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Dissipative energy flow cont~ollers are tlesignetl for intercon- 
nected modal subsystems. Active feetllmck controllers for vi- 
bration suppression are then viewed as either an additional sub- 
system or a dissipative coupling. These controllers, which are 
designed by the LQG positive real control approach, maxi~nize 
energy flow from a specified modal subsystem. 

Energy flow has 11een widely studied as an effective t,ool 
for analyzing large, int,erconnectetl vil)ra.t,ing systems. One of 
the key results of this approa.ch is the fact tha t ,  within inter- 
connected subsystems, energy flow can often be expressed as a 
linear combination of sulxystem energy. 

In active control for reducing vil)rat,ion, energy flow has been 
considered as a perfortnal~ce index to  be minimized [I]-[GI. The 
design of these active controllers, however, has some difficulties. 
For example, the optimal controller is oft,en noncausal [5] and 
thus asymptotic stability of the closetl-loop system cannot be 
guaranteed. Furthermore, active energy flow control for inter- 
connected stractures composetl of more t.lran t,wo snhsystems has 
received limited attention due t o  the lack of energy flow motlrls 
for such interconnected systems. 

In recent work (7, 81 mot,ivat,etl by Wyatt  etnl .  [9] an cn- 
ergy flow model was derived for a st,rncture consisting of several 
modal subsyst,en~s that  are coupled eit,her conservat,ively or tlis- 
sipatively. In the present paper, our goal is to  design act,ive 
control laws for coupletl sul)systems by applying these enwgy 
flow models. 

Three typical situa.tio11s ~.equiring energy flow controllers are 
considered in this paper. First, in Sect,ion 4, we consider energy 
flow control for several sul)systems int,erconnerted by conserva- 
tive coupling [ 7 ] .  For such an interconnect,etl system, t,he control 
law can be designed for t,he syst,enl a.s a whole, which requires 
an energy flow motlel for the ent,ire syst,em including the con- 
troller. We thus treat  the controller as an addit,ional subsystenl 
i~~terconnected by a conservative coupling, so tha t  energy flow 
is controlled through the coupling. 

Next, in Section 5, web consider energy flow control a.mong 
individual structural motles. Here we exploit t,he fact t,hat struc- 
tural modes are essent,ially coupled I)y t,he input and 011tp11t 
matrices. By appropriately enlarging the input and output n ~ a -  
trices, we design a tlissipative cont~roller t , l~a t  serves, in effect, as 
a dissipative coupling 181. As an application of t,his approach, in 
Section 6 we consider t,wo uncoupletl syst,ems that  are controlled 
by a relat,ive force. 
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In both cases the contloller is designed to  maxin~ize thr  
steady state enelgy flow fiom one of the sul)systenls, so that  
we can  educe the vihation of the specified sul~systern. Tlre 
control approach we use is due to  Lozano-Leal and Joshi [lo]. 
This approach is hiefly ~eviewetl in Section 3. Since the ron- 
t~ol ler  and plant a le  lmth positive leal, closetl-loop asymptotic 
stability is guaranteed in spite of modeling uncertainty. 

2. Energy Flow hlotlel for Interconnected Systems 

In this section we briefly review some result,s concer~~ing 
energy flow obt,ainetl in [?I-[!I]. Consider T subsystems i l ( s ) .  . . . , 
z,(s) interconnected I y  a linear time-invariant coupling L(s) .  
Each sulxyst,em z,(s) is assumed to  Ile a strictly positive real 
and thus asymptotically stalde scalar transfer function. Now we 

A define normalized white noise G(t) = [Gl( t )  . . .tii,,(t)lT wl~ose 
int,ensity matrix is identity. Assume that the tlistnrlmnce vcctor 

A w ~ ( t )  = [tol(t) .  . . u ~ , . ( f ) ] ~  is now given by 

wl~ele  D E ErX" is the constant matrix, then the intensity ma- 
trix S ,,,,,, of wo(i) is given by S ,,,,,, = D D ~ .  

