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The method for solving an optimal design problem under uncertainty depends on how 
the latter is quantified. When sufficient information is available the popular probabilistic 
approach can (and should) be adopted. In reality however, we often do not have sufficient 
data to infer appropriate probability distributions for the uncertain quantities modeled as 
random variables. The amount of available information about the uncertain quantities may 
be limited to ranges of values (intervals). In this case, the interval analysis approach can be 
employed to reformulate and solve the optimal design problem. In this study, we use both 
approaches to solve an engine design optimization problem that considers fuel economy and 
acceleration performance of a medium-sized truck with a hydraulic-hybrid powertrain. We 
then contrast the obtained results and comment on the characteristics and features of the 
two approaches. We also demonstrate an extension of the interval analysis approach to 
multilevel systems using a simple yet illustrative engine-related example.  

I. Introduction 
HE general system optimal design model consists of performance objective(s) that must be maximized subject 
to constraints. Applying mathematical optimization algorithms to solve the associated, generally nonlinear, 

programming problem typically results in design solutions that lie on the boundaries of constraints. That means that 
performance cannot be further enhanced unless the constraint boundary is (re)moved. This fact has an additional 
implication when uncertainty is present and/or the optimal design cannot be realized exactly: deviations from the 
optimal solution are more likely than not to cause infeasibility, i.e., violate the constraints. Therefore, it is necessary 
to account for these variations due to uncertainty and adjust the optimal design such that the constraints are not 
violated when variations occur. In other words, when the designs are pushed to their performance limits, we must 
make sure that the presence of uncertainty has no adverse impacts.  

T 

Uncertainty is inherently present in simulation-based design of complex engineering systems. The analysis 
models used for the simulation depend on assumptions and include many approximations and empirical constants. 
Also, advanced yet relatively immature technologies are often associated with uncertainty; the designer is not sure 
about the validity of the decisions he/she has made, and would like to be able to perform optimization studies under 
uncertainty. It is therefore imperative to represent uncertainties and take them into account during the early design 
assessment process.  

Uncertainty identification, representation, and quantification are the cornerstones of design optimization under 
uncertainty. Given the design model and the necessary analysis/simulation models, the designer must first identify 
all possible sources of uncertainty. Then, she/he must choose an appropriate means to represent and quantify them. 
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A highly popular approach is to model uncertain quantities as random variables, and quantify them using probability 
distributions. This approach is quite useful when there are sufficient data to infer appropriate (correct) probability 
distributions. However, in many situations the designer does not have the necessary information available. In this 
case, he/she must assume that an uncertain quantity can take any value within a range, and use an interval analysis 
approach to solve the design optimization problem.  
 In this study we use both approaches to study the impact of uncertainty representation and quantification on 
design decisions. We also propose a formulation for extending the interval analysis approach to optimal design of 
multilevel systems.  
 The paper is organized as follows. The considered design optimization problem is described in the next section. 
The two approaches and the corresponding results are presented in Section III. We present the multilevel interval 
analysis approach in Section IV. Concluding remarks are presented in Section V. 

II. Optimal Design Problem Formulation 
We consider the optimal design problem of a medium-sized dual-use truck with a hydraulic-hybrid powertrain 

configuration and a fuel cell auxiliary power unit. The design optimization problem is formulated as 
 

max    ( , )

subject to   ( , ) ,

f

≤
x

x p

g x p 0
                                                                     (1) 

 
where the objective function f and the design constraints g depend on variables x and parameters p. The objective is 
to maximize fuel economy (measured in miles per gallon) subject to performance constraints on the acceleration and 
maximum speed (on different grades) capabilities of the truck. Preliminary optimization studies have indicated that 
the acceleration constraint is dominates the maximum speed constraints. Therefore, in the remainder of this 
document, we will focus on the former. Specifically, we require that the time necessary to accelerate from 0 to 45 
miles per hour does not exceed 24 seconds. 

