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Energy-Based Mechanical Model for Mixed Mode Failure of
Laminated Composites

Seung J. Song* and Anthony M. Waas'
University of Michigan, Ann Arbor, Michigan 48109

A nonlinear elastic foundation model has been developed to predict the mixed-mode (modes I and I) delamination
failure of laminated composites. Two types of nonlinear elastic foundations were used to represent pure mode I
and pure mode II components of the material failure ahead of the crack tip. One is a tension spring foundation for
mode I component and the other is a shear spring foundation to represent the mode II component. Each spring
foundation was characterized based on the linear elastic two-dimensional asymptotic solution of the strain field
ahead of the crack tip and appropriate nonlinear constitutive laws. To predict the onset of crack propagation,
the model employed an energy criterion as a failure condition derived from experimental trends of mixed-mode
failure of laminated composites. Mode I, mode II, and mixed-mode fracture tests were performed to investigate
the validity of the current model. A finite element was developed and incorporated into 2 computer code to simu-
late laboratory fracture tests, utilizing Timoshenko’s first-order shear beam theory and a nonlinear constitutive
law. The current model predicted the experimental results of load vs displacement curves closely. It also exhibited
a satisfactory mode separation capability and was able to predict mode mixture results available in the literature.

I. Introduction

AMINATED fibrous composites, in spite of their excellent me-

chanical and chemical properties, are known to be weak in
planes that are perpendicular to the lamination plane. This weakness
usually manifests itself in the form of delamination (or delayering)
failure, a failure mode that has been and continues to be investigated
thoroughly. Mode I, mode II, and mixed-mode fracture tests have
been performed by many researchers to observe and understand de-
lamination failure. A complete review of the literature is beyond the
scope of this paper, however, the research work reported in Chai,"?
O’Brien et al.,> Suo and Hutchinson,* Hashemi et al.,>¢ Poursartip
and Chinatambi,” and Kinloch et al.,? and the references contained
therein serve as a summary of the work reported to date.

Linear elastic fracture mechanics (LEFM) based ideas and
methodology, which are relatively well established for homoge-
neous and isotropic materials, have been naturally extended to
analyze delamination growth problems in laminated composites.
However, the mechanical complexity associated with tackling frac-
ture problems of anisotropic layered materials has made this ex-
tension very complicated and, in some cases, almost impossible
(for certain combination of materials characterized via the Dundurs
mismatch parameters®).

Several models that adopt a spring foundation to mimic the
.material ahead of the crack which undergoes failure during crack
propagation have been introduced in the past. Some of these
representations are reported in Kanninen,'®!! Shilkrut,'?> Ung-
suwarungsri and Knauss,'* and Leonardi et al.'* In the present
work, the simplicity associated with these models has been ex-
ploited and combined with salient features of the linear elastic two-
dimensional asymptotic crack tip strain field, to predict mixed-mode
crack growth. The resulting spring foundation models have been
validated with a systematic characterization of the spring proper-
ties using double cantilever beam (DCB) specimens. Two types of
spring foundation models were previously developed depending on
the failure criterion and characterization schemes. One is an energy-
based model'>!¢ and the other is a strength-based model.*!” In the
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research reported here, the results from those investigations'® have
been extended to mixed-mode delamination problems with an addi-
tion of a shear spring foundation. The advantage of an energy-based
model is that the identification of the spring properties and the fail-
ure criterion adopted are both simple, thus making it easy to use in
practice.

Experimental details of the laboratory mixed-mode fracture tests
are given in Sec. II. The current mechanics model is formulated
in Sec. III. A finite element is developed and explained in Sec. IV.
Section V presents the results of the current model, and Sec. VI
presents conclusions.

II. Experiments

Mode I, mode II and mixed-mode (I/II) fracture tests were per-
formed using two different types of beam specimens (different com-
posite systems) to investigate the delamination failure of laminated
composites and to validate the current models.

