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Exploiting Chaotic Dynamics for Detecting Parametric
Variations in Aeroelastic Systems
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A panel forced by buffeting aerodynamic loads and undergoing limit-cycle oscillations and chaos is investigated.
The interaction of dynamic and static instabilities is shown to lead to very complex dynamics, which includes static
deformations, limit-cycle oscillations, and chaos. The sensitivity of the chaotic behavior to parametric changes is
shown to be an effective tool in detecting structural changes such as variations in the stiffness of the mounting point
of the upstream end of the panel. A finite difference method is used to simulate the dynamics of the aeroelastic
system, and coherent structures of the panel dynamics are identified using proper orthogonal decomposition. The
sensitivity of the dynamics of the coherent structures to parametric changes is discussed.

Introduction

L INEAR vibration analysis is a relatively mature field of me-
chanical engineering, although there are several areas of this

field where investigations are still necessary, such as mid-frequency
analysis. In contrast, the field of nonlinear and chaotic vibrations
presents many challenges and has recently recaptured the interest
of researchers in academia and industry especially because many
engineering systems, previously approximated as being linear, are
in fact nonlinear. In structural dynamics, for example, nonlinearity is
often observed, and it is due to friction, the presence of rivets, bolts,
free play, and other factors. Nonlinear phenomena are widespread
and very important because their presence can dramatically change
the predictions made by linear theories. For example, nonlinearities
are the cause of parametric resonances and limit-cycle oscillations,
which are incompletely modeled by linear approaches. Moreover,
the recent remarkable advances in the understanding of nonlinear
and chaotic phenomena provide the means to exploit their features
for detecting parametric changes in various systems, that is, for
structural health monitoring.

The area of health monitoring and damage detection has under-
gone a rapid development recently, and new methods and tech-
niques continue to be proposed.1 Health monitoring refers to the
use of nondestructive sensing and analysis of system characteristics
for the purpose of detecting structural changes which may indicate
damage.2 Health monitoring is often approached as a system identi-
fication problem,3 where changes in the parameters of an identified
model are monitored.4−6 A large portion of the work in this area
has been focused on least-squares identification methods applied to
linear models,7−10 resonant frequencies,11 mode shapes,12 and sub-
space identification methods.13,14 Most system identification pro-
cedures used for structural health monitoring are based on off-line
approaches,15 although recently online damage detection methods
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have been proposed as well.16,17 Also, the Yorke–Kaplan conjecture
from complex system theory has been used at the U.S. Naval Re-
search Laboratory NRL for the pioneering study of linear systems
with chaotic excitation (see Refs. 18 and 19). Both numerical20 and
experimental21 investigations of linear structures have been per-
formed. However, most of the current studies are based on linear
theories and linear structures. In contrast, this paper is focused on
chaotic dynamics and has the potential advantage of an increased
accuracy in detecting damage and monitoring structural health. The
increased accuracy obtained by exploiting the sensitivity of nonlin-
ear and chaotic systems to parametric variations is shown herein
to be 4–5 orders of magnitude higher than the sensitivity of linear
analyses.

In addition to these particularities of chaotic dynamics, the fea-
ture monitored to detect structural changes is the level of coherence
in the dynamics of the system. The approach used for identify-
ing these coherent structures is proper orthogonal decomposition
(POD).22−24 This approach requires measurements of the dynam-
ics of the system of interest over a time interval. A model for the
spatial coherence of the dynamics is constructed based on these
measurements. For linear systems, the models obtained using POD
are similar to models obtained by modal analyses. However, dis-
tinct from linear modal analyses, POD may be used for nonlin-
ear systems. Holmes et al.25 and Sirovich26 also used POD in the
context of turbulent flows as a technique that allows for the iden-
tification of naturally forming coherent structures from numeri-
cal simulations or experiments. These coherent structures contain
most of the energy and are the most important components of the
dynamics.27−29