For later use, define r .  x I diagonal transfer function 

I3y defining the T-dimensional vectors 

we obtain t,he feedback representation of the int,erconnect,etl sys- 
tem shown in Fig. 2.1 in terms of Z-'(s), which is strict,ly 110s- 
itive real, and where 110 = Lye and uo = 7Uo - t10. 

Strictly Positive Real Admittance I 
l o  I Vt~ltagr, Force) 

Impedance 

Fig. 2.1. reedeedl~ack Representation of Interronnertec\ Systc111. 



We now i ~ ~ t r o t l n w  t I I I - ~ V ,  stcxi~tly st.;~t.c energy flows P f ,  P:', 
P,", 1 = 1 , . . . , I ‘ ,  

I'f = t h e  stclatly st,ate avrrage energy flow entering t.he it11 
suhsyst,em t , l~rongl~  the  it,h port of L(s) ,  

P! = t h e  st,catly s t a t r  avc,ra.ge energy tlissipat,ion rate of the  
i t h  s u l ) s y s t e ~ ~ ~ ,  

PP = the  steady s ta te  avrrage extcrnal energy Row entrriug 
the  it,li sul)systiw. 

Fig. 2.2 i l l~~s t , ra t r s  t l ~ v  r t>snlt . i~~g C I I C ~ ~ ~  flow ~notlcl  for the  
case 1. = 3. 

Fig. 2.2. Energy Flow Model with Three S ~ ~ b s y s t r m s .  

F ~ ~ r t h e r ~ n o r c ,  t.l~csc. c.~~c.rgy flows sat,isfy the  conservation ol' 
cliergy, t , l ~ a t  is, 

P,"+P:'+P:'=O, i = 1 ,  ..., 1.. 

3. LOG Positive Rral Col~t ro l  Annroach 

In this scction we ljric4ly review the  LQG posit,ivr rr,;~l 
control approach tlevelop~tl in [lo]. 

T h e  LQG cont,rol a .pproarl~ provides t,he o p t i ~ n a l  controllrr 
for the  following prol)leln. Given the  nt,h-order st~a1dizal)lr and 
det,ect,ahle plant 

? ( t )  = A r ( t )  + Bu( t )  + D1tC(t), ( 4 )  

4 t )  = C C ~ . 4 t ) >  ( 7 )  

such t,hat t h e  closed-loop syst ,en~ (4) - (7) wit,h dynamics mat,rix 

is asymptotically stahle ant1 the  TI2 performance index 

is the  closed-loop t r a ~ ~ s f b r  f 'u~~rt , ion from t , l~e  unit intensity whitc, 

noise disturbance G ( t )  t,o t l ~ e  prrforlnance varial)les z( t)  = El : r ( t )+  

E 2 u ( t )  and where D = A [ :h2 ] . 4 [EI EzCc]. R I  = A 

@ E l ,  R 2  4 E F E Z  > (1 allti E T E ~  = 0. It. is assnmed tha t  

A,  B, C, D l  and  El sa.tist'y ( I )  (A, B )  antl ( A ,  D l )  a re  st,a.l)iliz- 

able, and ( i i )  (C', A) and ( E l ,  A )  are  (IetrctaI>le. Fnr thern~orr ,  

A 
for convenience, t l c h r  15 = DID?,  V2 DzD; > 0, a.nd as- 

sume t h a t  D l  DT = 0. 

