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ABSTRACT 

The small-scale stmotue of turbvlent 
natural convection based on the concepts 
introduced by ~olmogarov and Taylor and 
extended by lirpaci is further extended to 
incorporate the effects of radiation. On 
dimensional grounds, a radiation-affected 
t h e d  microscale for flluds with Pr 2 1, 

/I,) - wa2/PB11~4 Pr-l/'ll+r[l-sw/(Zrl JrP]'/Z 
[ l + P r + T [ l - I : w l  12'0 ITPl'I~ 

is proposed. Two llmits of this scale 

without radiation effects for PT' ~ 1 and Pr 
--t cr are the Kolmogorov a d  Batchelor 

expressed in re- of the buoyancy force 
rather than of the buoyant production of 
energy. is shown to be 

TI,, - lvalg~lATl'/3~r~'/3[l+~[1-~:,1 ( 2 7 )  I z P ] ' / ~  

sca le* ,  respectively. A n  alternative form,  

[l+Pr+r[l-*:"/ 1 2 0  ITPl'/3 

A heat transfer model based on thls scale 
for radiation affected turbvlent natural 
convection, with a chazacteristic lanqth 1 

W of the geometry, is shown to be 

Nul - R1,~/~pr~/3[l+~[l-L"~~21~ l r ~ l - i / =  
[ l + P r + i J 1 - , : ~ ~ 1 2 1 1  1 ~ - 1 / 3  + 4 1 T - c w ~ 2 ) T p 1  

NOMENCLAlVPE 

a t h e m l  diffuaivity, k/ Ipc) ; 
c speoific heat at constant 

PzePSuTe; 
c 1 , ~ 2 , ~ 3  constants in the correlation 

of! heat transfer foe laminar 
flow; 

=b black body emiasion; 
9 gravitational acceleration; 
Gx local Graehaf number, 

sllATx3/v2; 
k t h e m l  conductivity; 

Planak mean of absorption 
coefficients: 

kP 
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kR Roeseland mean of abso-tion 
coefficients: 

kn mean absorption coefficient. 
lk,/k,l 'I2; 

N" looal Nusaelt number; 
P Planck number, 

P inertial produotion; 
PB buoyant production; 
Po thermal production: 
PT Prandtl number, "/a; 
P, ambient Planck number, 

4nT,'/ lkkpT,) : 
heat flux; 

rates; 

local Rayleigh number, 
g13ATx3/ l v a )  ; 

difference and wall 
diffueive emissivity 
effects; 

velocities in the 
x-direction; 

I%.-%-) / lkkDAT) ; 

4 
sij,sij mean and fluctuating strain 

T temperature; 
R=, 

%: combined temperature 

U,U fluctuating and mean 

V Kolmogorov velocity soale; 
x variable along plate wall; 
Y variable normal to plate 

wall. 

Greek symbols 

coefficient of thermal 
expansion; 
difference of the 
corresponding value; 
local dimensionless number. 
T ~ /  [GX/4)'l4 ; 
thioknesa of the momentum 
boundary layer; 
thickneea of the thermal 
boundary layer: 
dissipation; 
diffusive emissivity of 
plate wall; 
weighted nongrayness, 
(kp/kR)1/2, or Kolmogorov 
length scale for turbulent 
flows; 
thermal length scale for 
turbulent flows; 
temperature ratio, 
(T.-T=) /Tw; 
kinematic visooeity; 
density of the fluid; 
Stefan-Boltzmnn constant; 



optical thickness. kpqu, for 
turbulent flows; 

for laminar flows; 

temperature scale: 

xx local Bauguer number, k,x, 

(1 ,e) temperature scale and mean 

Superscripts 

c convection; 
k conduction; 
R radiation: - instantaneous value; 
. mean value. 

subscripts 

1 quantity based on the length 
scale of geometry: 

i,2 direction index; 
0 reference value: 
x local value; 
w wall value; 
oc ambient value. 

1. INTRODUCTION 

The small-scale Structure of 
turbulence has received intensive 
attention after Taylor' and Rolmogoro+, 
who respectively proposed an inviscid 
cstimate for dissipation in homogeneous 
turbulent flows and an isotropic 
estimte for kinetic scales for this 
drssipation. This fundamental idea W a s  

extended to the small scales for 
dynamically passive scalar contaminants 
xn a turbulent flow by OboukhoP, 
Corrain4 and Batchelor5. Also. Priestley6 
modelled the turbulence in the lower 
atmosphere and Townsend' measured the 
turbulence in tern of these scales. 