The objective and the constraint are evaluated using simulation tools. The 6x6 all-wheel-drive truck (powered by 
a 246 kW six-cylinder, turbocharged, intercooled, direct injection diesel engine) is modeled using VESIM, a high-
fidelity vehicle/engine simulation environment and has a gross vehicle weight of 15,300 kg1. A detailed description 
of the truck model (including the embedded hydraulic system) is given in Assanis et al.2 The driving cycle used for 
the simulation is depicted in Figure 1. The total simulation real-time amounts to 2200 seconds, and corresponds to a 
distance of approximately 25 km on a network of primary, secondary, and cross-country roads. 
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Figure 1. Driving cycle 

 
The inputs list of the integrated VESIM simulation model includes a large number of quantities related to the 

hybrid powertrain and vehicle dynamics. The designer has to decide which of those inputs to consider as design 
optimization variables x. The rest are held fixed to pre-specified values, and are considered as parameters p. In this 
paper we focus on the engine design. Although the hydraulic system design affects the performance of the hybrid 
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powertrain, it is not included in this optimization study because the acceleration constraint must be satisfied 
assuming that only the engine is driving the vehicle. Therefore, we use the optimal hydraulic system design 
computed in a previous deterministic optimization study3. In Kokkolaras et al.4 four engine design variables were 
selected to represent the engine design, and four parameters with the highest impact on the truck’s fuel economy and 
performance were identified among tens of quantities that constitute inputs to the engine and vehicle dynamics 
simulation codes using the technique of Mohanty and Wu5. These design variables and parameters are summarized 
in Table 1. They are all considered uncertain in the design optimization and assessment case study presented in this 
paper. 

Table 1. Uncertain design variables and parameters 

 
Uncertain quantity Type Lower bound Upper bound 

Displacement [L] variable 6 9 
Compression ratio [-] variable 12 17 
Boost pressure [bar] variable 1.87 2.55 
Wastegate activation speed [RPM] variable 1000 1600 
Injection timing [oATDC] parameter 348 350 
Frontal area [m2] parameter 6 9 
Transmission efficiencies [-] parameter 0.90 0.98 
Differential and rolling resistance scaling  parameters [-] parameter 0.8 1.2 

III. Uncertainty Quantification and Corresponding Methods 
In the presence of uncertainty, the formulation of the design optimization problem (1) must be modified. In this 

section we consider two different approaches for formulating and solving the optimal design problem depending on 
how uncertainty is represented and quantified. Note that uncertain quantities are denoted by upper case symbols in 
both approaches. 

A. Probabilistic Approach 
In this approach, we assume that we have sufficient data to infer correct probability distributions for the random 

variables that model the uncertain quantities. We use the means of the random design variables as optimization 
variables, and maximize the expected value of the objective function, approximated by the objective function 
evaluated at the means of the random design variables and parameters. Note that we use the terms random design 
variables and random design parameters to refer to design variables and design parameters, respectively, that are 
uncertain and modeled as random variables. The design constraints are reformulated as probabilistic, and their 
satisfaction is requested at a pre-specified reliability level R. Assuming, without lack of generality, that all design 
variables and parameters are random, the design optimization problem (1) is reformulated as 

 
max    [ ( , )] ( , )

subject to   Pr[ ( , ) 0] ,    1,..., .j j

E f f

g R j J

≈

≤ ≥ =
X

X Pµ
X P µ µ

X P
                                                 (2) 

 
Note that in our case study J = 1. 

Problem (2) can be solved using any of the available methods for reliability-based design optimization (RBDO), 
whose name is inspired by the necessity to assess the reliability of satisfying the probabilistic design constraint. We 
have used a so-called single-loop method6 to solve the problem for several reliability levels4.  

All random design variables and parameters were assumed to be normally distributed (the effect of probability 
distribution type on design decisions was investigated in Gunawan et al.7). The standard deviations of the random 
design variables and the means and standard deviations of the random parameters are summarized in Table 2. 
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Table 2. Standard deviations for design variables and means and standard deviations for parameters 

 
Variable σ Parameter µ σ 

Displacement [L] 0.025 Injection timing [oATDC] 350 1 
Compression ratio [-] 0.1 Frontal area [m2] 7.5 0.75 
Boost pressure [bar] 0.1 Transmission efficiencies [-] 0.94 0.02 

Wastegate activation speed [RPM] 50 Differential and rolling resistance scaling 
parameters [-] 1.0 0.1 

 
Table 3 summarizes the results for different levels of required reliability. These results are presented in more 

detail in Kokkolaras et al.4 ; they are included here to enable the contrast to the results obtained using the interval 
analysis approach. It can be seen that the engine size increases, while compression ratio, and boost pressure decrease 
with increasing level of desired reliability of acceleration performance, which is, of course, detrimental to fuel 
economy. An improvement of 6.6% performance reliability (from 93.3% to 99.9%) induces a 7.6% fuel economy 
reduction (from 6.69 mpg to 6.18 mpg).  It can also be seen that we must sacrifice slightly less optimality to improve 
performance reliability from 93.3% to 99.3% than from 99.3% to 99.9%, i.e., the need for performance sacrifice 
increases nonlinearly as we demand higher reliability. 

