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Abstruct

Dissipative energy flow controllers are designed for intercon-
nected modal subsystems. Active feedback controllers for vi-
bration suppression are then viewed as either an additional sub-
system or a dissipative coupling. These controllers, which are
designed by the LQG positive real control approach, maximize
energy flow from a specified modal subsystem.

1. Introduction

Energy flow has heen widely studied as an effective tool
for analyzing large, interconnected vibrating systems. One of
the key results of this approach is the fact that, within inter-
connected subsystems, energy flow can often be expressed as a
linear combination of subsystem energy.

In active control for reducing vibration, energy flow has heen
considered as a performance index to be minimized [1)-[6]. The
design of these active controllers, however, has some difficulties.
For example, the optimal controller is often noncausal [5] and
thus asymptotic stability of the closed-loop system cannot he
guaranteed. Furthermore, active energy flow control for inter-
connected structures composed of more than two subsystems has
received limited attention due to the lack of energy flow models
for such interconnected systems.

In recent work [7, 8] motivated by Wyatt etal. [9] an en-
ergy flow model was derived for a structure consisting of several
modal subsystems that are coupled either conservatively or dis-
sipatively. In the present paper, our goal is to design active
control laws for coupled subsystems by applying these energy
flow models.

Three typical situations requiring energy flow controllers are
considered in this paper. First, in Section 4, we consider energy
flow control for several subsystems interconnected by conserva-
tive coupling [7]. For such an interconnected system, the control
law can be designed for the system as a whole, which requires
an energy flow model for the entire system including the con-
troller. We thus treat the controller as an additional subsystem
interconnected by a conservative coupling, so that energy flow
is controlled through the coupling.

Next, in Section 5, we consider energy flow control among
individual structural modes. IHere we exploit the fact that struc-
tural modes are essentially coupled by the input and output
matrices. By appropriately enlarging the input and output ma-
trices, we design a dissipative controller that serves, in effect, as
a dissipative coupling [8]. As an application of this approach, in
Section 6 we consider two uncoupled systems that are controlled
by a relative force.
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In both cases the controller is designed to maximize the
steady state energy flow from one of the subsystems, so that
we can reduce the vibration of the specified subsystem. The
control approach we use is due to Lozano-Leal and Joshi [10].
This approach is briefly reviewed in Section 3. Since the con-
troller and plant are hoth positive real, closed-loop asymptotic
stability is guaranteed in spite of modeling uncertainty.

2. Energy Flow Model for Interconnected Systems

In this section we briefly review some results concerning
energy flow obtained in [7]-[9]. Consider r subsystems z1(s)....,
z:(s) interconnected by a linear time-invariant coupling L(s).
Each subsystem z;(s) is assumed to be a strictly positive real
and thus asymptotically stable scalar transfer function. Now we

. . LA -
define normalized white noise w(t) = [i(t)---@,(¢)]T whose
intensity matrix is identity. Assume that the disturbance vector

wo(t) £ [w1(2) - - w,()]T is now given by
wo(t) = Di(1), (1)
where D € R™*" is the constant matrix, then the intensity ma-

X Supwe of Wo(t) is given by S0, = DDT.
For later use, define r x r diagonal transfer function

A .
Z(s) = diag(z1(9), 22(s), . . ., 7:(8)) . (2)
By defining the r-dimensional vectors
a A a
up = [uy - 'ur]T-, Yo = [y - 'yr]T7 vy = [vg - '1’r]T s
we obtain the feedback representation of the interconnected sys-

tem shown in Fig. 2.1 in terms of Z~!(s), which is strictly pos-
itive real, and where vg = Lyy and ug = wg — vo.

u ¥y {Current, Velucity)

. : >| z'is) >

Strictly Positive Real Admittance

L(s} F

Impedance

Yo (Voltage, Force)

Fig. 2.1. Feedback Representation of Interconnected Systemn.
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We now introduce three steady state energy flows PP, Pd,
P!!

coe=1,...,7,
PP = the steady state average energy flow entering the ith
subsystem througlh the ith port of L(s),
P{ = the steady state average energy dissipation rate of the
1th subsystem,
= the steady state average external energy flow entering
the tth subsysten.