Although the s m a l l  scales have 
been extensively used in the development 
of some energy and entropy spectra, 
their relevance to the foundations of 
heat and mass transfer oorrelations have 
been overlooked except for the recent 
studies by Arpaai et al.'-'* who all 
showed that the microsoalee have 
significance in heat and mass transfer 
correlations. Yet the radiation affected 
microscalerr. which are very important to 
the modelling of some combustion 
phenomena such a18 large-scale fires, 
industrial furnaces and ~ombustors"~'~, 
SO far remained undisclosed. 

The objective of this study is to 
demonstrate the effect of thermal 
radiation on the m i c r ~ s ~ a l e ~  of 
turbulent natural convection and also 
the relation between the small scale and 
the integral scale of turbulence. The 
paper begins with the problem of laminar 
natural conveotion which is used to 
illustrate the uae of dimensional 
arguments. This is followed by the 
development of the relevant thermal 

scale and the heat transfer correlation 
based on this scale. and finally, by the 
oonc1usions of the study. 

2 .  RADIATION A F F X T E D  LAMINAR 
YATURAI. CONVECTION 

Problem description 

Consider a heated, see-infinite, 

stagnant and radiating gas. TO simplify 
the problem and to compare the results 
of the present study with that of 
~ r p a c i l ~ ,  the following assumptions are 
made: the gas is perfect. thin and gray. 
Radiation pressure, acattering, and the 
contribution of radiation to internal 
=nergy are negligible. Non-equilibrium 
=ffects other than diffusion and 
radiation are also neglected. 

Radiation 

vertical plate in an infinite expanse of 

The relevant radiative heat flux 
for one-dimensional thin gas i d 6  

dr?/dy=4k~q @-E,) -%, (Ebw-Ebcc) 
exp1-d3kMy) /21 I11 

Here k,=(k,k,)llz, q=lkp/ka)'~z, where k, 
and k, denote the Planok mean and 
Rosseland mean of absorption 
coefficients, reepeotively. For the gray 
gas (q=1), equation 11) is reduced to 

d@/dy=4k, [ I%-E,I - C w l % w - % ~ l  

exp(-d3kpy)/21 . 12) 

Dividing this expression into two te- 
and considering the value clone to wall. 
aa follows: 

d$/dyI, = dgRldy), + a$./dy)2, 

where d+/dy) I=4kpl%-%.r) denotes the 
radiative energy difference between the 
local element and A i e n t  with a 
charaoteristic length 6 which is 
relevant to the gradient of the 
radiative heat flux; and d$'/d~)~=dk~ 

[ -6" l%w-%zl exp l-d3kpy) /2] the radiative 
energy difference between wall and 
ambient due to the attenuating effeote 
noticed by Arpaci et al.17 with a 
characteristic length l/kp. 

13) 

On dimensional grounds, 
linearizing %"-%, assuming G A T ,  the 
radiative heat flux can be approximated 
as 

@w ~ 4kpd'~311 [fi-2k:,,/kp] I41 

and 

d4R/dyl. - 4mTK30%s, I 5 1  

'4 

'W 
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where RTt:=kpf ( A I  ( 1 - ~ : ~ / 2 ) ,  with f ( h ) = ( h  
+Z) (A2+21 and A=(Tw-T,I/T,, describes 
the combined effects of the temperature 
difference and the wall emissivity. 

Dimensional Analysis of governing 
equations 

Eased on the foregoing ass-tione 
the momentum balance becomes, on 
dimensional grounds. 

U U/x + Y U/fi2 ~ g ApIp ~ g /I AT, ( 6 )  

where 6 is the thickness of the mamenturn 
buoyancy layer and is the ooefficient 
of t h e m 1  expanaion of the fluid. 
Equation (61 states that 
the driving buoyancy force, is balanced 
by the inertial force and the viscous 
force (dissipation). Also the thermal 
balance is 

u O/x - l/pc(k O / f i o 2  + d@/dy) 171 

80 being the thickness of the thermal 
boundary layer. Equation (7) states that 
the heat carried by the fluid come from 
conduction and radiation. Following the 
assvmption made by Squirex6 as far aa the 
heat transfer is ooncerned, that is 

6 - SUI (81 

W 
and inserting equation (51 into equation 
(71 results in 

u - ax/8,2 + a%g,%,. (9) 

where a=k/po is the thermal diffueivity 
of the fluid, TX=kpx is the local Bouger 
number and p,=loT,'/(kk,T,) is the 
ambient Planck number. Thus, from 
equations ( 6 1 ,  181 and (9). and with the 
assvmption 
rx4p,2/G, << 1, one obtains 

~xl6l~(l+l/Prl 
+ (XI61 2Tx%,%,, ll+Z/Pr) - Ra,, (101 

where P r = v / a ,  G,=g/jATx3/vz and mx=gpA 
Tx3/va, are the Prandtl number, the 
local Grashof number and the local 
Flayleigh number. respectively. To 
simplify the analysis, equation (101 ia 
rearranged with the assumptions of Pr-1 
and xX4pm2 << G, to yield: 