Table 3. Optimal designs for different levels of reliability 

 
Expected objective function value (fuel 
economy in mpg) 6.69 6.62 6.54 6.44 6.35 6.29 6.18 

Reliability level of satisfying the 
acceleration constraint in % 93.3 96.4 98.2 99.3 99.7 99.8 99.9 

Mean engine displacement in L 6.5 6.8 7.1 7.6 7.9 8.2 8.7 
Mean engine compression ratio 16.85 16.82 16.79 16.75 16.72 16.70 16.67 
Mean boost pressure in bar 2.40 2.37 2.34 2.30 2.27 2.25 2.22 
Mean wastegate activation speed in RPM 1200 1200 1200 1200 1200 1200 1200 
 

B. Interval Analysis Approach 
The probabilistic approach is very useful and should be adopted when the designer has sufficient data to model 

uncertain quantities as random variables with appropriate probability distributions. When this is not the case, it is 
imperative to assume that the uncertain quantities can take any value within a range. Note that this not equivalent to 
assuming a uniform distribution as it does not imply that the probability of taking a specific value in a range is equal 
to any other value within that range. 

We view the interval analysis approach as a possibility theory case8, 9 where information availability is limited to 
a minimum. Designs obtained using possibility-based design optimization (PBDO) methods are typically 
conservative compared to the ones obtained using RBDO methods. Possibility-based designs sacrifice additional 
optimality compared to RBDO designs to account for lack of uncertainty information and avoid constraint violation. 

According to possibility theory, the possibility π(Α) of event A provides an upper bound on the probability P(A), 
i.e., ( )AAP π≤)( . From the design point of view, we can conclude that what is possible may not be probable, and 
what is impossible is also improbable. If the possibility of violating a constraint is zero, then the probability of 
violating the same constraint will also be zero. If feasibility of a constraint g is expressed with the negative null form 

 as in Problem (1), the constraint is always satisfied if0g ≤ ( )0 0gπ > = . By introducing the notion of membership 

functions and α-cuts, we can relax this requirement as ( )0gπ α> ≤ , provided that 0 < α << 110. According to 
possibility theory, Problem (1) is reformulated as 
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max    ( , )

subject to   [ ( , ) 0] ,    0< 1,   1,..., .j

f

g j Jπ α α> ≤ ≤ =
NX

X P

X P
                                   (3) 

 
 
It can then be shown11 that if the maximum possibly attainable value of the constraint g at the corresponding α-

cut is less than or equal to zero, i.e., , the possibility of violating this constraint is less than α. In general, 
membership functions express how ranges of values that bound the uncertainty quantities are decreased with 
increasing amount of information. The α-cuts denote levels of information, starting at the lowest (α = 0), where the 
range is largest, and increasing to the highest (α = 1), where the range is the smallest (possibly a crisp value)

max 0gα ≤

9. In this 
work, we will assume that the lowest level of information is available, where α is equal to zero. Therefore, we do 
not have to consider membership functions and higher α-cuts. Thus, the possibility-based design optimization 
problem (3) boils down to an interval analysis-based optimization problem formulated as 
 

,max

max    ( , )

subject to   0,     1,..., .j

f

g j J≤ =
NX

X P
                                                                (4) 

 
The implementation process of solving Problem (4) involves a nested optimization. The outer-loop optimization 

determines optimal nominal values XN for the uncertain design variables X. For each iterate of XN, inner-loop 
optimization problems are solved, one for the objective and one for each constraint. Specifically, worst-case 
scenario problems are formulated, in which the uncertain design variables and parameters are treated as optimization 
variables. These worst-case optimization problems (also referred to as “anti-optimization” problems12) may involve 
a larger number of optimization variables, but are only bound-constrained. The bounds of the inner-loop 
optimization problem variables are fixed for the uncertain parameters, while they are determined utilizing 
uncertainty information around the current nominal values for the design variables. The inner-loop optimization 
problem for the objective is formulated as 

  

                                                                 (5) 
,

min max

min    ( , )

subject to   
                    

f

− ≤ ≤ +
≤ ≤

X P

N N

X P

X ∆X X X ∆X
P P P

 
 and for each constraint j as  
 

,

min max

max    ( , )

subject to   
                 .