Fig. 2.2 illustrates the resulting energy flow model for the
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Fig. 2.2. Energy Flow Model with Three Subsystems.

Furthermore, these encrgy flows satisfy the conservation of

energy, that is,

PP+ Py PE=0, i=L.r (3)

3. LQG Positive Real Control Approach

In this section we briefly review the LQG positive real
control approach developed in [10].
The LQG control approach provides the optimal controller
for the following problem. Given the nth-order stabilizable and
detectable plant

#(t) = Ax(t) + Bu(t) + D1(1), (4)

y(t) = Ce(t) + Dab(t), (5)

determine an nth-order dynawic feedback compensator G.(s) ~

Ac | Be )
[E*—O-] of the formn

&c(t) = Acac(t) + Bey(t), (6)
u(t) = Cez(t), (7)

such that the closed-loop system (4) - (7) with dynamics matrix

1A A BC.
i] gl o]

is asymptotically stable and the II; performance index

J(A, B.,C.) = t]_l}]olo S{—i— /ot[:rT(s)le(s) + uT(8)Ryu(s)}ds
. (8)
= (IG()I3 )

is minimized, where

is the closed-loop transfer function from the unit intensity white

noise disturbance #(t) to the performance variables z(t) = Fyx(t)+

Esu(t) and where D 2 D1 , B8 [Ey E:C., Ry
B.D,

A

ETE\, Ry & ETE, > 0 and ETE; = 0. It is assumed that

He

A, B, C, Dy and E,; satisfy (¢) (A, B) and (A, Dy) are stabiliz-
able, and (i¢) (C', A) and (£, A) are detectable. Furthermore,
for convenience, define V; 2 DlDlr, Va & DgD’Zr > 0, and as-
sume that D,D} =0.

For this problem the optimal compensator (A., B, C.) is

given by

Ac=A-QCT, ¢ - BR;'BTP, (10)
Be = Qv (11)
C.=-R;'BTP, (12)

where (Q and P are n. X n nonnegative-definite matrices satisfying
AQ + QAT + Vi - QCTVICQ =0, (13)

ATP 4+ PA+ R, - PBR;'BTP = 0. (14)

Next we assume that the plant (4), (5) is positive real. For
positive real plants a strictly positive real controller is desir-
able since the negative-feedback closed-loop system is guaran-
teed to be asymptotically stable [11]. The controller obtained
above, however, is not necessarily strictly positive real. For this

problem, Theorem 1 of [10] can be used to obtain an nth-order
Ac Bc
-C:.| 0

minimizes the I, performance index J(Ac, B.,C.). Since the

. A|DB|. - .
plant G(s) ~ [T’_()'] is positive real, there exists a positive-

definite matrix Qo satisfying [12)]

strictly positive real compensator —G (s) ~ ] that

AQU + Q()AT = —LLT, (l'))

QuCT = B. (16)

As shown in [10], if the LQG weights Vi, V3, Ry, R are chosen

according to

Vi = LLT 4+ BR;'BT >0, (17)
Vi = Ry>0, (18)
R > Ty, (19)
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then the dynamic compensator —G.(s) given by (10), (11) and
(12) is strictly positive real. With —G.(s), the negative feedback
closed-loop system matrix A is now asymptotically stable as
explained above.

In the following sections we consider two types of energy
flow control problems in which the plant is positive real. In each
case we design positive real controllers by means of the above
approach.

