remains relatively constant. The region where probes 
4 and 5 are located is where the flow ‘reattaches’ or 

becomes parallel to the body surface after making the 
sharp turn around the comer; it is not a true 
reattachment zone since a vortex t bubble does not 
form. 

90 
II 

~ ----probe I 
-probe 2 

.~ -probe 3. 
-.,-.-probe4 
-.__... probe 5 
-probe 6 
-..-. orobe 7 

100 
frequency (Hz) 

Figure 7. Pressure spectrum for Re=500. 

10 100 
fkequency (Hz) 

loo0 

Figure 8. Pressure spectrum for Re=l500. 

The pressure shown in Fig. 8 has a larger spread comparison to the flow field for Re=500, Probe 2 lies 
among the probes with the difference between the within a ‘reattaching’ region; hence, we would expect 
highest and lowest SPL typically being 12 dB across the SPL to be lower for probe 2 than probe 3 based 
the entire frequency range. As with the Re=500 case, on the increased unsteadiness in the flow field in the 
probe 3 is the loudest probe. The increase in vicinity of probe 3. Probes 1, 4, and 5 comprise the 
Reynolds number from 500 to 1500 causes the SPL intermediate range with probes 6 and 7 being the 
of probe 3 to be 5-6 dB louder. Probe 3 sits quite quietest. Along the edge where probe 1 lies, the flow 
close to the line where opposing flows meet, at the is not overshooting the edge as much in the higher 
tail of the recirculation zone shown in Fig. 5. Again, Reynolds number case is in the lower Reynolds 
the next loudest probe is probe 2; in this case, number case, but rather is much more aligned with 
however, it is nearly 3.5 dB lower than probe 3. In the cube surface than the flow at the location in the 
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lower Reynolds number simulations. This is due to 
the position of the main recirculation zone, which is 
located farther upstream in the Re=1500 case. The 
higher speed flow is subsequently directed around 
this region, resulting in amore parallel flow in the 
region of probe 1. Thus the flow is more similar to 
that in the ‘reattaching’ region where probes 4 and 5 
are positioned. The flow at the front edge still takes 
the comer at a rather high relative speed, 
overshooting the downstream portion of the front 
edge near the position of probes 6 and 7. 

CONCLUSIONS 
-The two new methods developed to compute 

surface pressure at arbitrary points in the flow field in 
conjunction with vortex methods show substantial 
computational benefits over application of a full 
Poisson solver to the flow field. For simulations on a 
scale of these benchmark cases, the computation of 
the unsteady pressure at 25 arbitrary locations would 
take only l-2% of the number of floating point 
operations-necessary to compute the entire pressure 
filed using a direct Poisson solver. This is a very 
signi&ant savings since the computations demands 
of a Poisson solver quickly surpass those of the 
VBEM when, even a fairly low resolution volume 
grid is used. The capabilities of the new pressure 
methods were demonstrated in terms of both .time- 
averaged surface pressure cqefficients- and unsteady 
surface pressure data which was then postprocessed 
to give spectral information. 

This work is a successful fast step in 
demonstrating the potential of the VBEM for use in 
computing unsteady flows to predict the pressure 
spectrum associated with the unsteady surface 
pressure fluctuations. The results of the calculations 
at Reynolds numbers of 500 and 1500’ show the 
overall sound pressure level to increase significantly 
with Reynolds number, as expected. The VBEM 
coupled with a pressure method was also able to 
capture the different levels of pressure fluctuations 
associated with different flow regions. 
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