A. Specimen Preparation and Data Acquisition System

The specimens were prepared by cutting E7T1/G40 and E719/
IM7 unidirectionally laminated 48-ply composite plates obtained
from BP Chemical Co. The material properties for these composite
systems are shown in Table 1. E7T1 is a thermoset and E719 is
another type of thermoset having elastomer-like chemical structure.
Each specimen had a 1-in.-long starter crack at the 8th, 16th, or 24th
(center) ply, which was created with an insertion of a Teflon tape,
priorto lay up and cure. A precrack was made by advancing the crack
tip up to the crack length a. From this point the loading and unload-
ing was applied repetitively using a Riehle displacement-controlled
testing frame, and corresponding load vs displacement data were
recorded. The resulting force and displacement at the loading point
were measured using a 200-1bf load cell and £5 mm linearly vary-
ing displacement transducer (LVDT), respectively. These data were
recorded via an inhouse data acquisition system. The instantaneous
crack-tip location was marked using a sharp knife while viewing the
crack tip through a microscope on one side of the specimen which
had been painted white to help find the crack tip more accurately.

B. Three-Point Bending Tests

Three-point bending tests were performed to obtain the bending
stiffness of each type of beam using uncracked specimens. The
equipment used in this test were a Riehle testing frame, a 200-1bf
load cell, and a dial gauge. A shear factor was taken into account
when the elastic modulus was calculated using Timoshenko beam
theory.!® The elastic modulus in the transverse direction and the
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Table 1 Material properties of each beam specimen?

Fracture toughness,” N/m

EbP Em, Ef,

Specimen Vf Gpa Gpa Gpa Model Mode II
E7T1/G40 0.56~0.58 116 4.1 2868 326 905
E719IM7 0.56~0.58 135 33 3041 996 1440

aFrom left: fiber volume fraction, avg. resin layer thickness, bending modulus,
elastic modulus of resin and fiber, avg. fracture toughness.

bShear factor included.!®

€ Average values after taking out the hysteresis.

ena

Fig. 1 Experimental setup of mode II and mixed-mode fracture tests
showing beam specimen, clamping mechanism, microscope, LVDT, and
load transducer.
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Fig.2 Schematic of beam-type fracture specimen under mixed-mode
or mode II failure.

through the thickness shear modulus were estimated using Halpin
and Tsai’s experimental formula.'®

C. Mode I, Mode II, and Mixed-Mode Fracture Tests

Mode I fracture tests were performed previously and reported
in Song and Waas.!3~17 Figure 1 shows the experimental setup for
mixed-mode and mode II fracture tests and Fig. 2 shows the cor-
responding schematic diagram of the specimen under delamination
failure. The grips and clamping mechanism were specially designed
0 as to minimize unnecessary shear and moment arising from the
loadings. The specimens were clamped at the end using two flat
plates tightened by bolts, and the clamping plates were supported
by four linear motion bearings. In this manner the original length of
the specimen was retained the same for the purpose of simulation
(the beam length should remain the same in the mathematical model)
and the axial force arising from constraining the axial displacement
due to the beam bending deformation was prevented. The loading
was applied slowly at a speed of 0.3-0.5 mm/min on a screw-driven
Riehle testing frame, simulating quasistatic conditions.

Figures 3 and 4 show typical load vs displacement curves ob-
tained from mode II and mixed-mode tests, respectively. As can be
seen from these figures, the loading and unloading curves of mode I
and mixed-mode tests have noticeable hysteresis. To investigate this
phenomenon further, another test was performed in which a spec-
imen without the artificial crack was loaded and unloaded several
times up to the same maximum force under the same clamping
mechanism used in the mode IT and mixed-mode tests. The result is
shown in Fig. 5. The specimen dissipated a noticeable amount of en-
ergy during the first loading, making the unloading path not follow
the original loading path. The second loading curve did not follow
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Fig.3 Typical load vs displacement curves from mode I fracture tests.
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Fig.4 Typical load vs displacement curves from mixed-mode fracture
tests.
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Fig.5 Load vsdisplacement curves of uncracked cantilever beam spec-
imen.

the previous unloading curve and further energy dissipation was no-
ticed. The third and fourth loading and unloading curves followed
the second loading and unloading curve. At the first loading, it is be-
lieved that the specimen underwent permanent microstructural and
irreversible damage. However, at the second and consecutive load-
ings, the specimen, already permanently damaged as a part of the
first loading, experiences repeatable microstructural change. This is
perhaps why the second and consecutive loadings show the same
amount of energy dissipation or hysteresis. To fully resolve this issue
and ascribe a reason for this would require a thorough characteriza-
tion of the composite microstructure, as well as an examination of
internal friction and possibly slipping at the fiber/matrix interfaces.
Although this aspect of the work is beyond the scope of the current
investigation, it must be mentioned that similar findings have been
observed and investigated by Lamborn and Schapery? recently.