4. Design of an Energy Flow Controller
as an Additional Interconnected Subsystem

In this section we consider a control problem involving
r — 1 subsystems z;(s) interconnected by a stiffness coupling. In
this problem we assume that the controller z.(s) can interact
with the subsystems only through additional coupling elements.
Thus the controller can be treated as an additional rth subsys-
tem. The transfer functions Z71(s) = diag(z7(s), ..., 22,(s))

and z71(s) are assuined to he expressed by the state space mod-

els
#.(t) = A.x:(t) + Bu.(t), (20)
v:(t) = Caoza(t), (21)
te(t) = Acac(t) + Bey(t), (22)
u(t) = Ceae(t) (23)

respectively, where z,(t) € R™, a.(t) € R™, y.(t) € R"7},
u,(t) € R™™! and y(t), u(t) are scalars. As shown in Fig. 4.1,
Z~1(s) in Fig. 2.1 is now comprised of both Z7!(s) and z7(s),
that is, Z(s) = diag{z1(s). ..., 2,_1(s), 2:(s)], so that the total

number of subsystems is r. Furthermore, yo(t) and ug(t) in Fig.

U,
UQ=[ y ]

4.1 are given by

1:
?I0=li':l’ }

A2

Yo
}

Feedback Representation of Plant and Controller.

Fig. 4.1.

We now assume that the disturbance matrix D € R™" in

Fig. 2.1 is the square matrix given by

_A_ D“O
P[]

where Dy € RU-1X(r=1) This assumption for D can be inter-
preted as that the disturbance w;(t),i = 1,...,7 - 1, is entering
27 1(s), whereas no disturbance enters directly into the controller
271(s). Thus we(t) is now given by wo(t) = [wT(t) 0]T, where

w(t) & [wi(t) - -w,—1(2)]T. Since ug(t) = wo(t) — vo(t) it follows

o = [ '1;: J _ [ w(()t) ] — (1),

which implies that u.(t) is the force vector resulting from the

that

difference of the disturbance forces and the coupling forces, while
y(t) represents the coupling force only as shown in Fig. 4.1.
After the controller is connected, the stiffness coupling L(s)

is given by

1
L{s) = =Cy, (24)
where the r X r symmetric wmatrix Cp, is partitioned as
A | Con Crn
Cp = , 25
t [ CEIZ Craz (25)

and Cpyq € RU-Ux(r-1),
We now assume that x. in (20) consists of both positions and

velocities so that there exists an output matrix Cp such that

/y:(lt = Cp:. (26)

Since v = L(s)yo = 1CLyp. it follows that

vO:CL/yodt:CL [ fy:dt ] =CL [ C;'P;l’z

J udt 'p ] ’ (27

where a scalar state (1) is defined by
. A
;r,pc(t) = u(t). (28)

From (20)-(23) and (27) the feedback system in Fig. 4.1 is

given by
#t) = Az(t) + Da(r), (29)
where
A z.(t) A A; - B:CinCp -B,Cpi; 0
)= | zp(t) |, AZ 0 0 Ce
:Bc(t) _BCC’LI‘pr -BCCL22 Ac
~ B,D;; 0
D] o o
0 0
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We now wish to determine A., B. and C. in {22) and (23) by
means-of the LQG positive real approach described in Section

3. By defining

A -é_ Az - BzC’LllC'l, '—BzCL12 , B é [O' .0 ].]T,
0 0
X . . al B.D 0
C21-CC, =~ Cra), D12 [ 0 " 0 ]

then A and D in (29) can be written as

) A BC, - [ b
=[] =R

Thus by viewing (4, B, C') as a realization of the plant given by
(4) and (5), (29) can be interpreted as an LQG control problem.

