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RADIATION AFFECTED
TURBULENT NATURAL CONVECTION

J. -5, Wu*, P.-K. Wu**

ABSTRACT

The small-scale structure of turbulent
natural convection based on the concepts
introduced by Kolmogorov and Taylor and
extended by Arpaci is further extended to
incoxrporate the effects of radiation. On
dimensional grounds, a radiation-affected
thermal microscale for fluids with Pr > 1,

Mg ~ (val/Bg /4t Pl ase -,/ (20 1eR] /2
[1+Br+tll-g,/(2v) }7R1 14

is proposed. Twoe limits of this scale
without radiation effects for Pr ~ 1 and Pr
— « are the Kolmogorov and Batchelor
scales, respectively. An alternative form,
expreased in terms of the buoyancy force
rather than of the buoyant production of
energy, is shown to be

Ny ~ AvalgBATI1/3pr 3 [Letil-n, / (27) 1TR] 113
[1+Px+1[1—sw/(21)]t9]1/3

A heat transfer model based on this scale
for radiation affected turbulent natural
convection, with a characteristic length 1
of the geometxy, is shown to be

Wu, ~ Ra,}/?prt/3[1er[1-c,/ (27) JR}7L/3
[1+PE+T{l-6,/ (20 1TR]"1/3 4 4(r-¢ /2) 1P,
NOMENCLATURE

a thermal diffusivity, k/(pc);

c specific heat at constant
pressure;

Cq,€3,C3 constants in the correlation
of heat transfer for laminar
flow;

Ey, black body emission;

g gravitational acceleration;

Gy local Grashof number,
gfaTx3/v2;

x thermal conductivity;

kP Planck mean of absorption
coefficients;
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Rosseland mean of absorption
coefficients;

mean absorption coefficient,
(kp/kR)llz;

local Nusselt number;

Planck number,

(B, ~Ep )/ (kk AT) ;

inertial preduction;

buoyant production;

thermal production;

Prandtl number, v/a:

ambient Planck number,

40T, Y/ (kkpT. ) ;

heat £lux;

mean and fluctuating strain
rates;

temperature;

local Rayleigh number,
gPATx?/ (va) ;

combined termperature
difference and wall
diffusive emisaivity
effects;

fluectuating and mean
velocities in the
x-direction;

Rolmogoreov velocity scale;
variable along plate wall;
variable normal to plate
wall.

Greek symbols

B

Ty

=]

coefficient of thermal
expanaion;

difference of the
corresponding value;

local dimensionless number,
1,/ 8,/ 4174,

thickness of the momentum
boundary layer;

thicknens of the thermal
boundary layer:;

disgipation;

diffusive emissivity of
plate wall;

weighted nengrayness,
(kp/kg) 172, or Kolmogorov
length scale for turbulent
flows;

thermal length scale for
turbulent flowa;

temperature ratio,

(T, =T /T, ;

kinematic viscosity;

densgity of the fluid;
Stefan-Boltzman constant;



T optical thickness, kpn,, for
turbulent f£flows;

T, local Bouguer number, kpx,
for laminar flows;
0,6 temperature scale and mean

temperature scale;

Superacripts
c convection;
k conductiocn;
)23 radiation;

4

inatantaneous value;

mean value.
Subscripts

1 quantity based on the length
scale of gecmetry;

direction index;

reference value;

local value;

wall value;

ambient wvalue.

-
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1. INTRODUCTION

The small-scale structure of
turbulence has received intensive
attention after Tayleor! and Kolmogorov?,
who respectively proposed an inviscid
estimate for dissipation in homogeneous
turbulent flows and an isotropic
estimate for kinetic scales for this
dissipation. This fundamental idea was
extended to the small scales for
dynamically passive scalar contaminants
in a turbulent f£low by Oboukhov?,
Corrsin* and Batchelor®. Also, Priestley®
modelled the turbulence in the lower
atmosphere and Townsend’ measured the
turbulence in terms of these scales.

Although the small scales have
been extensively used in the development
of some energy and entropy spectra,
their relevance +to the foundations of
heat and mass transfer correlations have
been overlocked except for the recent
studies by Arpaci et al.??? who all
showed that the microscales have
significance in heat and mass transfer
correlations. Yet the radiation affected
microscales, which axe very important to
the modelling of some combustion
phenomena such as large-scale fires,
industrial furnaces and combustors!3. 19,
so0 far remained undisclosed.