If the fracture toughness was to be calculated using the energy
method® for this special test, it would produce a very high value
(infinity) because the crack advance was zero. Therefore, it can be
concluded that hysteresis from the loading and unloading curves in
any kind of fracture tests should be excluded when calculating the
fracture toughness. Figure 6 shows the fracture toughness data as
a function of crack advance (Aa) before and after, excluding the
hysteresis. It shows that as the crack advance becomes smaller the
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Fig.6 Comparisons of toughness data between before and after taking
out hysteresis from mode II and mixed-mode tests.
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Fig.7 Experimental results of fracture toughness as a function of mode
mixture,

Fig. 8 Typical side view of cracked specimens showing intralaminar
crack growth from mode II and mixed-mode tests.

toughness becomes large, thus it supports the argument stated pre-
viously. It also shows that the data, after taking out the hysteresis,
become more independent of crack advance. Further, the amount of
the hysteresis increased as the mode changed towards mode II in
which the beam deformation was the largest. The resulting tough-
ness data are shown in Fig. 7 as a function of mode mixity. The 8th,
16th, etc. in the x axis denote the crack location measured from the
top of the specimen (Fig. 2).

After the tests, all of the cracked specimens were examined using
a50-1000 times magnification microscope. Figure 8 shows a typical
side view of the crack path observed from mixed-mode and mode IT
tests. The crack shifted into intralaminar failure in every mixed
and mode II fracture test, whereas mode I tests always revealed
interlaminar fracture. Figure 9 shows the switching of the failure
mode from interlaminar crack growth to intralaminar crack growth.
The figure shows the place where a mixed-mode loading started
from an interlaminar precrack. This phenomenon can be explained
easily by considering the stress state ahead of the crack tip,2! where
the principal plane, under normal and shear stresses, is situated at
an angle of & from the beam axis, which becomes 45 deg for pure
mode ITloading conditions. The crack in areal fracture test, however,

s

Fig. 9 Switching from interlaminar crack growth to intralaminar
crack growth,

could not grow with such a large angle because there were much
stiffer fibers nunning parallel to the beam axis, providing constraint
for the crack to propagate within the resin.

III. Formulation of the Model

Figure 2 shows a schematic of a beam-type fracture specimen
under mixed-mode or mode II failure. The specimen is a unidirec-
tionally laminated composite beam having a precrack along the resin
layer. Ata certain value of external load, the crack starts to propagate,
and the specimen experiences different mode mixity ahead of the
crack tip depending on the geometry and loading conditions. Up to
this point in the loading history, the specimen has undergone two dif-
ferent reactions against the external loading. One is a global or macro
behavior over the entire volume of the specimen, and the other is a
local or micro behavior near the crack tip. If these two types of dif-
ferent reactions can be separated out in the process of modeling, then
the resulting boundary value problem becomes much easier to solve.

The macrobehavior of the specimen can be separated out and then
solved readily using various mathematical models such as beam,
plate, two-dimensional, or three-dimensional elasticity theories. The
microbehavior can be separated out using a different mechanical
model. In this study, a nonlinear elastic foundation was used to rep-
resent the microbehavior ahead of the crack tip. Since the specimen
under consideration experiences mode mixity of mode I and mode II,
two types of spring foundations will be used. One is a tension spring
foundation to represent the mode I component, and the other is a
shear spring foundation to represent the mode II component.