As in Section 3 we consider the performance variables
z(t) = Eye(t) + Eqult), (30)

where z(t) S w:(1) and u(t) in (23) is the controller ontput
Tpe(1)
to be included in the cost function.
The controller is now required to minimize the energy flow

into the ith subsystem, that is, to minimize PF. By defining

LAl C: 000 rx2(nz+ng)
Cl—[() 0 (,"-]ER ’

Pf is given by [7]
1. -
PP = §[DDT01T](;,i)- (31)

Thus P is constant and independent of the controller gains.
It thus follows from (3) that minimizing PP is equivalent to
minimizing — P,

To express the dissipation of the ith subsystem P,~d in terms
of the steady state covariance Q 2 lim;_,o, E[x(2)2T(2)], we now
assume that each subsystem z;(s) has constant real part ¢; and

define
Cq 8 diag(er,...,erm1,0) € RTXT, (32)

then P3,i=1,...,r — 1, can be obtained by [7]

P = —[CaC1QCT i, (33)
where  satisfies the Lyapunov equation

0=AQ +QA" + DDT. (34)
Thus the cost — P4 to be minimized is given by

- P! = [CaC1QCT )i - (35)

Now using the definition of Q yields

P = [CaCh(lim E[=(0T ()Tl

= tlim E[ﬁ?CdCﬂ(t)zT(t)C'lre,-]
—

= tlilll E[tr[:er(t)C;re,-e;erclx(t)]]

= lim ET()CTeiciel Cra(t)).

t—rox

Thus, letting the performance matrix E; in (30) be given by
E, = /el C (36)

corresponds to minimizing A

As an illustrative nnmerical example we consider the three
coupled oscillator system with controller as shown in Fig. 4.2,
where ky = 3.5,k = 25, k3 =1, my =1, my = 2, mg = 3,
K13 = 0.5, K13 = 0.6, K93 = 0.7, K1 = 0.8, K2c = 0.9, K3 =
1.0 and ¢; = 0.1,¢3 = 0.2,¢3 = 0.3. Furthermore, let the
white noise disturbances w;(t),i = 1,2,3, have unit intensity
Swiw, = 1, that is, D = diag{l1,1,1,0]. To maximize — PP,
i=1,2,3, we set E; = 0.1 in (30). The resulting energy flow
diagrams calculated by means of the steady state covariance [7)
are illustrated in Fig. 4.3, wlhere OL denotes the open-loop sys-
tem and G¢p, Geg and G3 represent the controllers designed to
maximize — Py, ~ P and —PY, respectively. Fig. 4.3 shows that
the controller absorbs energy from all of the subsystems and re-
duces the energy dissipation from each subsystem. Furthermore,
it can be seen that the controller G; maximizes energy flow from
the ith subsystemn, that is, minimizes the energy dissipated by
the specified subsystem.

To examine the actual reduction of vibration by these con-

trollers, we define the steady-state stored energy by

&2 %mif[u‘f(t)] + %k.-s[z?(t)], i=1,2,3, (37)

where z;(t) and #;(t) are the displacement and the velocity of the
ith oscillator, respectively. Table 4.1 shows that each controller
G successfully reduces the stored energy &; of the correspond-
ing ith oscillator. For example, controller G.; reduces the stored
energy of oscillator 1 to 48.32 percent of its open-loop value.
Bode gain and phase plots of the controllers are shown in
Fig. 4.4, which shows that the gain plot of controller G¢; has a
peak near the coupled natural frequency of oscillator 1, that is,

wi = (k1 + k12 + k13 + k1) /my = 2.3238 (rad/sec). Similarly,
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controller G2 has a gain peak near w, = 1.516 (rad/sec), while
controller G.3 has a gain peak near wy = 1.048 (rad/sec). These
controllers are strictly positive real since their phase plots lie in

the range (—90°,90°).

Controller Ge

Force Actuator Velocity Sensor

pd
K . .
e I\IJ %I\ZC K.!c
m, E Kp|m, K, m,
w |

Fig. 4.2. Coupled Oscillator System with Controller.