For this problem t,l~c, ol)timal cornpensat,or (A,, B,, C,.) is 

given by 

A, = A - QC"IL;~C'- BR;'B~P, ( 1 0 )  

where Q and P are  7s X I L  n01111rga.tive-definite mat,rices satisfying 

Next we assrune t , l ~ a t  t . l~ r  plant ( 4 ) ,  (5)  is posit,ive real. For 

positive real plant,s a st,rirt,ly posit,ive real cont,roller is tlvsir- 

aljlc since the  negative-frrtll);Lck closetl-loop system is gual,all- 

t,cctl t,o l x  asyiupt~ot~irally still)le [ll]. T h e  cont,roller ol)tainrtl 

al>ovc, I~owevrr ,  is not ~ ~ r w s s a r i l y  st,rirt,ly posit,ive real. For t11is 

problem, T11eol.cl11 I of' [LO] (,a11 1)e used t,o obt,ain an nth-ortlrr 

st.rictly positive, r i d  r o ~ ~ ~ l , w s a . t o r  -G,:(s) N Illat, 
- c, [+I 

~ninixnizes t,he 112 p r r l b r ~ ~ ~ a ~ ~ c e  index J(A,, B,, C,). Since I he 

p l a ~ ~ t  q s )  - is i)osit,ive iral ,  t , l~cre exists a positivt,- 

definite ~na t , r ix  Q0 satisfyiug [12] 

QoC"r = B. (16) 

As shown in [lo], if tlw LQG weights VI, V2, R1, R 2  are c l ~ o s e ~ ~  

according t o  

is minimized, where 



then the  dynamic compensator -G,(s) given by ( lo) ,  (11) and 

(12) is strictly positive real. With -G,(s), the negative feedhack 

closed-loop system matrix A is now asymptotically stable as 

explained above. 

In the following sect,ions we consider two types of energy 

flow control problems in which the plant is positive real. In each 

case we design positive real controllers by means of the above 

approach. 

4. Design of an Energy Flow Controller 
a .  an Additional Interconnected Subsvstem 

In this section we consider a control problem involving 

T - 1 subsystems z,(s) interconnected by a stiffness coupling. 111 

this problem we assume t,hat the cont,roller z,(s) can interact 

with the subsystems only through adclit,ional coupling  element,^. 

Thus the controller can be treated as an  additional ~ t h  su1)sys- 

- 1 tem. The transfer functions Zy1(s) = diag(z;'(s), . . . ,z,-,(s)) 

and z r l ( s )  are ass~unetl t,o IN. expressed by the state space mod- 

els 

i z ( t )  = Azxz(t)  + BZuz( t ) ,  (20) 

respectively, where r , ( t )  E KT':, a,(t) E a n ' ,  y,(t) E %!'-I, 

u,(t) E Rr-' antl ~ ( t ) ,  u(t)  a.re scalars. As shown in Fig. 4.1, 

Z-'(s) in Fig. 2.1 is now comprised of both Z;'(s) and z;'(s), 

tha t  is, Z(s)  = cliag[zl(s), . . . , z,-l(s), z,(s)], so that  the tot,al 

nu~nber  of su1)systems is r.. F~~rthermore ,  yo(t) and uo(t) in  Fig. 

4.1 are given by 

We now assume that  the disturbance matrix D E W r X "  in 

Fig. 2.1 is the square i n a t ~ i x  given by 

where Dll  E x('-')~('-'). This assumption for D can be inter- 

preted as tha t  the disti~rl)ance ~ri,(t),i = 1, . . . , T - 1, is entering 

z;'(s), whereas no tlistlubance enters directly into the controller 

z r1(s) .  Thus loo(t) is now given 11y ~ r t ~ ( t )  = [wT(t) o]T, where 
A ,tu(t) = [wl(t) . . .IU, -1(t)IT. Since tro(t) = ulo(t) - tio(t) it follows 

tha t  

which implies tha t  ~ r , ( f )  ih the force vector resulting from the 

difference of the dist~irlx~nce forces and the coupling forces, while 

g(t)  represents the coupling force only as shown in Fig. 4.1 

Aft,er the controller is connrctetl, the stiffness coupling L( s )  

is given by 
1 

L(s)  = -CL, 
s (2-1) 

wliere the r x r sy~rlir lr t~ic ~ r ~ a t r i s  CL is partitioned as 

LVe now assume that  .r, in ('LO) consists of bot,h positions antl 

vclocit,ies so tha t  there esists a.ik ont,put inat,rix Cp such t,hat 

Since vo = L(s)yo = ;CL!/~, it follows tha t  

where a scalar st,ate .r,,,(t) is defined by 

From (20)-(23) and (27) t,he feedback syst,em in Fig. 4.1 is 

given by 

i ( t )  = ~ q t )  + ~ i u ( t ) ,  (29) 

where 

Fig. 4.1. Feedback Representation of Plant and Controller. 