The physical system investigated herein is a panel forced by
buffeting aerodynamic loads. Such panels in the supersonic flow
regime have been studied extensively by Dowell and Voss30 and
Dowell.31−35 They observed that the interaction of dynamic (flut-
ter) and static (buckling) instabilities leads to very complex dynam-
ics, which includes static deformations, limit-cycle oscillations, and
chaos. Most of the previous studies of the dynamics of panels un-
der buffeting aerodynamic load are based on the Galerkin method
for numerical simulations. Distinct from those methods, a finite
difference method is used herein, and POD23−25,36 is used to detect
parametric changes in the aeroelastic system. The numerical method
based on POD requires a small number of degrees of freedom for
capturing accurately the dynamics of the panel while maintaining
its sensitivity to parametric changes. This sensitivity is shown to
be an effective tool in detecting structural modifications, such as
variations in the stiffness of the mounting point of the upstream end
of the panel.
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Fig. 1 Two-dimensional buffeting panel.

Modeling
The aeroelastic model used is shown in Fig. 1 and includes struc-

tural nonlinearities, whereas the aerodynamics is considered quasi
static and linear. The flow is modeled using piston theory, and the
panel is modeled using nonlinear plate theory. The coupling of
the aerodynamic and structural models is done by a balancing of
the pressure differentials across the panel with the elastic and iner-
tial forces in the panel.

Flow Model
The piston theory is a simplified method developed by Lighthill37

and is a good approximation of the unsteady flow forces for large
Mach numbers and low frequencies. For such cases, Lighthill
showed that the flow may be modeled as a series of fluid slabs,
contained between vertical planes, perpendicular to the panel. Each
of the slabs is approximated by a walled container, full of fluid and
bounded by the surface of the panel at its lower end. Then, the panel
acts like a piston moving the fluid and generates compression and
expansion waves inside the container. The unsteady component of
the pressure created by the presence of the flow on the upper surface
of the panel due to panel motion may be expressed as

p(t) = −(h/ l)
(
ρ∞U 2

∞
/

M
)
W ′ − (√

Dh
/

l2
)(

ρ∞U∞
/

M
√

ρ
)
Ẇ

(1)

where ρ∞ and U∞ are the upstream far field density and velocity of
the flow, M is the local Mach number, W is the transverse deforma-
tion of the panel, and W ′ and Ẇ are the spatial and time derivatives
of W , respectively. The minus sign is due to the sign convention
used for the full aeroelastic model and indicates that this pressure
acts downward, while the panel deflection is considered positive
upward.

Structural Model
The panel shown in Fig. 1 is considered to be a homogeneous,

isotropic, and two-dimensional plate, with pinned–pinned end-
points. A supersonic flow is forcing the panel along its upper surface.
The lower surface of the panel is considered isolated from the flow
and at a constant pressure. In addition, a longitudinal preload acts
on the panel at its pinned ends and provides a compression load in
the panel. The flow is considered two dimensional (along X and
W ), and thus, the plate may be assumed one dimensional (along its
chord X ), while its span is considered infinite.

The von Kármán nonlinear strain–displacement relation for large
deflections of the panel (see Ref. 34) may be used to obtain the
following governing equation of the panel dynamics:

W ′′′′ − Eh3

2D

[∫ 1

0

W ′2(ξ) dξ

]
W ′′ − Ehηl2

D
W ′′ + Ẅ + l4

Dh
�p = 0

(2)

where �p is the steady and unsteady pressure difference between
upper and lower surfaces, �p = p+ − p−; h and l are the thickness
and the length of the panel, respectively, with l � h; E , ν, and ρ
are Young’s modulus, the Poisson ratio, and the mass density of the
panel material, respectively; D is a coefficient characterizing the
bending stiffness of the panel, D = Eh3/12(1 − ν2). The structural
nonlinearity is due to the quadratic integral term in Eq. (2).