OL : 0.1828
Gei1: 0.1498 . 0.4889
Ge2: 0.1389 0.5 glc.., . 0.3045
Ges: 0.1139 I Gez : 0.4634
Ges : 0.4682
oL : 0.0111
Ger @ 0.1955 0.25
Gez2 : 0.0366
Gea: 0.0318
— L(s) 2
OL :-0.0162 OL : 0.0051
Ger: 0.0169 Ger @ 0.0237
Gez: 0.0278 Ge2 : 0.0608
Gea @ 0.0527 Ges: 0.0276
0.1667
Ge : 0.2361 OL: 0.2449
Gez : 0.1252 Ger: 0.2263
Gea :0.1121 Gez: 0.1892
Ges: 0.2224
Fig. 4.3. Energy Flow among Oscillators for the Open-Loop
System and for the Closed-Loop System with Controllers.
[?tored Energy || Open-Loop || Controller 1 | Controller 2 | Controller 3
& 4.2936 2.0747 3.5476 3.8208
(48.32%) (82.63%) (88.99%)
&, 2.0556 1.5775 0.9772 1.6290
(76.74%) (47.54%) (70.25%)
& 1.3458 0.8542 0.7809 0.6374
(63.47%) (58.02%) (42.24%)

Table 4.1. Steady-State Stored Energy for

Three Coupled Oscillators.

Giain Giby

Phase (deg)

N - ST

1) —

Fregquency trad/sec)

0 101 1us 10! 102 103 104
Frequency (rad/sec)
Fig. 4.4. Magnitude and Phase of Controllers
G (solid), G.a(dashed), G 3(dash-dot).

5. Design of an Energy Flow Controller
as a Dissipative Coupling

In the previous section, we considered the subsystemn
interconnection explicitly in the energy flow analysis. As an al-
ternative approach, we view the structure as a collection of un-
coupled subsystems, such as modes, which become coupled only
by means of the feedback controller. In contrast to the previous
section, in which the control is applied to the flexible structure
ouly through the conservative coupling, we now assume that the
control force can be applied to the structure directly and design
a controller to regulate energy flow among structural modes.

Consider a structure subject to unit intensity white noise
disturbances @;(t), i = 1....,n, applied at locations £&q;. The
ith actuator located at &, i = 1,...,m, applies a control force
ui(t). Our goal is to design a controller that maximizes energy
flow from the ith structural mode. For this purpose we consider
each mode as a subsystem to obtain the feedback system cor-
responding to Fig. 2.1 and design a dissipative controller as a
dissipative coupling.

First we denote the modal decomposition of the structure by

(€1 = a(t)wi(€), (38)
=1

where ¢;(t) denotes modal coordinates and ¢;(£) denotes orthog-

onal eigenfunctions. Tlen, using the boundary conditions and

orthogonality properties, it follows that the modal coordinates

g;(t) satisfy

m n

G5(t) + 265wiq5(1) + wigi(t) = D vi(@)w(t) + 3 vi(€a)in(e),
=1 I=
(39)



where we assume proportional damping 2¢;w;. From (38), 7(&;,t)
is the velocity of the structure at the ith actuator position & and
we assume that m velocity sensors are also located at these po-
sitions. Hence the sensors and actuators are colocated and dual.

Now we consider r structural modes and define

2(t) & [0 (1) a) @) - 6@ &0,
u(t) 2 (i) uz(t) - um(®)7,

B(t) 2 [@(1) da(t) - Ba(D)])T,

y(t) & [A(Er,1) 0(Ea,t) - (& )T

Then from (38) we obtain the state space model

#(t) = Az(t) + Bu(t) + Du(t), (40)
y(t) = BTa(t), (41)
where
a block - diag 0 1 X 27
AS o [ 0 —2w; } € R¥H,
o ... 0 ] [0 0 ]
(&) 1(€m) ¥i(€ar) ¥1(€a,,)
0 0 0 0
Ba Pa(€1) Po(&m) DA ¥2(€ay) Y2(€a,,)
0 ... o0 0 ... 0
L 1/”'(51) d’r({ru) J L ¢T(£d1) d’r({rl") i

and B € R¥*™ and D € R¥*™.
To obtain the feedback system equivalent to Fig. 2.1 we in-

troduce the diagonal matrix By defined by

Bo 2 diag(0,1,0,1,...,0,1) € R¥*?,

and define
Z7Y(s) ~ [ ;0 %" } , (42)
vo(t) & Boz(t) € RY, (43)
wolt) & Dis(t) € R, (44)
volt) & —Bu(t) € RY". (45)