We now wish to  t le te~~nine  A,, B, and C,  in (22) and (23) by 

means of the LQC; positive ~ e n l  a p p ~ o a c l ~  tlesc~il)ed in Section 

3. I3y defining 

t l~en  A and D in (29) r a ~ i  I,e writ,t.en as 

A = [  B,. " C' ",:'.I, b = [ ? ] .  

Thus I)y viewing ( A ,  B, C') as a realization of the plant given 1)y 

(4) antl ( 5 ) ,  (20) can be interpreted as an LQG cont,rol problem. 

As in Section 3 we consider the performance variables 

A [ r z ( t )  ] a~rd  ~ ( t )  in (23) is the cont,roller ontpnt where r ( t )  = 
rpc(t) 

t o  be included in the cost fm~ct,ion. 

The cont,roller is now reqniretl t,o minimize t,he energy flow 

into t,he i th su l ) sys t e~~~ ,  that is, to mini~llize P:. I3y defining 

Pf is given by [7] 

1 
PF = - [DD~c:] ( ; , ; )  . 

2 (31 

Thus P," is constant antl independent of the controller gains. 

It thus follows from ( 3 )  that minimizing Pf is equivalent t o  

minimizing - P,!'. 

To express the dissipat,ion of the it11 subsystem P? in t,erms 

of the steady state covariance Q 2 limt,, f[z(t)rT(t)] ,  we now 

assume that each subsystem zi(s) has constant real part c; antl 

define 

A Crj = tliag(cl,. . . , c,.-1,O) E R T X r ,  (32) 

then P;d, i = 1,.  . ., r - 1, can be obta.ined by [7] 

where Q satisfies the Lya.pnnov equation 

Thus the cost -P;d t o  be minimized is given by 

Now using the definit,ion of (2 yields 

Thus, letting the performance matrix E l  in (30) be given by 

corresponds to minimizing - P:. 

As an illustrative nlul~eriral example we consider the three 

coupled oscillat,or system wit,h ront,roller as shown in Fig. 4.2, 

where k1 = 3.5, k2 = 2.5, k3 = 1, ml  = 1, m2 = 2, m3 = 3, 

I i l 2  = 0.5, I i l ~ =  0.6, I i 2 3 =  0.7, Ill, = 0.8, Iiz, = 0.9,1i3, = 

1.0 and cl = 0.1, cz = 0.2, c:3 = 0.3. Furt,hermore, let the 

white noise tlist~ur1)anrw w;(t), i = 1, 2, 3, have unit intensit,y 

S,,,,, = 1, that is, D = tliag[l, 1, 1,0]. To maximize -P:, 

i = 1,2 ,3 ,  we set E2 = 0.1 in (30). The resulting energy flow 

diagrams calculated by mea.ns of the st,ea.dy st,at,e rovaria.nrr [7] 

are illnstratetl in Fig. 4.3, wl~ere OL denotes the open-loop sys- 

tem a.nd Gel, G',z antl G,.:3 represent the ront,rollers tlesignrtl t,o 

maximize -PIP, -Pz antl -Pi, respectively. Fig. 4.3 shows t,lrat. 

the controller al)sorl>s energy from all of't,he sul,systems ant1 rr- 

duces the energy tlissipa.tion froin each snl)system. Furthermore, 

it can be seen that the cont~roller G,, maximizes energy flow frorn 

the it11 subsyst,ein, that is, nhimizes  the energy dissipatetl I,y 

the specified subsyst,em. 