For the case of an infinitely stiff spring at the upstream end of the
panel, the boundary conditions corresponding to the pinned–pinned

panel may be expressed as

W (X = 0, t) = 0, W ′′(X = 0, t) = 0

W (X = l, t) = 0, W ′′(X = l, t) = 0

However, the presence of the spring allows the upstream end to
move, and a shear force is created thereby. The boundary conditions
at the upstream end may be expressed as

W ′′(X = 0, t) = 0

kW (X = 0, t) − DW ′′′(X = 0, t) = 0

where k is the stiffness of the upstream panel attachment
point/spring. The nondimensional expression used for this stiffness
is R defined as R = D/(kl3). Thus, for example, a rigid attachment
point is characterized by R = 0.

Aeroelastic Model
The aeroelastic model is obtained by inserting the expression

for the pressure differential across the plate given by Eq. (1) into
Eq. (2). The aeroelastic equation thus obtained is then nondimen-
sionalized by considering the variables x , w, and τ , defined as
x = X/ l, w = W/h, and τ = t/

√
(ρhl4/D). The aeroelastic model

in nondimensional form may be expressed as

w′′′′ + ẅ − Ehηl2

D
w′′ − Eh3
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[∫ 1
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]
w′′

+ ρ∞U 2
∞l3

M D
w′ + ρ∞U∞l2

M
√

ρh D
ẇ + l4

Dh
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where ẇ = ∂w/∂τ , w′ = ∂w/∂x , and �ps is the static/steady pres-
sure differential across the plate, that is, the pressure difference at
zero flow velocity, U∞ = 0.

Nondimensional coefficients are obtained from Eq. (3) as fol-
lows. The flow velocity is characterized by λ, where λ = (ρ∞U 2

∞l3)/
(M D). The in-plane preload of the panel is proportional to Rx , which
is given by Rx = Ehηl2/D. The static pressure difference across
the panel is characterized by P , where P = −(l4�ps)/(Dh). The
panel material is characterized by G = (Eh3)/(2D) = 6(1 − ν2).
The mass ratio is given by µ = (ρ∞l)/(ρh). These parameters may
be used in Eq. (3) to obtain

ẅ +
√

µλ

M
ẇ + w′′′′ − Rxw

′′ − G

[∫ 1

0

w′2(ξ) dξ

]
w′′ + λw′ = P

(4)

The aeroelastic system governed by Eq. (4) is a convenient and
simplified version of a more realistic system, and thus, its parame-
ters have estimated values. Nevertheless, the results (and assump-
tions made) are useful to demonstrate the key ideas and techniques
proposed. Also, this aeroelastic system shows that the methods pro-
posed could be used to study other, more realistic, systems.

Numerical Discretization
Standard central finite difference schemes of second-order ac-

curacy are used to discretize all of the spatial derivatives. First,
the panel is discretized in s sections. Also, ghost nodes are used
at each end of the computational domain, so that there are a to-
tal of s + 3 discretization points. The displacements at each of the
discretization points are grouped in a vector w so that, at a nondi-
mensional time instant τk , the shape of the panel is defined by a
vector wk = [wk

−1, w
k
0, . . . , w

k
s + 1]T . The discretized spatial deriva-

tives are considered linear operators applied to the vector wk . The
first through fourth spatial derivative operators are (s + 3) × (s + 3)
matrices, denoted by D1–D4.

The boundary conditions for Eq. (4) are linear operators acting on
the vector wk also. The implementation of these boundary conditions
is obtained by adequately changing the first and last two rows of the
matrices Di . The boundary conditions apply to w directly and can
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be referred to in a compact form as a zero linear operator D0, which
is a (s + 3) × (s + 3) identity matrix with the first and last two rows
modified to incorporate the boundary conditions.

The discretized form of Eq. (4) incorporates the boundary condi-
tions and is expressed as

[c4D4 + c3D3 + c2D2 + c1D1 + c0D0]w

+ c5(wT Tw)D2w + c6ẅ + c7ẇ = q (5)

where c0–c7 are constant coefficients given by c4 = 1, c3 = 0,
c2 = −Rx , c1 = λ, c0 = 0, c5 = −G, c6 = 1, and c7 = √

(µλ/M). The
term wT Tw is a discrete representation of the integral term in Eq. (4),
with T being an (s + 3) × (s + 3) constant matrix. The right-hand
side q incorporates the discretization of the distributed static load
due to the static pressure difference across the plate �ps . Equa-
tion (5) may be expressed in state-space matrix form as