Figure 10 shows the spring foundation model which is an approx-
imation of the physical fracture specimen shown in Fig. 2. The ten-
sion and shear spring foundations are made from an infinite number
of Winkler type one-dimensional springs which have no interactions
between any pair of springs. Each spring element has a nonuniform
strain distribution along the length. The form of the strain distribu-
tion is assumed to be an approximation to the two-dimensional linear
elastic asymptotic solution of the strain field near the crack tip. The
tension and the shear spring, therefore, can assume the following
strain distributions (Fig. 11):

Ay

€n = —=, 0*<z<ty, —t<z=-0* (D
Jlz|
B

e,,=—|‘~|, 1<z<h, -hh<z<-t ()
Z
A,

Y = ——=, 0" <z <1y, —t<z<-0* (3
Vlzl
B

Vo= —= t<z<h, -m<z<-t @

Ti

where ¢ is one-half of the resin layer thickness and A;—B, are pa-
rameters to be determined. The subscripts m and p stand for the
resin layer containing the crack tip and the rest of the beam part,
treated as a homogenized structure, respectively. Here, 0* denotes a
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Fig. 10 Nonlinear elastic foundation model (tension and shear spring
foundations).
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Fig. 11 Schematic of strain distribution throughout the spring length,
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Fig. 12 Constitutive law of the resin layer and its schematic of multi-
linear model.

very small positive number close to 0, and its meaning adopted in
the context of the numerical solution is explained in Sec. IV.

The following form of the constitutive law is proposed (Fig. 12)
so that the energy density of the spring at the crack tip becomes finite
even though there is a stress singularity at z = 0. In addition, by
taking this form of constitutive law, the stress distribution along the
x axis ahead of the crack tip follows the form of a Dugdale model.??

Oy = (1 — e7Piemy, 0" <z=t, —t <720 (5
op = Epep, t<z<h, -~hh<z<-t (6
T = (1 — e ), O'<z<t, —t1<z<-0°()
T = Gp¥ps t<z<h, -hp<z<-t (8

where E, and G, are Young’s modulus in the transverse direc-
tion and the shear modulus in the x—z plane of the beam specimen,
respectively.!® The beam parts above and below the resin layer were
assumed to deform in the linear range. To simplify the algebra, the
specimen is loaded such that the shear strain y,, becomes always
positive. The parameters «;—f; can be obtained by using two con-
ditions that the initial slopes of the constitutive laws be equal to
Young’s or shear modulus of the resin, and that the maximum stress
be equal to the bulk material’s ultimate tensile or shear stress. The
application of these conditions yields

1 = Omax (9)
Epy

B = 1o
Omax

Q2 = Tyax (11)

,32 = Gm/Tmax (12)

The beam part was solved using Timoshenko’s first-order shear
beam theory. Thus, the following displacement fields are assumed
for each beam part:

ui(x, 1) = uo1 (x) + 2191 (x) (13)
ur(x, 22) = up(x) + 2292 (x) (14)

The shear springs are attached to the bottom and top surfaces of
the upper and lower beams, respectively, and the tension springs are
attached to the centroidal lines of the two beams. The attachment
of tension springs to the beam surfaces instead of the centroidal
lines does not contribute a significant difference to the predicted
displacement for a thin beam; instead, it makes the algebra more
complicated.

Now the parameters A;—B> can be obtained by applying appro-
priate conditions that the stresses at the interface between the resin
layer and homogenized beam part should be the same, and that the
displacement of the beam should be equal to the total deformation
of the spring foundations. The conditions can be stated as follows
with an additional assumption that the stresses at the interface are
in the linear range:

Enen(z = 1) = Ep€,(z = £t) (15)

Gunym(z =%t) = G,y,(z = £1) (16)

t hy hy
wi(x) — w2 (x) =2/ €de+/ Gpdz-i-/ e, dz (17
t t

o*

u X hl X h2
y—— J—u2l x, =~
! 2 ) "\ 2
! hy ho
= 2/ y,,,dz+/ ypdz+/ vpdz (18)
0* t t

After applying these conditions, the following results are obtained.