To examine t,he art.uxl reduction of vil)rat,ion by t,hese con- 

trollers, we define the st,ea.tly-st,ate stored energy by 

where xi(t) and i i ( t )  are t,lw tlisplacement and the velocit,y of t,lre 

it11 oscillator, respect,ively. Table 4.1 shows that each controller 

G,; successfully reduces the st,oretl energy fi of the correspond- 

ing it,h oscillator. For exa.n~ple, controller GC1 reduces the st,oretl 

energy of oscillator I t,o 48.32 percent of its open-loop value. 

Bode gain and pha.se plots of the controllers are show11 in 

Fig. 4.4, which shows t11a.t the gain plot of controller GC1 has a 

peak near the coupled n a h r a l  frequency of oscillat,or 1, that is, 

wi = (kl + k ~ z  + k13 + klC)/rnl = 2.3238 (radjsec). Similarly, 



controller GC2 has a gain peak near wz = 1.516 (~ad / sec ) ,  while 

controller GCg has a gain peak near ws = 1.048 (radlsec). These 

controllers are strictly positive real since their phase plots lie in 

the range (-90°, 90"). 

Force Actuator Velocity Sensor 

Fig. 4.2. Coupled Oscillator System wit,h Controller. - 
OL : 0.4889 
Gci : 0.3045 
Gcz : 0.4634 
Gc3 : 0.4682 

DL : 0.0111 
Gci : 0.1955 0.25 

Gci : 0.0169 
GCZ : 0.0278 GCZ : 0.0608 
Gc3 : 0.0527 Gc3 : 0.0276 

0.1667 

Gci : 0.2361 OL : 0.2449 
Gc2 : 0.1 252 Gci : 0.2263 
Gc3 : 0.1 121 

Fig. 4.3.  Energy Flow a.lnong Oscillators for t,he Open-Loo]) 

Systelli and for t,lie C:losed-Loop Syst,em with Cont,rollers. 

Stored Energy 11 Open-Loop (1 Controller 1 I Controller 1 I Controller 3 

I &I 11 4.2936 1 1  2.0747 1 3.5476 I :l.WOx I 

Tahle 4.1. Steady-State Stored Energy for 
Three Coupled Oscillators. 

- - -3) -  

.:m 
10.: 10-1 I U" 101 10: 10' I ,I4 

Frequency (md/sec) 

Fig. 4.4. h lagni t~~t le  and Phase of Controllers 
GCl(solitl). G,2(tlasl~etl). G,s(tlash-tlot). 

5. Design of an Ene~gy  Flow Controller 
as a Dissipative C'o~~pling 

In the previoiis section, we consitleretl the suIxyste11; 

intcrconnection explicitly in the energy flow analysis. As an al- 

ternative approach, we view the. structure as a collection of ml- 

coupled subsystems, such as niotles, which become coupletl o111y 

by means of the feetll~ack controller. In contrast to the previons 

section, in whicl~ the co~ltrol is applied to the flexible strurt,iire 

o d y  t h r o ~ ~ g h  the conservativr conpling, we now assume that the 

con t~o l  force can be applicvl to the structure tlilectly and tlrsign 

a cont,roller to regulate energy flow among st,ruct.ural modes. 

Consider a s t rur t i~re  s11l)ject. t o  iulit intensity white noise 

tlisturlmlces rb,(l), t = I..  . . . 11, applied at  locations &I,. The 

1tl1 actuator located at e, .  1 = 1 , . . . , nL, applies a control force 

u, ( t ) .  Our goal is to tlesign a controller that maximizes enelgy 

flow from the it11 struct,ural ~notle. For t,l~is purpose we consider 

each mode as a sul~system to o l~ta in  the feedback system cor- 

respontling to  Fig. 2.1 and tlesign a dissipative controller as a 

tlissipat,ive coupling. 