[
I 0

0 A

][
ẇ

v̇

]
+

[
0 −I

M B

][
w

v

]
=

[
0

q

]
(6)

where v = ẇ, A = c6I, and B = c7I, with c6I and c7I being identity
matrices multiplied by the constant coefficients c6 and c7 and having
the first and last two rows replaced by boundary conditions. The ma-
trix M is given by M = c4D4 + c3D3 + (c2 + c5wT Tw)D2 + c1D1 +
c0D0, with its first and last two rows also including boundary
conditions.

Coherent Structures
The discretized model presented in the preceeding section is ac-

curate and requires a moderate computational effort to predict the
dynamics of the aeroelastic system. The results obtained can be
used for identifying coherent structures. One of the techniques used
for extracting these coherent structures present in the dynamics of
the system is POD.23,24,26−29 To apply the POD method, the finite
difference method is first used to obtain snapshots of the state of
the panel at a series of time instants. These snapshots are organized
as column vectors in a matrix R so that R = [wk1 , wk2 , . . . , wkm ],
where ki are m time instants where the snapshots are collected. A
two-point correlation matrix C is then formed, C = RTR. The matrix
C is a real m × m symmetric matrix, which is positive or semiposi-
tive definite and has a set of real eigenvalue–eigenvector pairs. The
eigenvalues and eigenvectors of the matrix C are denoted by λ1, λ2,
. . ., λm and e1, e2, . . . , em . They are organized in decreasing order,
that is, λi ≥ λi + 1. The largest eigenvalues correspond to dominant
structures in the dynamics of the panel. Thus, the first n eigenvectors
represent dominant structures and are selected, with n � m. Next,
the shapes of the n dominant structures are obtained as bi = Rei ,
i = 1, 2, . . . , n.

The shape of the panel may be approximated as a linear com-
bination of dominant structures bi . The vectors bi are grouped as
columns of an N × n matrix P, that is, P = [b1, b2, . . . , bn]. The
shape w and velocity v of the panel points are approximated as

w = Pw̃, v = Pṽ (7)

where w̃ and ṽ are n-dimensional vectors. Substituting Eq. (7) into
Eq. (6) and left multiplying the result by

[
PT 0

0 PT

]

one obtains a model for the dynamics of the coherent structures as
[

PT P 0

0 PT P

][ ˙̃w
˙̃v

]
+

[
0 −PT P

PT A−1MP PT A−1BP

][
w̃

ṽ

]

=
[

0

PT A−1q

]
(8)

The full model is first integrated in time, and time series are col-
lected. Then, snapshots of the shape of the panel are selected and

used to obtain a model for the dynamics of the dominant structures.
The convergence of the full-order finite difference method with re-
spect to the number of spatial discretization points has been carefully
tested, and s = 100 has been found to be a satisfactory choice. For
the same considerations of convergence, the time step used to inte-
grate Eq. (6) in time has been set to τ = 0.01. The time integration
has been carried out using the Gear method and the solver provided
by the International Mathematics and Statistics Libraries (IMSL).

Numerical Results
Chaotic dynamics is typically more sensitive to parametric vari-

ations than other types of behavior. For example, stable limit-cycle
oscillations of the panel forced by aerodynamic loads are less in-
fluenced by the changes in the rigidity of the upstream mounting
point. Figure 2 shows that the limit cycles of the aeroelastic system
are virtually identical for two very different rigidities, R = 0 and
R = 2 × 10−5. The parameters of the aeroelastic system undergoing
limit-cycle oscillations are Rx = −2π2, λ = 350, P = 0, ν = 0.3, and
µ/M = 0.01.

To investigate the sensitivity of the chaotic dynamics to paramet-
ric changes, a set of parameters of the aeroelastic system have been
chosen based on a bifurcation diagram of the dynamics, as shown
in Fig. 3. A chaotic regime has been selected by setting the param-
eters to Rx = −4π2, λ = 150, P = 5, ν = 0.252, and µ/M = 0.01.