By = (Eq/Ep)A; (19)
By = (Gn/Gp)Az (20)
Ar = [wn(x) — wa(x)]/y 21
A, = (101 (x) — ug(x)] — [(hg2)1/f1 (x) + (ha/2)¥a(x)] @)
2
where

Q) = 212V = VO) + (En/E) VI + Vs = 2V1)] (23)
Q, = 22(V1 = V0 ) + (G /G ) By + Vha = 241)] (24)
Therefore, Eqs. (1-4) become

_ L wi) —wax)

n = 2

o vz @)
_ 1 (Ex\wi(x) —w(x)
“=a (Ep)———-—ﬁ (26)
v = 1 lug (x) — ue(3)] = [(1/2)91 (x) + (h2/2) ¥ (x)]
m Qz «/E

)]

_ 1 Gy \ o1 () —uo2 ()]~ [(h1/D Y1 (0)+(ha/2) P (x)]

"= \G, Jz

2%

A failure criterion for the spring foundation is needed to predict
the onset of crack propagation. Johnson and Mangalgiri*! performed
a literature review on laboratory fracture tests of mixed-mode failure
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of laminated composites. They found general data trends and con-
cluded that, for practical purposes, the following empirical formula
for a failure criterion can be used:

a1\" (G
1 N I ) -1,
GIC GHC
Fracture toughnesses obtained from pure mode I tests (DCB) and
pure mode II tests (End Loaded Split) will be used as Gy, and Gy,
respectively. Gy and Gy will be replaced by the energy per unit area

absorbed by the tension and the shear spring foundations, respec-
tively, and can be expressed as

t pem hy €p
GI=2/ / a,,,demdz+f f o,de,dz
o+ Jo ¢ 0
ha €p
+ / f . Opdeydz 30)
¢ 0
t Ym hy Yp
GH=2/ f rmdymdz-l—f / 1,dy,dz
o+ Jo ¢ 0
h Yp
+ [ / T, dy, dz @n
t 0

Equation (29) will be used as a failure criterion of the spring foun-
dations along with Egs. (30) and (31). This failure criterion implies
that, even though the tension or shear spring at the crack tip does
not individually break when Eq. (29) is satisfied, the material at the
crack tip is at the critical state corresponding to crack growth.

m=n=1 29

IV. Finite Element Implementation
The finite element method was employed to obtain solutions of the
current mechanical model. To incorporate the material nonlinearity
into the finite element, the nonlinear constitutive law was linearized
first. The material having a one-dimensional nonlinear constitutive
relation, Egs. (5) and (7), can be approximated using a multilinear
constitutive law (Fig. 12) as

0pn = Er€y + E; (32)
Tn = Glym + G2 (33)

where E;—G, can be expressed as

Ei = Epe™Pien (G4)
Ey=ay [l = (1+ Bie))e P ] (35)
G1 = Gpe P7n (36)
G = [1 = (1+ Boyy)e Pn] @D

The asterisk in this equation denotes a quantity related to the previ-
ous incremental step.

Figure 13 shows a three-noded finite element incorporating
Timoshenko beam theory with a correction factor of 5/6 (Ref. 18).
The potential energy of the linearized system of the element can be
written as

I = Ubeam + Uspring - W, (33)

where Upeam and Uspying denote the strain energy of the upper and
lower beams and the spring foundations, respectively, and W, is the

W, wy AWs

v W s W

SR

W{»lb—i u, ‘IIAC I—AV u, W(q)——-—i Ug

Fig. 13 Three-noded finite element with spring foundation.

external work potential produced by nodal loads. Each of the terms
is as follows:

L
Unean = 3 / [Eshivl, + 3G, Avwic +¥1)] dx
0
L

+ %EbAlf (uo1,)* dx

0

L
+ % f [Eblz'ﬁzz,x + %GpAZ(wlx + 1#2)2] dx
0

L
+1E,A; / (12.0)* dx (39
0

L t €m
Uspring = 2b / / / o dé,, dz dx
0o Jor Je&
L hy €p
+b/ f / opde, dzdx
0 t 0
L hy €p
+b/ / / opde,dzdx
0 t 0
L pt pym
+2b/ / / T Ay dz dx
0 Jor Jyp
L h ¥p
+b/ f / T, dy,dzdx
0 t 0
+bf f f 7, dy, dzdx + U* (40)