The objective of this study is to
demonstrate the effect of thermal
radiation on the microscales of
turbulent natural convection and also
the relation between the small acale and
the integral scale of turbulence. The
paper begins with the problem of laminar
natural convection which is used to
illustrate the use of dimensional
arguments. Thisa is followed by the
development of the relevant thermal

gecale and the heat transfexr correlation
based on this scale, and finally, by the
conclusions of the study.

2. RADIATION AFFECTED LAMINAR
NATURAIL CONVECTION

Problem description

Consider a heated, semi-infinite,
vertical plate in an infinite expanse of
stagnant and radiating gas. To simplify
the problem and to compare the results
of the present study with that of
Arpacil®, the following assumptions are
made: the gas is perfect, thin and gray.
Radiation pressure, scattering, and the
gontribution of radiation te¢ internal
energy are negligible, Non-equilibrium
effects other than diffusion and
radiation are also neglected.

Radiation

The relevant radiative heat flux
for one-dimensional thin gas isl®

dg®/dy=4kyn [ (Ep-Eqc) ~Eyy (Epyy—Epec)
exp {-Vakyy) /2] (1)

Here ky={kpka}'/?, n=ikp/kz)*/?, where X,
and ky denote the Planck mean and
Rosseland mean of absorption
coefficients, respectively. For the gray
gas {n=1), equation (1) is reduced to

dgf/dy=dk, [ (B,-E,) ¢, (B, ~Ep.)
exp (-V3k,y) /2] . (2)

Pividing this expression into two terms
and considering the value close to wall,
as follows:

dqt/ay), = ddt/dy), + aq¥/ay),, (3

where dqR/dy)1=4kp(Eb—Ehx) denotes the
radiative energy difference between the
local element and ambient with a
characteristic length & which is
relevant to the gradient of the
radiative heat f£lux; and dqi/dy),=4k,
[—nw(Eb"—be)exp(—VSkpyJIZ] the radiative
energy difference between wall and
ambient due to the attenuating effects
noticed by Arpaci et al.l? with a
characteristic length 1/k,.

on dimensicnal grounds,
linearizing E, -E, ., assuming U~AT, the
radiative heat flux can bhe approximated
as

g, ~ AkpoT 20 [8-2¢, /k,] 4
and
dqi/dy) . ~ 40T %0R,,, (5
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where Rp.=kpfiM) (1-6,/2}, with £(L}=(h
+2) {A?+2) and A=(T,~T,)/T,, describes
the combined effects of the temperature
difference and the wall emissivity.

Dimengional Analysis of governing

equations

Based on the foregeing assumptions
the momen tum palance becomes , on
dimengional grounds,

u u/x + v ufd® ~ g Apip ~ g § AT, (6)

where & is the thickness of the momentum
buoyancy layer and {} is the coefficient
of thermal expansion of the fluid.
Egquation {6) states that

the driving buoyancy force, is balanced
by the inertial force and the viscous
force ({disaipation). Alsc the thermal
balance is

u /2 ~ Upetk 0/8,2 + aqt/dy} (7)

8, being the thickness of the thermal
beundary layer. Equation (7) states that
the heat carxried by the fluid comes from
cenduction and radiation. Following the
assumption made by Squire® as far as the
heat tranafer is concerned, that is

&~ &, (8}

and inserﬁinq equation (5) intc eguatien
{7} results in

u o~ ax/8,% + at,p, Ry, (9)

where a=k/pec is the thermal diffusivity
of the fluid, 1t ,~kyx is the local Bouger
numper and p_=4cT,1/(kk,T,) is the

ambient Planck number . Thus, from
equations (6), (B) and (9}, and with the
assumption

A .
1,%p,?/6, << 1, one obtaings

(x/8)4(1+1/Px)
+ (x/8) %1, p, Ry, (1+2/Pr) ~ Ra,, (10

where Pr=v/a, G,=gfiaTx?/v? and Ra, =gpA
Tx*/va, are the Prandtl number, the
local Grashof number and the local
Rayleigh number, respectively. To
simplify the analysis, equation (10} is
rearranged with the assumptions of Pr-~1
and t1,%,% << G, to yield:

x/8y ~ 61/ (141, tp Ry /6,122 1/2 (11)