We thus obtain Fig. 5.1 where the coupling L(s) is defined by
L(s) & —BG.(s)BT. (46)

Now using the LQG positive real approach we design a strictly

positive real controller G.(s) satisfying
G(s) + Gi(s) < 0, Re[s] > 0, 47

so that L(s) satisfies

L(s)+ L*(s) = -BG.(s)BT - [BG.(s)BT]*
= —B[Gc(s)+ Gi(s)|BT

> 0, (48)

for Re[s] > 0. Thus the coupling L(s) serves as a dissipative
controller which controls the energy flow among the structural
modes. Our goal is to design Gc(s) so that L(s) maximizes

energy flow from a specified mode.

y
-1 0
z =>
r—-—---- L=—===- [
v0| -u y I
- T
L - e D o e e = — = |

Fig. 5.1. Feedback Representation of Coupled Structural Modes.

Next we consider a realization of the feedback system in Fig.
5.1. The transfer functions Z~1(s) and G.(s) are expressed by

the state space models

#(t) = Ax(t) + Bouo(t), (49)
wo(t) = Box(t), (50)
Ee(t) = Acazc(t) + Bey(t), (51)
u(t) = Cezc(t), (52)

respectively. Since ug = wg — vp and BoB = B, it follows from

(40), (41) (49) - (52) that
#(t) = Aw(t) + BCexe(t) + Bowo(t), (53)

ic(t) = Acze(t) + BB z(2). (54)

Thus the feedback system (53) and (54) is given by

i(t) = Az(t) + Dw(t), (55)
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where

By setting C = BT in (5), it can be seen that A has the usual
closed-loop structure.

Now we choose the performance variable in (30) to maximize
energy flow from the ith structural mode, that is, to maximize
—PP. By the same arguinent as in the previous section, this is

equivalent to minimizing — P, By defining
Cha A By O] € R2rx4r (56)
and
A .. . -
Caa = dlag((), 2Ciw1, 0, 2Cawa, - - -, 0, 2CT'WT)1 (5‘)
then P{l, i=1,...,r, is given hy
Pid = _[("l"l("l'l(}(‘v}:;](‘)l,?i)’ (5‘\‘)
where Q satisfies the Lyapunov equation
0 = AQ+QAT+DDT. (59)
Thus the performance index to be ininimized is given by
(CaaCraQC T )i 2y

and in the similar manneras the previous section the perfor-

mance matrix E; in (30) is given by
Ey = V2(wiel Cra. (60)

Finally, since (40) and (41) comprise a state space model of the
structure given by (39), it follows that the plant (A, B,C) is
strictly positive real. We can thus obtain a strictly positive real

controller —G¢(s) in the same manner as in the previous section.

As a numerical example, we now consider the simply sup-
ported uniform Bernoulli-Euler beam of length L in Fig. 5.2.
Tlie partial differential equation for the transverse deflection
n(&,t) is given by

(1) 9? -

/’T-I-a—fg[ElA

P*(€,1)

=1 =1

(61)

with boundary conditions

9%(&, 1)

"](Ev”lf:U.L =1 EIA (){2 |E=O-

L=0,

where p is the mass per unit length, ¢ is the damping per unit
length of the ith mode, ETy is the bending stiffness.
By substituting (38) into (61) and using the orthogonality

properties
L L o 2c
/ PilE)Y;(E)E = bij. / EIx 70 (€ = widij,
0 Jo 73

where &; is the Kronecker delta, we obtain (39) with natural

frequencies w; and eigenfunctions ¢;(£) given by

- 5 .
w,':\/—EpA(%)), z_v,(E):,/;—Esin%. i1=1,2,3.....