First we denot,e t , l~e motlal decomposit~ion of the structure by 

where yi(t) clenotes modal coordinates and &([) denotes ortllog- 

onal eigenfunctions. Then, using the boundary conditions and 

orthogonality propest,ies, it follows that  t,he modal coordinates 

yj ( t )  satisfy 



where we assume proportional damping 2<,wj. R o m  (38), +(ti, t )  

is the velocity of the structure a t  the i th actuator position t, and 

we assume that m velocity sensors are also located a t  these po- 

sitions. Hence the sensors and actuators are colocated and di~al .  

Now we considel. r st,ruct,ural modes and define 

~ ( t )  ' [ql( t )  4 1 0 )  q2(t) b ( t )  . . . qr(t) ir( t ) lT,  

u ( t )  2 [u l ( t )  u2 ( t )  . . . um(t) lT,  

A G(t )  = [1Zl(t) ~ j i ~ ( t )  . . . Gn(t)lT, 

d t )  Mtl, t )  i l ( t 2 ,  t )  . . . ,4(tF, t) lT.  

Then from (38) we oLt,ain the state space model 

x ( t )  = Ar ( t )  + Bu( t )  + Dlb(t), (40) 

y(t) = BTx( t ) ,  (41) 

where 

and B E RZrxm and D E R2"". 

To obtain the feedba.rk system equivalent t o  Fig. 2.1 we in- 

troduce the diagonal matrix Bo defined by 

and define 

yo(t) 5 Box(t) E R2', (43) 

wo(t) 2 DG(t) E R2', (44) 

A 
.,(t) = -Bu(t)  E 72". (45) 

We thus obtain Fig. 5.1 where the coupling L(s)  is defined by 

Now using the LQG positive real approach we design a strirtly 

positive real controller Gc(s)  satisfying 

L(s)  + L*(s) = - BG,(s)BT - [BG,(s)BT]* 

= -B[Gc(s)  + G;(s)]BT 

2 0, (48) 

for Re[s] > 0. Thus the ronpling L(s)  serves as a dissipative 

controller which controls the energy flow among the strl~ctural  

modes. Our goal is to design G,(s) so that L(s)  maximizes 

energy flow from a specified mode. 

Fig. 5.1. Feedback Representation of Coupled Structural Modes. 

Next we consider a realimtion of the feedback system in Fig. 

5.1. The transfer funct,ions Z-'(s)  and G,(s) are expressed by 

the state space models 

U(t) = Ccxc(t),  (52) 

respectively. Since uo = loo - rro and BOB = B ,  it. follows from 

(40), (41) (49) - (52) that  

&(t )  = A,rc(t) + B , B ~ x ( ~ ) .  (54) 

Thus the feedback system (53) and (54) is given by 

so that L(s)  satisfies 



Uy setting C = BT i l l  ( 5 ) ,  it can be seen that A has the I I S I I ~ I  

closed-loop s t l u c t n ~ e  

Now we choose the p e ~ f o ~ ~ n a n c e  varial~le in (30) to  maxi~nize 

energy flow from t,he it11 st,rurt,ural motle, that is, t,o maximize 

-1';. I3y the same a r g ~ u ~ ~ c u t  as in the previous section, this is 

Fillally, since (40) autl (41) c o ~ ~ ~ p r i s e  a stat,e spare model of the 

structure given by ( :$!I), it follows that the plant ( A ,  B, C )  is 

st,rictly posit,ivc, rcd .  L\'e ran thus obtain ;I. strictly positive rc~al 

controller -G,(s) in the S;IIIIO lnanuer a.s in the previous section. 

As a 11111nericii1 C S ~ I I I ~ ~ P .  n.e now considcr the simply s u p  

ported uniform Uerno11lli-E11lr1. beam of length L in Fig. 5.2. 

The partial tliffc~wltial eqnatiot~ for the transverse tltflcrtion 

I/(<,  f ) is given by 

wllcre p is the mass ~ w r  unit Iel~gth, i. is the damping per unit 

1r11gtl1 of the it11 n~otlv. l.?I;\ is the 1)cntling stiffness. 