jg

− ≤ ≤ +
≤ ≤

X P

N N

X P

X ∆X X X ∆X
P P P

                                                             (6) 

 
The primary purpose of solving problems (5) and (6) is not to determine optimal values for X and P, but to 

obtain the minimal value of f and maximal value of g that may be attained due to uncertainty in X and P (note that 
we assume “homogeneous” uncertainty, i.e., that ∆X does not vary with XN). These two values are used in the outer-
loop optimization, where the worst objective value is maximized and the worst constraint value must be feasible. 
Nevertheless, the inner-loop optimal values of X and P can be used to draw conclusions about how to attempt to 
control uncertainty, i.e., what values to desire and what values to avoid, if possible. 

The nested optimization problems (4)-(6) have been solved for our design case study using the uncertainty 
information summarized in Table 4, where γ is used as a parameter to represent larger or smaller ranges of 
uncertainty. To facilitate the contrast of results, the uncertainty ranges of the design variables in Table 4 for γ = 1 
and γ = 2 correspond to one- and two-σ deviations from the nominal point, respectively, where σ is the standard 
deviation in the case of normally distributed random design variables (Table 2). Similarly, the design parameter 
ranges (Table 4) are chosen to be comparable in size with the normally distributed design parameters of Table 2 
(approximately 95% of the values of the normally distributed parameters will lie within the ranges of Table 4). 
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Table 4. Ranges of design variables and parameters 

 
Variable Range Parameter Range 

Displacement [L] nominal +/- γ∗0.025 Injection timing [oATDC] 348 - 352 
Compression ratio [-] nominal +/- γ*0.1 Frontal area [m2] 6.0 - 9.0 
Boost pressure [bar] nominal +/- γ*0.1 Transmission efficiencies [-] 0.90 - 0.98 
Wastegate activation speed 
[RPM] nominal +/- γ*50 Differential and rolling resistance 

scaling parameters [-] 0.8 - 1.2 

 
The derivative-free, global search optimization algorithm DIRECT13) was used to maximize the likelihood of 

converging to global optima for both the outer and the inner optimization problems. The optimal designs 
corresponding to two different uncertainty ranges (γ = 1 and γ = 2) are reported in Table 5. 

Table 5. Optimal designs for different values of γ 

 
Variable Nominal value, γ = 1 Nominal value, γ = 2 

Displacement [L] 6.55 7.57 
Compression ratio [-] 16.87 16.77 
Boost pressure [bar] 2.45 2.34 
Wastegate activation speed [RPM] 1158 1226 

 
The optimal designs have been obtained considering the worst-case scenarios for both the objective and the 

constraint. Therefore, Problems (5) and (6) must be solved one more final time with reversed objectives (max and 
min, respectively) to obtain the best-case scenario values for the objective and the constraint, and thus the complete 
ranges of possibly attainable values of these two functions given the uncertainty in X and P. 

Tables 6 and 7 include the ranges obtained for the objective and the constraint and the associated design variable 
and parameter values for γ = 1 and γ = 2, respectively. This information can be quite useful to the designer. For 
example, it can be seen that the same set of parameter values are adversary or beneficial to both fuel economy and 
performance. Thus, if the designer can allocate resources to reduce or control uncertainty, he/she knows which 
parameter values to strive for. On the other side, it can be observed that engine displacement and wastegate 
activation speed extremes benefit or degrade either fuel economy or performance, but not both simultaneously, 
while engine compression ratio and boost pressure extremes benefit or degrade fuel economy and performance 
simultaneously.  

It can also be seen that the uncertainty range has a significant impact on both fuel economy and acceleration 
performance. As the uncertainty ranges of the simulation inputs (design variables and parameters) increase (from γ = 
1 to γ = 2), the uncertainty ranges of the simulation outputs (objective and constraint function values) also increase. 
Fuel economy varies between 6.06 and 7.34 mpg for γ = 1 and between 5.78 and 7.13 mpg for γ = 2. The worst-case 
values are 17.4% and 18.9% worse than the best-case values, respectively. The 0-45 mph acceleration time varies 
between 18 and 24 seconds for γ = 1 and between 16 and 24 seconds for γ = 2. The worst-case values are 25% and 
33.3% worse than the best-case values, respectively. Note that the enlargement of the uncertainty ranges of the 
simulation outputs is not symmetric. The minimum possibly attainable fuel economy value decreases (from 6.06 
mpg to 5.78 mpg), while the maximum possibly attainable value does not increase (it also decreases from 7.34 mpg 
to 7.13 mpg). The worst-case scenario constraint value is 24 seconds in both cases (i.e., the constraint is active), but 
the “higher-uncertainty” optimal design yields an improved best-case acceleration value due to the engine up-sizing.   
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Table 6. Objective and constraint ranges and associated uncertain design variable and parameter values for 
γ = 1 