With a truncated kinomial expreasion,
equation {11} gives

x/8y ~ GM14x 2p m /G, 2/2/2) . (12)

Heat Transfer

The energy balance at the wall
gives

o = Pt Ry (13)

The lecal Nusselt number is then as

Nux = ch/qu = qkw/qu + qRH/qu (14)

Let the cenduction near the wall be
characterized by the thicknesa of the
sublayer, ©Oy. The Nusaelt number thus

becomes

Ku, ~ (KAT/8p)/ (KAT/x) + qf,/ (KAT/x)

or,
Nu, ~ =x/8, + qix/(x0). (15)

Combining equations {4) and (12) with
equation (15) and neglecting the higher
order terms, equation (15} leads to

Nu, /6,14 ~ 1 + ¢ ' p,
1 7Pu (4R, /2) (16)

where U=t/ (6, /)11 is the
dimensionless number describing the
ratio of radiation to buoyancy. An
equality corresponding teo equation (16)
is

Nux/ ‘fod’:ja = cl + czrxpuc
+ el %p, . (17}

where c,,e, and ¢ are the numerjical
constants. The method of multiple
regression was employed to obtain the
best fit to Arpaci's resultsl® for A
=0.1, ©,=1.0 and Pr=0.733, The resulting
numerical values for ¢;, ¢, and cy are
0.53597 and 1.16017 and -1.251,
respectively; and the standard errors
for these coefficients are less than 18
and the correlation coefficient is 1.0.
Thia excellent agreement between current
study and Arpaci's!5 is shown in Fig, 1.

Without the radiation effects, equation
{17} reduces to Squire's solution for
laminar natural convection along a
vertical plate. Although equation (17}
was fitted without the effects of
temperatuxe difference,), it is atill
quite appropriate since the acaled
Nusselt number, Nu./(G,/4}'/%, is a weak
funetion of A, embedded in R, which is
also demonstrated in the Fig.2 of
Arpaci's!® with small I',. Besides, the
scaled rxadiative HNusselt number without
the constant term which represents the
contribution from the pure natural
convection is proportional to the
optical thickness, I[,, which is also

observed by BArpacil® (if the second



order term is neglected). In the
following asection, this approximation
will be used in the turbulent case to
obtain the thermal scales and the heat
transfer correlation.

3.RADIATION AFFECTED
TURBULENT NATURAL CONVECTION

Radiation

Similar to the laminaxr case
radiative heat flux in the turbulent
flow can be written, on dimensional
grounds, as:

qf, ~ 4t[l-e, /{200 (B -E ), (18

where <t=kp7n, is the optical thickness
based on T, and P={(E,~BE )/ (k kAT) is
the Planck number  germane to the
turbulent flew. BAccordingly, the ratio
of the radiative heat flux to the
conductive heat flux is, with

qk“ ~ kAT/ny,

&, fa®, ~ TI1-,/(27) ITP. (19)
Again, equation (19} shows +that this
ratio is proportional to the optical

thickhesa, t, if 7 is small.

Radiation Affected Turbulence

Following the usual practice, decompose
the instantanecous velocity and
temperature aof a buoyanay-driven
turbulent flow into a temporal mean and
fluctuations

where U, and ©; are statistically
steady.

For a homogeneous pure shear flow (in
which all averaged quantities except U,
and ©, are independent of poaition and
in which the field of strain xate is
uniform), the balance of the mean
kinetic energy of velowcity flustuations
yields (see, for example, ‘Tennekes and
Lumley*®)

{-P,) = P + {-€) (20)

where  Pp=-g,u,0/®, is the buoyant
production, P=—uyu,8,4 is the inertial
production and E=2v8, .84 is the

dissipation of turbulent energy, 8,4 and
;4 being the mean and fluctuating
strain rate, respectively. Alsc the
balance of the root mean square of
temperature fluctuations gives

PU = Cuk + l:nn (21)

where  Py=-u,000/0x is the thermal
production, :;“"=a(0{)/6xj) (('J()/axj) is the
conductive dissipation and kR=(a/k} (30/

ij)q3“ is the radiative dissipation.