For numerical simplicity. let L =7 and Ely = p = % so that

wi =45, ¢i€)=sinif. 1=1,2,3.....
Furthermore, two actuators are assumed to be located at £ =
1,€2 = 2, and a white noise disturbance with unit intensity is
entering at £, = 1.7. Finally, we set {; = (, = (3 = 0.01 and
Ey = Iin (30) and retain the first three modes. The resulting
energy flows are shown in Fig. 5.3 for controllers Gy, Gez and
G3 designed to maximize —Plp, ——Pzp and —Psp, respectively.
These results show that each controller maximizes the energy

flow from a specified mode and that the energy removed from

each subsystem is dissipated by the coupling.

w 1 w 2 v~v ]

4 £ . . ° £

1 2 m

£
I ] | | ] ] ~N
L] /
0
3
&dl E"d2 a3
u1 u2 * L4 L4 llm
Actuator 1 Actuator 2 Actuator m

Fig. 5.2. Simply Supported Uniform Beam.
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0.4917 Ge1: 0.0077
Gea: 0.0167
Ges: 0.0165
Ger : 0.3958 Get :0.4839] 0.0326
Gea: 0.4750

y Ges : 0.4752

Gei: 0.0279
Gez: 0.0303
Ges: 0.0301

Goz: 0.1122

0.4286 / Ge1 : 0.0048
Gcz : 0.0024
Ges : 0.0026

Ge1:0.5448

Gez:0.6174

Gcea : 0.6441

Fig. 5.3. Energy Flow among Structural Modes with Controllers.

Now we define the steady-state modal energy by

A

£ 2 W]+ W), =123, (62)

and the result is shown in Table 5.1. Table 5.1 shows that con-

troller G¢; successfully reduces the stored energy &; of the ith

mode.
Modal Energy || Open-Loop || Controller 1 | Controller 2 | Controller 3

& 24.5847 0.3873 0.8288 0.8276
(1.58%) {3.37%) (3.37%)

& 0.8160 0.0606 0.0295 0.0482
(7.43%) (3.17%) (5.91%)

&3 4.7618 2.1960 1.7561 1.3266
(46.12%) (36.88%) (27.86%)

Table 5.1. Steady-State Modal Energy of the ith Mode
of a Flexible Beam.

6. Design of an Energy Flow Controller for Relative Force

As a further illustration of the approach of the previous
section, we consider the interconnection of two positive real sys-
tems 2;(s), ¢ = 1,2, by means of a relative force controller. The
controller thus serves as a dissipative coupling as in the previous
section. This controller can be viewed as a device for regulat-
ing energy flow between two nominally uncoupled subsystems
or as an interstitial device attached to two points on a single
structure.

Let Z7!(s) and G(s) represent the transfer functions of the
two uncoupled strictly positive real systems and the controller,
respectively, and assume these systems have the state space re-
alizations

Ep(t) = Azp(t) + Bpuo(t), (63)
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wolt) = Cpp(t), (64)

Ee(t) = Acac(t) + Bey(t) (65)

u(t) = Cexe(t), (66)

respectively, where z,(t) € R™, u(t) € R?, z.(t) € R". Now

yo(t) € R? is the velocity vector of the two uncoupled systems
and the scalars y(¢) and u(t) represent the relative velocity and
relative force, respectively.

To obtain the relative velocity y(t) and the coupling force

vo(t) € R? we define B as

Bé[_ll},

so that y(t) = Byo(t) and w(t) = ~Bu(t). With B given by

(67)

(67), the feedback system shown in Fig. 6.1 is equivalent to Fig.

2.1, where in Fig. 6.1, L(s) is given by

(68)

Fig. 6.1. Feedback Representation of Coupled System.

Thus the coupling L(s) serves as a dissipative controller which
controls energy flow between the subsystems.