W ZuP+w,F+w, ; @D
i

where U* is the strain energy, the resin layer containing the crack
tip has absorbed up to €* and y* in an incremental way. Instead of
exact 0 in this study 1 um was used for 0*. The reason is related
to the numerical implementation of the algorithm described. If the
constitutive law is used in its original form (without a multilinear
approximation), then the strain energy at the crack tip is bounded;
however, this leads to a fully nonlinear finite element calculation
which necessitates some form of linearization. Alternatively, the
nonlinear constitutive law was replaced by a multilinear (piecewise
linear) approximation as shown in Fig. 12. This approximation leads
to an artificial singularity in the strain energy if exact 0 is used dur-
ing the integration. Thus, this singularity was removed by using 0%,
instead of 0. The resulting finite element equations are linear (in-
crementally) and the solution procedure is then straightforward and
efficient without sacrificing accuracy. The value of 0* (1 pm) was
chosen after careful examination ensuring that the multilinear model
does not lead to unbounded results. In addition, as long as 0* was
significantly smaller (several orders of magnitude) than the char-
acteristic lengths involved in the numerical calculation, the results
were found to be insensitive to small deviations of 0*. Substitu-
tion of Egs. (5-8) and (25-28) into Eq. (40) yields the following
displacement related equation:

L
Uspr'mg =0 / fwi(x) — wZ(X)]Z dx
0
L L
+ Fz/ [wi(x) —wy(x)]dx + F3/ {[um (x) — ng(x)]
0 0
hy hy 2 L
- -2—1/f1 (x) + 71/&()5) dx + Ty (201 (x) —uo2(x)]
0

- [?2—11111(96) + %Wz(x)] } dx + U™ “42)
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where U** is a strain energy related to the previous (n — 1)th incre-
mental step, which vanishes on differentiation with respect to the
current step displacement fields. I';—["4 in the Eq. (42) are expressed
as follows:

b ['E
Fl‘—""f/ ‘le
Q Joo 2

2
Em
+ %bEp(E—> (logh, + loghy — 2logt) (43)
p
2b ' E,
= — —=dz (44)
: Ql o* '\/E
b ['G
I's = —2/ = dz
2 Joo 2
G 2
+%bGP(E'i) (logh; + loghy —2logt) (45)
P
2 (!
=22[ Gg “6)
@ Jo V2

Now the displacement fields u#o, w, and i can be approximated
using quadratic interpolation in conjunction with a three-noded
element

ugy (x) = u Ny (x) + uzNy(x) + usNa(x) (47)
U (x) = uy Ny (x) + ug Np(x) + ugNs (x) (48)
wi(x) = wiN; (x) + w3Na(x) + ws N3 (x) (49)
w2 (x) = w2 N1 (x) + waNp(x) + weN3(x) (50)
Yi(x) = YN (x) + Y3Na(x) + Y5 Na(x) 5D
Y2(x) = Y2 N1 (x) + PaNa(x) + P N3 (x) (52)

where N;—Nj; are the beam shape functions. '

After substituting the approximated deflections uo(x), w(x), and
¥ (x) into Eq. (38), the stationary potential energy theorem (§IT = 0)
was applied to obtain an element matrix equation by differentiating
the potential energy equation with respect to nodal displacements,
u1—s. The resulting 18 x 18 element stiffness matrix and 18 x 1
equivalent nodal loads were numerically integrated after approxi-
mating variables associated with the previous incremental step to
be constants by taking average values within an element to save
computation time.!>~17

Figure 14 shows a schematic of the mesh generation. The mesh
was generated in such a manner that the element numbering is dense
near the crack tip, constant up to the final crack propagation point,
and becomes sparse gradually from the point. The resulting global
equation was numbered diagonally to save computer memory and
computation time and was solved using a banded matrix solver.
The numerical loading was applied by incrementing the displace-
ment at the loading point. The crack propagation was achieved in
a node-by-node advance scheme. In other words, the loading stops
when the first spring at the crack tip has reached the failure crite-
rion described in Sec. I1I, and the program calculates how much the
crack has propagated and removes the spring foundation up to the
nearest node of the new crack tip. This node-by-node crack propa-
gation scheme, different from that of finding the exact location of
the new crack tip and remeshing according to the new crack length,
as reported by Song and Waas,'>~7 has the advantage of having
faster numerical convergence. A disadvantage of this scheme is that
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o . x R
T I TR * :

NNNANNANNY

Fig. 14 Schematic of the mesh generation.

a finer mesh distribution is required from the initial to final crack-
tip location. After reaching the final crack length in this manner
where the loading switched to unloading in the experiment, the nu-
merical loading also switched to unloading by decrementing the
displacement. This whole process completes a loading and unload-
ing curve. The smallest mesh size at the crack tip was about 0.1
mm and the increment of displacement was 5 um. The compu-
tation time taken for one loop of the loading and unloading was
approximately 1-3 h on a NeXT workstation computer. A much
faster convergence (about 10 times) can be achieved if only critical
loading and displacement at which the crack starts to propagate are
sought, as the additional numerical scheme for crack propagation is
not needed.

