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Abstract

AUTOMATED redesign for frequency changes of un-
damped structural systems is carried out through

generalized dynamic reduction. The redesign involves a
nonlinear perturbation from a baseline design. Generalized
coordinates are introduced to transform the original problem
into a subspace of small size. A nonlinear mathematical
programming scheme is applied in the reduced subspace.

of the eigenvectors. If a truncated set of q modes [G*] is
used, the relation may be only approximate,

where (uq } is the vector of dynamic degrees of freedom. As in
static condensation, the physical degrees of freedom can be
divided into two groups,

Contents
When the analysis of dynamic systems shows undesirable

natural frequencies and mode shapes, it is not easy to know
where and how niuch to modify the baseline system to achieve
the desired goals. Stetson et al.1'2 developed the first-order
perturbation equations and applied the approach successfully
to redesign of jet engine compressor blades.

When changes become large, however, it has been found3

that the first-order perturbation equations are not sufficient,
especially for significant mode shape changes. A nonlinear
inverse perturbation method was developed that proved to
give accurate redesign results for beam structures.

While the mathematical programming technique combined
with the finite element method is a direct and effective ap-
proach, the major difficulty in large problems is the huge
computing effort necessary to evaluate the functions and their
gradients with respect to the free variables. The generalized
dynamic reduction is a combination of Guyan's static con-
densation and the subspace iteration method. Dynamic
equations are formulated in terms of a set of both generalized
and physical degrees of freedom. Hence, the size of the
dynamic system can be reduced substantially more than
through Guyan's static condensation without loss of ac-
curacy.

The general eigenvalue problem arising in discrete struc-
tural systems can be expressed in a matrix form

[*][*] = [/>!][*] [A] (1)

If the masses and stiffnesses are changed, the frequencies and
mode shapes also change. The equilibrium equation for the
perturbed eigensystem is

The eigenvector expansion theorem shows that any
displacement vector can be expressed as a linear combination

(4)

where { u 0 } is the slave set to be condensed out and { u t } the
master set included in the analysis.

The reduction procedure for the slave set is defined in terms
of the master set and the generalized degrees of freedom,

Hence,

= [G*oq}-[Got}[G*q]

(5)

(6)

For convenience, let us consider a single mode. If there are
no physical degrees of freedom in the analysis set, i.e.,
{ u t } = 0, the equation of motion of the perturbed system can
be simplified as

where

[K'aa]\uq\=\'[M'aa}\uq}

[K'aa} = [G'oq}T(k'00}[G'oq]

[M'aa} = (G'oq]T[m'00}(G'oq}

[G'oq] = [G*;]

(7)

(8a)

(8b)

(8c)

If one assumes that [G*q] contains the approximate
eigenvectors accurately enough to represent the lowest modes
of the perturbed system, it can be used in place of [G*q ] and
Eqs. (8) can be written as
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[Goq}T( [k00 ] + [M6

[Goq}T[m'00] [Goq]

(9a)

(9b)

Substituting Eqs. (9) into Eq. (7), one gets the residual error
vector in terms of a ratio of thicknesses, <xe = h'e/he,
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Fig. 1 Baseline system and element groups.

Table 1 Determination of design variables
by mathematical programming

Mathematical programming,
starting point: baseline system

Optimal value

Design
variables Case 1

aj 1.080372
a2 1.124226
a3 1.477911
a4 1.091535

h'/has 1.456787
a6 1.455563
a7 0.926484
a8 0.917883
OL9 0.949289
a tn 0.989839

Case 2

0.974507
0.959126
0.796558
0.940924
0.869299
0.838210
1.000864
1.004945
0.982071
0.924348

Goals
3.213581 (30.00%) 2.224787 (- 10.00%)

(10)

where [ks] and [kL] are, respectively, the linear and
nonlinear parts of the stiffness changes. The penalty function
method3 can be used with Eq. (10) as the equality constraint.

As a case study on a problem of practical size, redesign of a
small aluminum casting4 is considered. A total of 209 grid
points and 312 elements are used for the finite element
modeling. Figure 1 shows the structure composed of plates
and beams. The perturbed elements are divided into 10 design
groups. The redesign goal will be to modify the first flexural
frequency by + 30% (case 1) and - 10% (case 2).

Table 1 shows the thickness changes in each design group
obtained through mathematical programming and the
reanalysis results. The original objective function is the weight
of the perturbed structure, which is to be minimized.

When the dynamic reduction method was applied to
structural redesign for frequency changes, it was found that
the frequencies obtained from the reanalysis were always
lower (more negative) than the desired goal. In the subspace,
however, the mathematical programming solver provided the
exact desired frequency. This implies that the error is caused
by the physical approximation in the truncation of the higher
modes, rather than a loss of accuracy in the equation solver.

The eigenvalue problem in the subspace is

[Goq}T[k'00}[Goq]{u'q}=\'[Goq}T[m'00][Goq}{u^ (11)

The eigenvalue problem in the original space is

[k'00]{u'0}=\*[m'00]{u'0}

Assume that the mode shape { u'0 } can be written as

(12)

(13)

where [H] is the remaining higher part of the "approximate"
eigenvectors and f uq } contains the corresponding generalized
coordinates. Hence, [H] together with [Goq] forms an
orthonormal basis of the original system [m00]. From Eqs.
(11-13), one gets,

{u'q}T[Goq}T[m'00}[Goq}{u'q}(\'-\*)

= { u q } T ( [ G o q ] T [ k ' 0 0 ] [ H } - \ * [ G o q } T [ m ' 0 0 } [ H } )

(14)

Reanalysis
«' X 10~3 3.122100 (26.29%) 2.207268 (- 10.71%)

Baseline system w0 = 2.471985 x 103 rad/s

Since [H] is associated with the higher modes, the term in the
second bracket of the right-hand side is symmetric, non-
singular, and strictly diagonally dominant and hence positive
definite. Therefore, the right-hand side of Eq. (14) is positive
semidefinite and the exact eigenvalue A' is greater than or
equal to the approximate eigenvalue A* because [m'00] is
positive definite.

The inaccuracy due to the insufficiency of the subspace can
be partially compensated for by scaling either rhe goal or the
design variables.5 Also, the final design can be used as
another baseline design for more design iterations.

When the redesign of mode shapes is required, static
condensation might be used. A set of physical degrees of
freedom is then included in the analysis, which makes the
redesign problem more complicated. Work is proceeding on
this topic of mode shape control in large systems.
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