By sul)stit,uting (3s) into (61)  antl using the orthogon;~lily 

properties 

wl~crc h,, is the I I ; ronc~k(~  clvlta. wc, obtain (39)  with n a t ~ ~ r a l  

I'rcquencies w, a ~ ~ t l  eige~~f'unctio~ls $,(<) given by 

FOI nu~nerical si1111)licity. k t  L = rr and EIA = p = 3 so that 

w, = ;2 .  t , t , ( ( )  = sin i t .  i = l , 2 , 3 . .  . .. 

Furt,l~ermore, two a c t ~ ~ a t o r s  are assumed to be located at El  = 

1 , t 2  = 2, antl a white noise ~list i~rbance with unit int,ensity is 

e n t e r i ~ ~ g  at  <dl = 1.7. Fillally, we set il = i2 = G = 0.01 ant1 

Ez = I in (30) antl retain the first t h e e  modes. The resulting 

energy flows are shown in Fig. 5.3 for controllers GC1, GrZ and 

G,:3 tlesigned to  maximize - P I P ,  -P l  and -Pi .  respecti\.ely. 

These results show that each controller maximizes t,he energy 

flow from a specified motle and that the energy removed from 

each sul)syst,em is tlissipatetl I)y the coupling. 

Fig. 5.2. Simply Support,ed Uniform Beam. 



Gcz : 0.0024 

Gcz : 0.6174 
Gc3 : 0.6441 

Fig. 5.3.  Energy Flow among Structural Modes with Controllers 

Now we define the steady-state modal energy by 

and the result is shown in Table 5.1. Table 5.1 shows that  con- 

troller G,; successfully retluces the stored energy &, of t,he it,ll 

mode. 

Modal Energy 11 Open-Loop 11 Controller 1 I Controller 2 / C'ontrol l~~ :l I 
&I 11 24.5X4i 11 0.3873 1 0.8288 1 0.XZifi I 

Table 5.1. Steady-State hiodal Energy of t.he i th  Mode 
of a Flexihle Beam. 

6 .  Design of an Energy Flow Controller for R.elative Force 

As a further illustration of the approach of the previous 

section, we consider the interconnection of two positive real sys- 

tems z;(s) ,  i = 1 ,2 ,  by mea.ns of a relative force controller. The 

controller thus serves as a dissipative coupling as in the previous 

section. This controller ca.n be viewed as a device for regulat- 

ing energy flow between two nominally uncoupled subsystems 

or as an  interstitial device a.ttached t o  two points on a single 

structure. 

Let Z-'(s) and G c ( s )  represent the transfer functions of t,he 

two uncoupled strictly positive real systems and the controller, 

respectively, and assume these systems have the state space re- 

alizations 

xP( t )  = A z p ( t )  + BPuo(t) (63)  

respectively, where r , , ( i )  E 'En, u ( t )  E R2, r , ( t )  E Rn. Now 

m ( t )  E R2 is the velocity vector of the two uncoupled systems 

and the scalars y ( t )  antl v ( t )  represent the relative velocity and 

lclative force, respectively. 

To obtain the ~ela t ive  velocity y ( t )  and the coupling folce 

vo(t) E IC2 we define B as 

so tha t  y ( t )  = ~ y o ( t )  antl uo(t) = - B v ( t ) .  With B given by 

(G7), the feedback sys ten~ sl~own in Fig. 6.1 is equivalent to  Fig. 

2.1, w h e ~ e  in Fig. G.l,  L(a )  is given by 

Fig. 6.1. Feetll)a.ck R.epresentat,ion of Colipletl Systeln. 

Thus the  coupling L ( s )  serves as a dissipative controller wllicl~ 

controls energy flow Iwtween the subsystems. 