V. Results

A satisfactory numerical convergence was found for the total
fracture toughness with an incremental size of 5 jum, total element
number of 50, and smallest element size at the crack tip of 0.1 mm.

The capability of the current model on mode separability has
been tested for both types of specimens. The mode I and mode II
components of the fracture toughness were calculated at the onset of
the crack propagation during the simulation by calculating the strain
energies absorbed by tension and shear spring foundations at the
crack tip. The results for E7T 1/G40 specimens are shown in Fig. 15,
where 8th, 16th, etc. denote the crack location measured from the
top of the specimen (Fig. 2), and those for E719/IM7 showed about
the same results. The current model is seen to match the mode
mixture very closely to the theoretical values calculated by Kinloch
et al.® For instance, the center crack mixed-mode specimen shows a
mixture of 0.577-0.423, or 1.36-1 from the current model, whereas
Kinloch et al.? predicts 4-3, or 1.33-1 based on the contribution of
Hashemi et al.

Figure 16 shows the prediction of the current model on the total
fracture toughness of the mixed mode failure for two types of beam
composites. As explained in Sec. I, the current model uses mode I
and mode I fracture toughness data and follows a simple empirical
formula obtained from the general data trends found by Johnson and
Mangalgiri.*! The figure shows that the E7T1/G40 specimen fol-
lowed the general trends closely, whereas the E719/IM7 specimen
shows a little deviation from the trends. Therefore, the current model
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0 0.2 0.4 0.6 0.8 1.0
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Fig.15 Mode separation capability of the current model for E7T1/G40
specimen.
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Fig.16 Prediction of the mixed-mode toughness of the current model.
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Fig. 17 Simulation results of the current model and experimental ob-
servations for E7T1/G40 specimen, 16th ply crack mixed mode.

500

400 a= 62.0mm\

load [N],P
g

200

100 .
— Experiment

0 T v v
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
displacement {m].§

Fig. 18 Simulation results of the current model and experimental ob-
servations for E719/IM7 specimen, mode II.

will predict total mixed-mode fracture toughness accurately for the
specimens which follow Eq. (29) closely. Figures 17 and 18 show
the simulation results from the current mode! for the loading and
unloading curves of mixed (16th-ply crack) and ELS (pure mode II)
specimens. The current model also predicted the critical load and
displacement of crack onset very accurately.

VI. Concluding Remarks

The mechanical model that has been presented for mixed-mode
fracture in layered composites, uses a tension and shear spring foun-
dation to separate out microbehavior of the material ahead of the
crack tip from the macrobehavior of the structure; tension springs are
used to represent the mode I component and shear springs to repre-
sent the mode IT component. The model uses the mode I and mode II
fracture toughness data obtained from laboratory fracture tests for
a given composite as an input and incorporates an empirical for-
mula of general data trends as given by Johnson and Mangalgiri.?!
An advantage of the presented model lies in its ability to sepa-
rate out the mode mixture very easily, whereas the cantilever beam
approach,? for example, necessitates the use of many correction
factors. Indeed, as was demonstrated, the separate contributions of
mode I and mode II toughnesses are obtained as a result of the so-
lution to the mechanics problem. In addition, the total toughness of
mixed-mode failure as well as the critical loads and displacements
at which the crack starts to propagate are also obtained as a part of
the solution. The current model can be easily extended to practi-
cal crack problems, where the macrobehavior can be solved using
well-established mechanics models such as beam, plate, shell, and
two-dimensional elasticity theories, etc. and the microbehavior near
the crack tip can be separated out and solved using the presented
spring foundation model.
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