 

 Value Displ. 
[L] 

Compr. 
ratio   [-] 

Boost 
press. 
[bar] 

Wast. 
act. sp. 
[RPM] 

Inj. tim. 
[oADTC] 

Area 
[m2] 

Trans. 
eff. [-] 

Rolling 
res./diff.   
scal. [-] 

fmin
6.06 
mpg 6.575 16.77 2.35 1108 352 9 0.90 1.2 

fmax
7.34 
mpg 6.525 16.97 2.55 1208 348 6 0.98 0.8 

gmin 18 s 6.575 16.97 2.55 1108 348 6 0.98 0.8 
gmax 24 s 6.525 16.77 2.35 1208 352 9 0.90 1.2 

Table 7. Objective and constraint ranges and associated uncertain design variable and parameter values for 
γ = 2 

 

 Value Displ. 
[L] 

Compr. 
ratio   [-] 

Boost 
press. 
[bar] 

Wast. 
act. sp. 
[RPM] 

Inj. tim. 
[oADTC] 

Area 
[m2] 

Trans. 
eff. [-] 

Rolling 
res./diff.   
scal. [-] 

fmin
5.78 
mpg 7.62 16.57 2.14 1126 352 9 0.90 1.2 

fmax
7.13 
mpg 7.52 16.97 2.54 1326 348 6 0.98 0.8 

gmin 16 s 7.62 16.97 2.54 1126 348 6 0.98 0.8 
gmax 24 s 7.52 16.57 2.14 1326 352 9 0.90 1.2 

 

C. Remarks 
By inspecting Tables 3 and 5, we observe that increasing the reliability level in the probabilistic approach and 

the uncertainty range in the interval analysis approach have a similar effect on design decisions. They cause engine 
displacement and wastegate activation speed to increase, and compression ratio and boost pressure to decrease. The 
optimal design of the γ = 1 case in the interval analysis approach is very close to the optimal design of the 93.3% 
reliability level in the probabilistic approach, while the optimal design of the γ = 2 case in the interval analysis 
approach is very close to the optimal design of the 99.3% reliability level in the probabilistic approach. The 
approximate expected fuel economy values in the probabilistic approach for the optimal designs at the 93.3% and 
99.3% reliability levels are the midpoints of the fuel economy ranges of the corresponding optimal designs in the 
interval analysis approach.  

The probabilistic approach assures that design constraints will not be violated according to a pre-specified 
reliability level, while the interval analysis approach excludes the possibility of constraint violation at the expense of 
a more conservative design. The interval analysis approach provides the range of possibly attainable constraint 
values. Using the probabilistic approach, we can obtain statistical properties on the constraint functions, but at an 
additional computational cost.  

Both approaches face similar challenges regarding accuracy and efficiency. In the probabilistic approach, there is 
a trade-off between accuracy and computational efficiency when performing the reliability analysis of the 
probabilistic constraints. Analytical methods are more efficient but less accurate than simulation-based (Monte 
Carlo) methods. Note that when problems are highly nonlinear, analytical methods that compute most probable 
points (MPP’s) may encounter difficulties.  

The interval analysis approach requires finding the global optimum of the inner-loop problems. The likelihood of 
finding a global optimum is increased only by more elaborate exploration of the design space. Thus, a similar 
accuracy versus efficiency trade-off exists. It is encouraging that both the reliability analysis of the probabilistic 
constraints and the solution of the inner-loop optimization problems can be performed in parallel. A possible 
advantage of the interval analysis approach is that the inner-loop optimization problems are only bound-constrained, 
i.e., there are no general nonlinear constraints, which makes their solution much more tractable.  
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Finally, the fact that, besides the design variables, many design parameters may be uncertain increases the size of 
the inner-loop problems for both approaches. 