Equation (20) atates that a part of
buoyant pxoduction is converted into
inertial production while the reat of it
is dissipated, and in equation (21} the
thexrmal production is dissipated through
both the conduative and radiative
dissipations.

Under iseotropy, equations {20) and {21}
respectively reduce, on dimenaional
grounds, to

By ~ v3/q + vwi/g? (22)
and
v/, ~ a0/ ta+a®, /g5,) {23)

where n, n,, v and v, are the Kolmogorov
scale, thermal miwsroscale, FRolmegorov
velocity scale and thermal wvelocity
scale, respectively. Under the turbulent
condition, the thickness of the thin,
viscous layer close te the wall may be
assumed to be 1. Following the intuitive
vortex model developed by Cerrsin!® and

Tennekes?®, the dissipation may be
estimated as vvZ/y?. Similarly, the
conductive dissipation is to he

estimated as al?/m,2.

Again, following Squire's
postulate for heat transfer , let

n o~ My and ¥~ Vg 24

That is, the appropriate length scale
for equatien {22} is 71, when the
equation is conaidered for heat
transfer.

Thermal scale

Accordingly, letting m - 7 in equation
{22) and substituting v obtained from
equation (23} into this regult, 71, can
be obtained for fluids with Prz],

ng ~ ‘VaZ/PB)ljel py-1/4 (1+qnw /q.kw)h'z
(1+P+qh, /qk,) /% (25)

Substitution of equation (19) into
equation (25} yields

ny ~(va2/Pg) /% prt/4 [14a 1,/ (20) 1P 1/2
[1+Px+tli-e,/ (20) 1] 174 (26)

Without any radiation effects, equation
{26} will reduce to the thermal scale
proposed by Arpaci?l who also
demanstrated that thia scale becomes the
Rolmogorov scale with Pr+l and the
Batchelor scale with Pr>>1.



The dimensional approximation of buoyant
production term is examined again to
demonastrate the relation between this
small scale and the integral scale used
in the wusual correlations of natural

convection problems. With ©_ "=, the
production term becomes

Py ~ gul/@, ~ guPl . {27)

Substitution of equation (27) into
equation (26) and with u from equatien
(23) , equation (26) becomes

Mg~ (va/giATy 1/ 3pe1/3 [ 14t [1-¢,/ (21) 17p] 1/3
[1+px+rra-2,/ (20) 12R ] 2/2 (28)

or, in terms of a characteristic length
I for geometry,

N/ ~ Ra,"V3pr /2 [14t(l-e /(21) 112 ] 143

[ 1+pr+tii—c,/ (21) 3xp] 2/3 {29)

where Ra,=gfiAT13/va is the Rayleigh
number.

Heat Transfer

The energy balance at wall, based
en I, is

Nu; = gt /9%, + of,/qk, (30}

Assuming that the heat transfer at wall
is characterized by the thermal scale, 7
or the average Nuaselt number based on 7
p can be expressed as

Nu; ~ I/my + &, /9% {31)

With equations (19) and (29), equation
{31) xeduces to

Nu; ~ Ra,2/3pel/3[141(1-¢ / (27) 11} "2/2

[1epreri-e,/ (21)1tR] "2/3 + (- /2)4P,
(32)

where P =(E_-E__)1/(kAT} is the Planck
number based on the length of the
geometry, 1. When the radiatien is
neglected, the Nusselt number reduces to
Nu; ~ Ra,*3[Pr/(1+Px)}1/3 which is also
obtained by Arpaci23. However, the
common experimental correlations are Nuj;
~ Ra" with n always less than 1/3. The
reason for this disagreement is a result
of the usually ignored Prandtl npumber
effect,

4. CONCLUSION REMARKS

This atudy employs an intuitive approach
te relate the microscales and the
integral scale of turbulence to the heat
transfer corrxelations. It construats a

heat transfer model without making any
reference to the eddy wviscosity which
does not have any physical baszis. The
radiation effects on the turbulent
natural convection problem were modeled
following the success of the dimensional
analysis on the laminar natural
convection. A radiation-affected heat
transfer model which is walid for Pr21l
ian proposed based on the radiation
affected thermal microacale and the
integral acale. In the absence of
thermal radiation, the model reduces to
the model proposed by Arpaci?!. To date,
there appears to be no experimental data
in the literature on the radiation-
affected turbulent natural convection.
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