W i t h  a truncated binomial expression, 
equation (11) gives 

Heat Transfer 

me energy balance at the wall 
gives 

qc, = 4L. + s", 113) 

The local Nusaelt number 15 then a9 

~u~ = q',/4*, = +,I$, + +,Is*, (14) 

&et the conduction near the wall be 
characterized by the thickness of the 
sublayer, 6,. The NuQeelt number thus 
becomes 

NU% - (*AT/&,)/ (kATIx1 + e,,/ IkATlx) 

Or, 

Nux ~ x/S, + @+/(kO]. I151 

Combining equations 14) and 1121 with 
equation (151 and neglecting the higher 
order tern, equation (15) leads to 

Nux/GX1I4 " 1 + tcwrxp= 
-L',2p, I l + % J Z l  , (161 

where rX=zx/ (Gx14)1/4 is the 
dimensionless number describing the 
ratio of radiation to buoyancy. An 
equality corresponding to equation (16) 
ie 

NUx/IGx/411~' ii c1 + c2rxpx 
+ =Jz2P=, I171 

where c1,c2 and cj are the n-rical 
owstants. The method of multiple 
regression was employed to obtain the 
best fit to Arpaci's I-esulta15 for k 
=0.1, cw=l.O and Pr=0.733, The resulting 
numerical valuea for cI, cz and cj are 
0.53997 and 1.16017 and -1.251, 
respectively: and the standard errore 
for these coefficients are leea than 10 
and the correlation coefficient is 1.0. 
This excellent agreement between current 
study and AIpaEi'd5 is ahown in Fig. 1. 

Without the radiation effects, equation 
(17) reduces to Squire'a solution for 
laminar natural convection along a 
vertical plate. Although equation (17) 
w a a  fitted without the effecta of 
temperature difference,h. it is still 
quite appropriate since the scaled 
Nuaselt number, NU~/(G.J~I'/~, is a weak 
function of A,  embedded in +s, which is 
also demonstrated in the Fig.2 of 
Arpasi'e'5 with ems11 r,. Besides, the 
scaled radiative Nuaaelt number without 
the constant term which represents the 
contribution from the pure natural 
convection is proportional to the 
optical thickness, rx, which is also 
obaerved by Arpacils (if the second 
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order term is neglected). In the 
following section, this approximation 
will be used in the turbulent case to 
obtain the t h e m l  scales and the heat 
tranefer correlation. 

3 . W I A T I O N  AFFECTED 
TURBULENT NATURAL CONVECTION 

Radiation 

Similar to the laminar ease 
radiative heat flux in the turbulent 
flow oan be written, on dimensional 
grounds, 8 8 :  

6', - 4T [lh"/ I Z T I  1 l%,-F&l , I181 

where xT=k,qu is the optical thickness 

baaed on q,) and P=(%,-%,l/(kpkA.T1 is 
the Planok number germane to the 
turbulent flaw. Accordingly, the ratio 
of the radiative heat flux to the 
conductive heat flux is, with 

$, - *AT/rli!I 
bl /e* - r[l-c,/lZrllrP. I191 

Again, equation 119) shows that this 
ratio is proportional to the optical 
thickness, 7 ,  if r is small. 

Radiation Affected Turbulence 

Following the uaual practice, decampoae 
the instantaneous velocity and 
temperature of a buoyancy-driven 
turbulent flow into a temporal mean and 
fluctuations 

ui = U, + ui 

where u, and 0, are statiatiaally 
steady. 

For il homogeneous pure shear flow (in 
Which all averaged quantities except ui 
and 6, are independent of position and 
in which the field of strain rate is 
uniform), the balance of the mean 
kinetic energy of veloaity fluctuatione 
yielde feee, for example ,  Tennekee and 

- - 
and 0, = BI + 0, 

Lumley'B) 

(-Pal = P + ( - e l  I201 

where P,=-gju,U/C3, is the buoyant 
production, P=-ulujSIj is the inertial 
production and c=Zve l jSij  is the 

dissipation of turbulent energy, si> and 
q3 being the mean and flqstuating 
strain rate, respectively. Aleo the 
balance of the root mean square of 
temperature fluctvations gives 

P" - E"* + C"R 121) 

where P,,=-ujUi)O/ax is the thermal 
production, ~;, ,*=ala~I/~x, l  lall/ax,l is the 
Conductive dissipation and ~ ~ G ( a / k l  (all/ 
OX3)qjR is the radiative dissipation. 

Equation (201 states that a part of 
buoyant production is converted into 
inertial production while the rest of it 
is dissipated, and in equation (211 the 
t h e m 1  production is dissipated through 
both the conductive and radiative 
dissipations. 