IV. Extension of the Interval Analysis Approach to Multilevel Systems 
Optimal system design problems are often formulated in multiple levels, either because they are decomposed 

hierarchically, or due to the structure of the required simulations. In this section, we present an extension of the 
interval analysis approach to optimal design of multilevel systems under uncertainty. Our objective is to demonstrate 
the presented formulation using a simple yet illustrative example; a detailed discussion of deterministic and non-
deterministic design of hierarchical multilevel systems is out of the scope of this paper. We will use the bi-level, 
engine-related, simulation-based example from Kokkolaras et al.14, where we proposed a probabilistic approach for 
optimal design of hierarchically decomposed, multilevel systems under uncertainty. 

We consider a V6 gasoline engine as the top-level system, which is decomposed into a bottom-level subsystem 
that represents the piston-ring/cylinder-liner subassembly of six identical cylinders (thus, we only need to consider 
one). The bottom-level (ring/liner subassembly) simulation takes as inputs the surface roughness of the ring and the 
liner and the Young's modulus and hardness of the liner, and computes power loss due to friction, oil consumption, 
blow-by, and liner wear rate. The top-level (engine) simulation takes as input power loss due to friction and 
computes fuel consumption (cf. Figure 2). 

 
 

Figure 2. Bi-level system simulation of engine and ring/liner 
 

The considered uncertain quantities are ring and liner surface roughnesses; root mean square (RMS) of asperity 
height is used to represent and quantify surface roughness. Of course, liner material properties can (and should) also 
be considered as uncertain, but we have not done so in this example to keep it simple. Let us assume that surface 
roughness X exhibits deviations from nominal values that can be quantified by an interval of the form [XN-δXXN, 
XN+δXXN], where δX denotes percentage deviation. This surface roughness interval uncertainty is propagated through 
the simulation hierarchy to estimate intervals for power loss and fuel consumption. Since uncertainty information is 
available at the bottom-level we first formulate and solve the bottom-level problem 

 

( ) ( )
1, 2, 3 4

2 2U U
B 1 2 3 4 B W 1 2 3 4 W, , ,

3
max 1 2 3 4

5
max 1 2 3 4

max 1 2

min    ( , , , ) ( , , , )

subject to      ( , , , ) 15.3 10  kg/hr

                    ( , , , ) 4.25 10  kg/s

                    ( ,

X X x x
PL X X x x PL PL X X x x PL

OC X X x x

BB X X x x

WR X X

−

−

− + −

≤ ×

≤ ×

N N

12 3
3 4

1, 2,

3 4

, , ) 2.4 10  m /s
                    2 m 9 ,  2 m 9 ,  
                    80GPa 340GPa, 150BHV 240BHV,

x x
X m X m

x x
µ µ µ µ

−≤ ×
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤
N N

                             (7) 

 
where X1 and X2 are (uncertain) ring and liner surface roughness design variables, respectively, x3 and x4 are 
(deterministic) liner Young’s modulus and hardness design variables, respectively, PL is power loss due to friction 
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(subscripts “W” and “B” denote worst and best possible values due to interval uncertainty, respectively, while 
superscript “U” denotes target value from the upper level), OC denotes oil consumption, BB denotes blow-by, and 
WR denotes liner wear rate. According to the interval analysis approach, at the outer-loop optimization we determine 
nominal values X1,N and X2,N (as well as optimal values for x3 and x4), while solving five (5) inner-loop optimization 
problems given the (assumed invariant) surface roughness interval uncertainty: one best-case scenario for the power 
loss, one worst-case scenario for the power loss, and one worst-case scenario each for oil consumption, blow-by, and 
wear rate. Since we do not have information from the top-level problem yet, i.e., target values for PLB and PLW, we 
assume these to be equal to zero. Once the power loss uncertainty interval has been obtained, we compute 
percentage deviation δPL from the interval midpoint in order to pass this uncertainty information to the top-level 
problem, which is formulated as 
   

( ) ( ) ( ) ( )2 2 2T T L
B B W W B B W Wmin    ( ) ( ) ,

PL
FC PL FC FC PL FC w PL PL w PL PL− + − + − + −

N

2L                      (8) 

 
where FC denotes fuel consumption. The superscript “T” denotes target values, while the superscript “L” 

denotes interval values from the lower level, so that the top-level problem does not consider solutions that are too far 
from what the bottom-level can provide (the weight w can be adjusted to emphasize consistency rather than fuel 
consumption optimality). At the outer-loop optimization we determine nominal values of power loss while solving 
two inner-loop optimization problems given the quantified (at the lower level) power loss interval uncertainty: one 
best-case scenario for the fuel consumption and one worst-case scenario for the fuel consumption. After the top-
level problem is solved (note that the desired fuel consumption interval target values may not be achieved), the 
power loss interval is updated, passed down to the bottom-level problem, which is then resolved and so on. We 
assume that this coordination process is converged when all quantities do not change significantly anymore.  