Fig. 2 State-space plot of quarter point displacement for two distinct
parameters R corresponding to two distinct stiffnesses k of the upstream
endspring and a panel exhibiting limit-cycle oscillations.

Fig. 3 Bifurcation diagram of the magnitude of the quarter point dis-
placement for varying Rx.
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These parameters have been chosen to ensure the presence of chaotic
dynamics. Indeed the significant advantages of the proposed anal-
ysis are accompanied by a limitation, that is, the requirement that
a chaotic oscillation be present. Nevertheless, this limitation may
be overcome when a chaotic excitation may be provided to the sys-
tem, for example, such excitation has been used successfully in
other research.19 Also, such dynamic behavior has been observed in
many applications in industries such as aerospace, nuclear, telecom-
munications, and sensors (wings,34,38−41 panels forced by flow-
induced loads,42−49 rotors,50 pipes,51−53 heat exchangers,51,54−56

microsystems57,58 such as microplates). Also, other studies of sim-
ilar aeroelastic systems provide additional details in regard to the
parameter range where chaotic dynamics occurs.35,48,49

Time series obtained for four distinct nondimensional rigidities
are shown in Fig. 4: case a, R = 0; case b, R = 1.739 × 10−8; case c,
R = 2 × 10−8; and case d, R = 2 × 10−7. For simplicity, only the
displacement of the quarter point of the panel is shown, that is, w at
x = 1

4 . A clear distinction between cases a, c, and d can be observed.
This distinction reflects the large differences in the rigidity of the
upstream mounting point (which varies from zero to order 10−8, and
then to order 10−7). A much finer distinction is observed between
cases b and c, which correspond to stiffnesses differing by 15%.
All four cases exhibit chaotic oscillations and are characterized by
maximal Lyapunov exponents larger than 2.

The time series shown in Fig. 4 indicate that a simple observation
of one point of the panel may reveal large parametric changes. For
example, a qualitative difference may be observed between cases a,
c, and d. However, small parametric changes may be more difficult
to detect, as shown by the similarity between the time series for
cases b and c. A more elaborate analysis is necessary to decompose
the dynamics of the plate in components corresponding to coherent
structures (or dominant modes) present in the dynamics. Moreover,
several invariants of the dynamics, such as the fractal dimension
of their attractors, are sensitive to large parametric variations and
relatively insensitive to small variations. For example, Fig. 5 shows
the fractal dimensions of the attractors of the dynamics for cases
a–d using an embedding dimension of 12. The details about em-
bedding dimensions and the calculation of fractal dimensions are
omitted here for the sake of brevity, but they are provided in the
literature.59−63 The correlation (fractal) dimension C(ε) is plotted
vs the box dimension ε in a log–log plot in Fig. 5 and shows a mul-
tifractal structure, with dimensions ranging approximately from 2.5
to 4.5. There is a clear distinction between cases a, b, and d, which
correspond to large parametric variations. However, there is a small
difference between cases b and c, where the parametric variation

Fig. 4 Time series of the quarter point displacement for four distinct
parameters R corresponding to four distinct stiffnesses k of the upstream
endspring.

Fig. 5 Fractal dimensions of embedded attractors for cases a–d using
12 embedded coordinates.

is small. Nevertheless, a more detailed analysis of the attractor is
capable of revealing small parametric changes. For example, the
first-order inertial moment of the set of points representing the at-
tractor in an embedded space with 6 and 12 dimensions shows a
relative change of 25% in the largest inertial moment between cases
b and c. This difference is substantial and robust to random noise.
To test its robustness, we introduced white noise in the time series
analyzed. The noise has has been considered to have a magnitude
of 5% of the signal. The resulting change in the estimated largest
inertial moment has been of less than 1%, which is much less than
the change of 25% due to parametric variations.