Now (65) and (66) can be rewritten with B as

ic(t) = A«‘:"'C(t) + BCBT?/O(t), (09)

wo(t) = —BCox(t). (70)

Thus the feedback system (63), (64), (69) and (70) is given by

#(t) = Az(t) + Dw(2), (71)
where
A | zp(t) n A A B,BC,
n2 P rz L’ Y - P < 2nx2n
(1) [zc(t)Jeb A [B,:BTCp Ac ]ER ’
pa [ B;éD ] € RIX2.



By setting B = BPB and C' = BTCp, A can be written as A =
A BC.
| st %
Now we choose the performance variable Eyz(t) to maximize

] so that (71) has the usual closed-loop structure.

the energy flow from the ith subsystem, where i = 1,2. By
the same argument in the previous sections this is equivalent to
minimizing — P4

Define the 2 x 2 damping matrix Cq; by

Ca & diag[ey, ¢z},

(72)

where ¢; & Re[zi(s)], i = 1,2. Then P3,i=1,2,is given by

P! = —[Ci1Cpa@C )ity (73)

where Cp, 2 [Cp 0] € R¥*2™, and Q satisfies the Lyapunov

equation
0=AQ +QAT + DDT. (74)
Thus the performance matrix Ey in (30) is given by
E1 = Jeiel Cpa. (75)

Since the plant represented by (A, B, C) is strictly positive real,
we can use the positive real control approach to obtain the
strictly positive real controller —G.(s).

To illustrate this approach we consider the two oscillator
system with the coupling L(s) shown in Fig. 6.2, where f rep-
resents the relative force. For illustrative purposes we set k; =
10, ky = 2, my = 0.3, m; = 0.4, and ¢; = 0.1, ¢ = 0.2, and let
the white noise disturbances w;(t),i = 1,2, have unit intensity,
that is, D = I. By setting E; = 0.1 in (30) we design the con-
trollers G¢; and G to maximize —Pf and - PF, respectively.
The resulting energy flows shown in Fig. 6.3 show that each con-

troller successfully removes energy from the specified subsystem

by minimizing the dissipated energy flow out of the subsystem.
The steady-state stored energy &, ¢ = 1,2, defined by (37) is

listed in Table 6.1, which shows that each controller successfully

reduces the stored energy of the corresponding oscillator. Fur-

thermore, the Bode plots of the controllers in Fig. 6.4 show that

the controllers are strictly positive real.

Fig. 6.3.

Gain (dh)

Phase (deg)

% k >y,

" —

Fig. 6.2.
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Table 6.1.

Get: 0.7672
Ge2: 1.5735

Ge1: 09337
Gez: 0.4869

Get: 1.2158
Ge2: 0.8562

Ge1: 0.8995
Gez2 : 0.0932

0.0342
: 0.3938

Get:

1.6667 1.2
Energy Flow between Oscillators with Controllers.
Stored Energy || Open-Loop || Controller 1 | Controller 2
& 5.0 2.6401 4.5683
(52.08%) | (91.31%)
&2 2.5 2.3549 1.2041
(94.20%) | (48.16%)

Steady-State Stored Energy for Two Coupled

QOscillators with Relative Force Actuator.

Gaf(solid) and G(dashed).

N

Two Oscillator System with Relative Force Controller Coupling.

10-2 10! 100 10! 102 103 104
Frequency (rad/sec)
100
s0f *
ofF J
-sof ]
-100 -
102 10 100 10! 102 109 104
Frequency (rad/sec)
Fig. 6.4. Magnitude and Phase of Controllers



7. Conclusion

In this paper we applied energy flow models obtained
in [7)-[9] to design energy flow controllers for modal subsystems.
By using the LQG positive real control approach, each controller
was considered as either an additional subsystem or as a dissi-
pative coupling. Each resulting controller was shown to max-
imize energy flow from the specified subsystem. Furthermore,
closed-loop asymptotic stability is guaranteed since strictly pos-
itive real controllers were designed in a negative feedback loop.

These features were demounstrated by numerical examples.
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