Table 8 reports the results obtained assuming δX = 0.1 (10%) for both the ring and the liner surface roughness 
uncertainty (cells are empty when quantities are not related to a problem; power loss links the two problems). All 
optimization problems (top and bottom levels, outer and inner loops) were solved using the NOMADm15 software 
package. NOMADm is the Matlab implementation of the Generalized Pattern Search (GPS) and Mesh Adaptive 
Direct Search (MADS) family of derivative-free algorithms for mixed variable programming16,17. 

Table 8. Results of the multilevel system design problem using the interval analysis approach 

 

 X1,N 

[µm] 
X2,N

[µm] 
x3

[GPa] 
x4

[BHV] 
PLB

[kW] 
PLW
[kW] 

δPL
[%] 

FCB 
[kg/ 

kWhr] 

FCW
[kg/ 

kWhr] 

δFC
[%] 

Bottom-level solution 2.06 5.87 80 40 0.277 0.369 15 - - - 
Top-level solution, w = 1  - - - - 0.176 0.238 15 0.486 0.499 1.3 
Top-level solution, w = 10 - - - - 0.253 0.343 15 0.502 0.522 2 
Top-level solution, w = 1000 - - - - 0.263 0.356 15 0.504 0.525 2 

 
In order to achieve the best (minimal) fuel consumption possible, we set the top-level problem target values for 

both the worst and the best fuel consumption equal to zero. Of course, these target values are unattainable. 
Therefore, the power loss interval computed by solving the bottom-level problem ([0.277, 0.369]) cannot be 
matched exactly when solving the top-level problem. By increasing the values for the weight w, we increase 
consistency, i.e., interval matching for the power loss ([0.263, 0.356] for w = 1000). It is interesting that while the 
power loss uncertainty is invariantly quantified at 15% around the interval midpoint, the fuel consumption 
uncertainty changes for different weight values (from 1.3% to 2% around the interval midpoint). This implies that 
uncertainty is not invariant with respect to the design point, as assumed in many design under uncertainty 
methodologies.   

V. Concluding Remarks 
We investigated the impact of uncertainty quantification on design decisions by studying an optimal design 

problem. Specifically, we contrasted two relatively extreme situations: one where the designer has complete 
information and data available to infer probability distributions of random variables and adopt a probabilistic design 
approach, and one where he/she has the lowest amount of information available, and has to assume ranges for the 
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uncertain quantities and adopt an interval analysis approach for design optimization. As expected, the interval 
analysis approach yields design solutions that are conservative relative to the ones obtained using a probabilistic 
design approach, especially as interval uncertainty increases. However, the interval analysis approach ensures 
feasibility at all times. In terms of computational cost, the nested optimization of the interval analysis approach 
seems to be less expensive than the required reliability analysis (analytical or simulation-based) in the probabilistic 
approach. It is also less challenging numerically since the inner-loop optimization problems are simple bound-
constrained problems. The single challenge is that the inner-loop problems require global solutions to ensure 
consideration of the worst-case scenario. One of the pluses of the interval analysis approach is that the solution of 
the inner-loop problems provides information to the designer with respect to the beneficial or adversary effects of 
uncertainty so that, if possible, future resources can be allocated to improve design robustness. Also, if it makes 
sense, unbounded interval uncertainty, i.e., infinite intervals can be considered in the interval analysis design 
approach. One of our significant findings is that interval uncertainty does not necessarily propagate either 
symmetrically or invariantly. Finally, we also presented a first extension of the interval analysis approach to design 
of multilevel systems. Future work will focus on a more elaborate study of the multilevel interval analysis approach.     

Acknowledgments 
The authors would like to acknowledge the support of the Automotive Research Center (ARC), a U.S. Army 

Center of Excellence for Modeling and Simulation of Ground Vehicles led by the University of Michigan. The first 
and third authors also acknowledge the support of the NSF through the grant award DMI-0503737. Such support 
does not constitute an endorsement by the funding agencies of the opinions expressed in the article. 