Under isotropy, equations I201 and I211 
respectively reduce, on dimensional 
grounde, to 

'd 

Pg - v3/q + vv2fq2 (221 

and 

v " l l ~ / q ~ ~  - ao2/1,2 (l+*w I231 

where q ,  no, v and Y , ~  arc the Kolmogorov 
scale, thermal mioroacale, Kolmogorov 
velocity ssale and t h e m l  velocity 
soale, respectively. Under the turbulent 
oondition, the thiakness of the thin, 
viscous layer d o s e  to the wall may be 

voztex model developed by C o r ~ s i n ~ ~  and 
TennekesZ0, the dissipation may be 
estimated as vv2/q2.  Similarly, the 
condvotive dissipation is to be 
eetimated as aU2/qU2. 

assumed to be q .  Following the intuitive 

Again, following squire ' s 
postulate for heat transfer , let 'U 

q I qu and v - vu. (241 

That is, the appropriate length ecale 
foz equation (22 )  is qu when the 
equation ia considered for heat 
transfer. 

T h e m 1  scale 

Accordingly, letting q --t q,, in equation 
(221 and substituting v obtained from 
equation (231 into this result. qo can 

be obtained for fluids with Pr>l, 

- (uavpB11/4 pZ-1/4 (1++, 1 + ~ 1 1 / 2  

ll+P=++v / *J1 /4  I251 

Substitution of equation I191 into 
equation 1251 yields 

q" . . 1 ~ ~ 2 / ~ ~ 1 1 / 4   PA^ [1+*11-c,/~2r~~r~]'/2 
[lfPr+T[l-G,/ I Z Z I  IZP11/4 1251 

Without any radiation effects, equation 
(26) will reduoe to the thermal scale 
proposed by rnaciZ1 who also 
demonstrated that this scale becomes the 
Kolmogcrov scale with Pr-1 and the 
Batchelor scale with Pr>>l. 

-4' 



The dimensional approximation of buoyant 
production term is examined again to 
demonstrate the relation between this 
small scale and the integral scale uaed 
in the usual omrelations of natural 

W convection problems. With @,-1=13, the 
production term becomes 

P* - gu(1/(7, . g u p u  . (27) 

Substitution of equation I271 into 
equation (26) and with u f r o m  equation 
(231, equation I261 becomes 

q,,- (va/gllATl'/3Pr-'i3 l+T ll--EW/ (271 IzP] 

[ l+PI+Tll-':w/(2Tl IrP] 1(3 128) 

or, in t e r n  of a characteristic length 
I for geometry. 

q g / l  - RaL-1/3Pr-'/3 [ l + ~  ll-c,/ ( 2 0  IrP] 

[1+Pr+r~1-cv/(2T~ I ~ P ]  113 ( 2 9 )  

where Ral=gllAT13/va ie the Rayleigh 
number. 

Heat Transfer 

The energy balance at wall, baaed 
0" 1. 1s 

NU1 $, /4Ll  + b',,/$, 130) 

Assuming that the heat transfer at wall 
is characterized by the thermal scale, q 

v ,), the average Nusselt number based on q 
can be expressed as 

Nul - l / q o  + qW /?i (311 

With equations (191 and ( 2 9 ) ,  equation 
I311 reduces to 

Nul - Ra11/3P~1/3 [ l+rIl-E,/ l 2 T l  IrP] -'I3 

[l+P=+r[l-t:J ( 2 7 )  ITPI -113 + (T--E"/ZlzPI 
I321 

where P,=(EDW-&)1/ (kAT) ia the Planck 
number based on the length of the 
geometry, 1. When the radiation is 
neglected, the Nueselt number reduces to 
Nul - RaL'/31Pr/ ll+Prl ] ' I3 whish is also 
obtained by ArpaciZ3. However, the 
cornon experimental Correlations are Nul - Ra" with n always leas than 1/3. The 
reason f a r  this diaagreement is a result 
of the usually ignored Prandtl nvmbor 
effect. 

4.CONCLUSION REMARKS 

This study employs an intuitive approaoh 
to relate the microscales and the 
integral scale of turbulence to the heat 
transfer correlations. It constmote a 

heat transfer model without making any 
reference to the eddy viscosity which 
does not have any physical basis. The 
radiation effects on the turbulent 
natural convection problem were modeled 
following the suaoess of the dimensional 
analysis on the laminar natural 
convection. A radiation-affected heat 
transfer model which is valid for PeZl 
in proposed based on the radiation 
affeoted t h e m 1  micros~ale and the 
integral soale. In the absence of 
thermal radiation, the model reduces to 
the model proposed by ArpaciZ1. To date. 
there appear- to be no experimental data 
in the literature on the radiation- 
affected turbulent natural convection. 
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