The maximal Lyapunov exponents computed for all cases dis-
cussed are larger than 2, which is a result confirmed by the apparent
lack of periodicity in Fig. 4. The fractal dimensions (shown in Fig. 5)
and the maximal Lyapunov exponents are discussed to provide a
means to compare the current approach to other methods based on
nonlinear techniques presented in the literature.18,19 The proposed
method is not based on Lyapunov exponents or fractal dimensions
for damage detection because of the difficulties regarding the practi-
cality of experimental data collection required by such approaches.
Moreover, the technique proposed shows a much larger sensitivity
to parametric variations than the method based on Lyapunov expo-
nents or fractal dimensions. Additionally, the geometric shape of the
sampled attractor (in a Poincaré section) is much easier to obtain. For
example, a sampling rate of about 100 samples per nondimensional
period of the linearized aeroelastic system provides sufficient data
for the proposed method in just a few (50–100) periods. Thus, for a
system with a linearized natural frequency of about 100 Hz, just a
few seconds are sufficient for collecting the necessary data.

The POD method is used, and a correlation matrix is obtained
based on 100 snapshots collected over the time interval from τ = 0
to τ = 50. The eigenvalues λi of this matrix are shown in Fig. 6. Sim-
ilar snapshots are collected for each value of the upstream endpoint
rigidity. The rapid decrease in the magnitude of the eigenvalues λi

indicates that a strong spatial correlation exists between the dynam-
ics of various points on the panel. The spatial coherence is consistent
with the temporal chaotic behavior observed in Fig. 4 because the
dynamics of each coherent structure is chaotic in time. The six dom-
inant POD eigenfunctions are shown in Fig. 7. Note that the shape
of the dominant structures vary with the parameter R. However, the
variation of the dominant modes is small even for large variations
in the value of R.

The dynamics of each of the dominant coherent structures is
chaotic, as shown in Fig. 8. However, qualitative differences may be
observed between the four cases. Large differences are observed, es-
pecially for the first dominant coherent structure even for small para-
metric variations. To detect these changes, we computed Poincaré
sections of the strange attractors of the dynamics of the quarter
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Fig. 6 Eigenvalues of the correlation matrix for four distinct param-
eters R corresponding to four distinct stiffnesses k of the upstream end
spring.

Fig. 7 Dominant coherent structures for four distinct parameters R
corresponding to four distinct stiffnesses k of the upstream endspring.

Fig. 8 Time series of the first most dominant coherent structure for
R = 0, that is, a rigid upstream spring, R = 1.739 ×× 10−8, R = 2 ×× 10−8,
and R = 2 ×× 10−7.

Fig. 9 Poincaré plot of the first coherent structure for four distinct
parameters R corresponding to four distinct stiffnesses k of the upstream
endspring.

point and each of the first six dominant coherent structures. These
Poincaré sections were obtained by sampling in time at a frequency
that was a priori chosen. For autonomous systems (such as the aero-
elastic system discussed herein), the sampling interval for sections
defined in time is problem dependent, and no definite choice is
universal for all systems, although the sampling rate is somewhat
related to the (order of magnitude of the) natural frequency of the
system. A more usual choice would have been “every time the ve-
locity of the 1

8 point (or some other point but not the 1
4 point) changes

sign.”62 Nevertheless, the sections defined in time can also convey
ideas about the behavior of the vector field. In the present investi-
gation, the main period of the oscillation just before chaos has been
computed, and based on that, the Poincaré sections were obtained by
sampling in time at every 0.01 nondimensional time unit. Figure 9
shows the Poincaré section obtained for the quarter point. Similar
to the observation of the time series shown in Fig. 4, the Poincaré
sections reveal large parametric changes. (Note the scales of the ver-
tical axes.) However, small parametric changes are not as easily ob-
served. In contrast, the dynamics of the coherent structures provides
much more detail. Figure 10 shows a clear distinction between the
four cases. Observing these attractors, one may detect changes of
as low as 15% in the stiffness of the upstream endspring. The first
dominant coherent structure reveals these differences most clearly.
Nevertheless, the dynamics of the other five (of the total of six) dom-
inant coherent structures (not shown here for the sake of brevity)
reveals the parametric changes also (but with less sensitivity).