References 
1Assanis, D.N., Filipi, Z.S., Gravante, S., Grohnke, D., Gui, X., Louca, L.S., Rideout, G.D., Stein, J.L., and Wang Y., 

“Validation and Use of SIMULINK Integrated, High Fidelity, Engine-In-Vehicle Simulation of the International Class VI 
Truck,” SAE Paper 2000-01-0288. 

2Filipi, Z., Louca, L., Stefanopoulou, A., Pukrushpan, J., Kittirungsi, B., and Peng, H., “Fuel Cell APU for Silent Watch and 
Mild Electrification of a Medium Tactical Truck,” Proceedings of the SAE World Congress, March 2004, Detroit, Michigan, 
paper no. 2004-01-1477. 

3Filipi, Z.S., Louca, L.S., Daran, B., Lin, C.-C., Yildir, U., Wu, B., Kokkolaras, M., Assanis, D.N., Peng, H., Papalambros, 
P.Y., and Stein, J.L., “Combined Optimization of Design and Power Management of the Hydraulic Hybrid Propulsion System for 
a 6x6 Medium truck,” International Journal of Heavy Vehicle Systems, 11(3-4):371-401, 2004. 

4Kokkolaras, M., Mourelatos, Z., Louca, L., Filipi, Z., Delagrammatikas, G., Stefanopoulou, A., Papalambros, P., and 
Assanis, D., “Design under Uncertainty and Assessment of Performance Reliability of a Dual-Use Medium Truck with 
Hydraulic-Hybrid Powertrain and Fuel Cell Auxiliary Power Unit,” Proceedings of the SAE World Congress, April 2005, Detroit, 
Michigan, paper no. 2005-01-1396. 

5Mohanty, S. and Wu, Y.T., “CDF Sensitivity Analysis Technique for Ranking Parameters in the Performance Assessment of 
the Proposed High-Level Waste Repository at Yucca Mountain, Nevada, USA,” Reliability Engineering and System Safety, 
73:167-176, 2001. 

6Liang, J., Mourelatos, Z.P., and Tu, J., “A single-loop method for reliability-based design optimization,” Proceedings of the 
30th ASME Design Automation Conference, September 2004, Salt Lake City, Utah, paper no. DAC-57255. 

7 Gunawan, S., Kokkolaras, M., Papalambros, P.Y., and Mourelatos, Z.P., “Optimal Design and Reliability Estimation with 
Incomplete Uncertainty Information,” Proceedings of the 2006 SAE World Congress, April 3-7, 2006, Detroit, Michigan, paper 
no. 2006-01-0962. 

8Dubois, D. and Prade, H., Possibility Theory, Plenum Press, New York, 1988. 
9Ross, T. J., Fuzzy Logic with Engineering Applications, McGraw Hill, 1995. 
10Zadeh, L. A., “Fuzzy Sets as a Basis for a Theory of Possibility,” Fuzzy Sets and Systems, 1:3-28, 1978. 
11Mourelatos Z.P. and Zhou, J., “Reliability Estimation and Design with Insufficient Data Based on Possibility Theory,” 

AIAA Journal, 43(8):1696-1705, 2005. 
12Elishakoff, I., Haftka, R.T., and Fang, J.J., “Structural Design under Bounded Uncertainty - Optimization with Anti-

optimization,” International Journal of Computers & Structures, 53(6):1401-1405, 1994
13Jones, D.R., “The DIRECT Global Optimization Algorithm,” Encyclopedia of Optimization, (1):431-440, 2001. 
14Kokkolaras, M., Mourelatos, Z.P., and Papalambros, P.Y., “Design Optimization of Hierarchically Decomposed Multilevel 

Systems under Uncertainty,” Transactions of the ASME - Journal of Mechanical Design, 128(2):503-508, 2006. 
15M. Abramson, NOMADm software and user’s guide, http://en.afit.edu/ENC/Faculty/MAbramson/NOMADm.html, last 

accessed on March 2006. 
16Audet, C., and Dennis, J.E., Jr., “Analysis of Generalized Pattern Searches,” SIAM Journal on Optimization, 13(3):889-903, 

2003. 
17Audet, C., and Dennis, J.E., Jr., “Mesh Adaptive Direct Search Algorithms for Constrained Optimization,” to appear in 

SIAM Journal on Optimization.  

 
American Institute of Aeronautics and Astronautics 

 

10

http://en.afit.edu/ENC/Faculty/MAbramson/NOMADm.html