Now (65)  and ( G G )  can Iw rewritten with B as 

uo(t) = - B C , s , ( t ) .  ( 70 )  

Thus the feedback systciri (63), (64), (69 )  and (70 )  is given by 

i ( t )  = A q t )  + d G ( t ) ,  (71)  
where 



By setting B = B ~ B  and C = BTcP,  A, can be written as = 

[ kc 2 ] so that (71) has the usual closed-loop structure. 

Now we choose the pelformance variable Elr ( t )  to maximize 

the energy flow from the 7th subsystem, where i = 1 , 2 .  By 

the same argument in the previous sections this is equivalent t o  

minimizing -P:. 

Define the 2 x 2 damping matrix Cdl by 

A where c, = Re[zi(s)], i = I, 2. Then P:, i = 1 , 2 ,  is given by 

A where Cp, = [Cp 0] E R2X27L, and Q sat,isfies t,he Lyapunov 

equation 

o = ~ ~ ~ + Q A ~ + D D ~ .  (74) 

Thus the performance matrix El in (30) is given by 

Since the plant represent,etl I)y ( A ,  B, C) is strict,ly positive real, 

we can use the positive rea.1 control approach to  obt,ain the 

strictly positive real cont~roller -G,(s). 

To illustrat,e this approa.cli we consider t,he t,wo oscillator 

system with the coupling L(a) shown in Fig. 6.2,  where f rep- 

resents the relative force. For illustrative purposes we set X.1 = 

10, k2 = 2,  ml = 0.3, 1 ) # 2  = 0.4, and cl = 0.1,  cz = 0.2, and let 

the white noise distur1)ances ~u,(f), i = 1 , 2 ,  have unit int,ensity, 

that is, D = I. By sett,ing Ez = 0.1 in (30) we design t,he con- 

trollers GC1 and GC2 to maximize -Pf and -PzP, respect,ively. 

The resulting energy flows sl~own in Fig. 6.3 show that each con- 

troller successfully removes energy from t,he specified subsystem 

by minimizing the dissipa.ted energy flow out of the subsystem. 

The steady-state st,oretl energy Ci, i = 1,2 ,  defined by (37) is 

listed in Table 6.1,  which shows that each controller successfully 

reduces the stored energy of t,he corresponding oscillator. Fur- 

thermore, the Bode plots of the controllers in Fig. 6.4 show that 

the controllers are strict,ly posit,ive real. 

Gct : 0.7672 Gct : 0.9337 Gct : 1.2158 
Gca : 1.5735 GCZ : 0.4869 Gc2 : 0.8562 I uu 

1.6667 1 .25 

Fig. 6.3. Energy Flow between Oscillators with Controllers. 

I Stored Energy 11 Open-Loop 11 Controller 1 I Controller 2 1 
I F. 11 5.0 11 2.6401 1 4.5683 1 

Table 6.1. Steady-State Stored Energy for Two Coupled 

Oscillators with Relative Force Actuator. 

198'; ' ""' 10-1 ' ' ' " '  I00 ' ' ' 101 10: 10' 10' 

Frequency (nd/xc.) 

Fig. 6.4. Magnitude and Phase of Controllers 
GCl(solid) and GC2(dashed). 

Fig. 6.2.  Two Oscillator System with Relative Force Cont,roller Conpling. 



In this paper \vt' ;ipplial energy flow motlcls ohtainctl 

in [7]- [!I]  to tlesigu encqy  flow c.ontrollers for motlal sul)syste~l~s. 

Uy using the LQG po4tive leal c o l ~ t ~ o l  approach, each cont~ollrl 

\vas ronsitleretl as either all adtlitional sul~system or as a dissi- 

pative coiipling. Each resulting controller was  show^^ t o  max- 

imize energy flow fro111 the specified s11l)system. Furthermore, 

rlosetl-loop asymptotic stalditg is guaranteed since strictly pos- 

Tl~cse features wwe tlei~ml~striitetl 1)). numerical examples 
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