The relative distribution of points in the Poincaré sections shown
in Fig. 10 may be investigated and quantified using various tech-
niques developed within the pattern recognition community64,65

to detect changes in their geometric appearance. One of the sim-
plest methods is based on histograms. Figure 11 shows the his-
togram obtained for cases b and c, where R = 1.739 × 10−8 and
R = 2 × 10−8. A quantitative difference may be observed, espe-
cially around the maxima at w̃1 = ±0.075. An even more dramatic
difference is observed between cases a and d, where R = 0 and
R = 2 × 10−7 (Fig. 12). More detailed analyses may be performed
to quantify the differences in the shape and distribution of points of
the attractors shown in Fig. 10. Nevertheless, the key aspect is that
decomposing the dynamics of the aeroelastic panel along a basis of
the vector space spanned by the dominant structures of the dynam-
ics and employing Poincaré sections of the strange attractors for
each coherent structure is a valid and powerful method for detecting
parametric changes.

The effectiveness of the proposed technique may be estimated by
comparing it to a standard linear analysis where stiffness loss in the
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Fig. 10 Poincaré plot of the quarter point displacement for four dis-
tinct parameters R corresponding to four distinct stiffnesses k of the
upstream endspring.

Fig. 11 Histogram of the point distribution in the Poincaré plot for the
first dominant mode for cases b and c.

Fig. 12 Histogram of the point distribution in the Poincaré plot for the
first dominant mode for cases a and d.

structure is monitored. A linear model may be obtained by setting the
parameter G in Eq. (4) to zero, that is, linearizing the model. Next,
the modes and frequencies of vibration of the linearized system may
be obtained. The frequencies of vibration have been determined for
various stiffnesses of the upstream spring corresponding to R values
from zero to 10−5. Despite the large change in the parameter R
(an interval 100 times larger than the changes studied by nonlinear
means), the variation of the first three (linear) modes and frequencies
has been very small, of a magnitude less than 0.05%. In contrast,
the monitored features obtained by the nonlinear analysis are much
more sensitive and undergo changes of more than 25% for a much
smaller variation of the parameter R. Thus, the sensitivity obtained
in the current approach is approximately 4–5 orders of magnitude
higher than linear methods. The advantages of the proposed analysis
are accompanied by a few limitations. The most important limitation
is the requirement that a chaotic oscillation be present. However,
this limitation may be overcome when a chaotic excitation may be
provided to the system.

Conclusions
The dynamics of an aeroelastic system composed of a panel

forced by unsteady buffeting aerodynamic loads and undergoing
limit-cycle oscillations and chaos has been investigated. The non-
linear von Kármán plate theory has been used to obtain a model for
the panel, whereas a linear piston theory has been used to model
the quasi-steady flow forcing the panel. The focus has been on de-
tecting parametric changes in the system. The upstream endpoint
of the panel has been considered supported by a spring of vari-
able stiffness. Changes of 15% in the stiffness of the spring have
been detected by exploring the chaotic dynamics of the panel. The
sensitivity of the chaotic behavior to parametric changes has been
shown to be an effective tool in detecting structural changes. A finite
difference method has been used to simulate the dynamics of the
aeroelastic system, and coherent structures of the panel dynamics
have been identified using proper orthogonal decomposition. The
sensitivity of the dynamics of the coherent structures to parametric
changes has been discussed. The dynamics of the panel and flow
have been decomposed along a basis of the vector space spanned
by the dominant structures of the dynamics. Poincaré sections of
the strange attractors for each coherent structure have been used to
detect parametric changes.

The relative distributions of points in the Poincaré sections have
been investigated to detect changes in their geometric appearance
(by using histograms and first-order inertial moments of sets of
points). A more quantitative measure of the change in the geometric
characteristics of the attractors and the extent, level, and location
of the damage is highly desirable, and future research will address
it in detail. The current paper has addressed two other comple-
mentary issues, that is, the existence and importance of the co-
herent structures and the level of (high) sensitivity of the geomet-
ric shape of the attractor to parametric variations in the aeroelastic
system.
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