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Localization of a Breathing Crack Using
Super-Harmonic Signals due to System Nonlinearity
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In this paper, a new damage detection technique able to identify the location of a breathing crack in an isotropic
rod, relying only on real-time measurements, is proposed. The detection algorithm exploits the phase information
associated with the superharmonic components produced, in the Fourier spectrum, by the nonlinear dynamic
response of this kind of defect under the influence of an external dynamic excitation. The validity of the proposed
algorithm for a weakly nonlinear system is supported by an analytical solution for a cracked beam obtained through
the harmonic balance approach. A numerical investigation is conducted by means of a finite element model of an
isotropic beam integrating nonlinear contact elements in the damaged area and solved for the steady-state response.
Three different postprocessing approaches, incorporating the proposed damage detection algorithm, are formulated
and compared to assess the capability of the current methodology. Results from the cracked beam model clearly show
the generation of the superharmonics as a result of the nonlinear dynamic behavior of the breathing crack. The phase
associated with the superharmonic components is then processed through the detection algorithm and the predicted

location is compared with the actual position of the defect to assess the performances of the methodology.
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F, = force amplitude at the nth frequency component

F(1) = time varying forcing function

fe(® = restoring force of the nonlinear spring

G, (ikw) = transfer function at the kth harmonic

Hluc(t)] = Heaviside unit function

i = complex unit

K = stiffness matrix

K¢ = stiffness of the nonlinear spring

K,y = local stiffness for crack in open configuration

k = index of the harmonic component

k, = wave number correspondent to the frequency w,

L = distance between sensors 1 and 2

L, = total length of the rod

L, = length of the boxcar window

M = mass matrix

Uc = relative displacement of the two endpoints of the
axial spring

Uy, Uy, = endpoint displacements of the nonlinear spring

u(x,t) = axial displacement field
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X1, Xp = crack distance from sensors 1 and 2

I = phase due to the traveling wave

AT = integration time step

Ay, = relative phase difference for the nth superharmonic
Ok = initial phase of the spring restoring force

Pon = initial phase

Dins> Pon measured phase at sensors 1 and 2

v, = measured phase

10} = frequency

, = nth frequency component

1. Introduction

HE interest in detecting structural damages at the earliest

possible stage has always been a major issue in the structural
health monitoring community. The introduction of a sensitive and
efficient damage detection system to monitor the health of an
in-service structure would result in a considerable improvement in
the performance and safety of the mechanical system and/or in a
drastic decrease of its maintenance cost.

Many different damage detection approaches, relying on the
analysis of different physical phenomena and experimental data,
have been investigated in the past to get information able to identify
the level of integrity of a mechanical system. Extensive reviews of the
damage detection methodologies proposed in the past can be found
in [1-4]. Many of the successful global damage detection method-
ologies normally rely on the use of a baseline signal of the healthy
structure and/or require an accurate structural model (e.g., finite
element model) with a model updating approach. The application of
these techniques to perform a continuous monitoring of an in-service
structure, however, undergoes some important limitations.

The use of a baseline signal, in fact, can be particularly
cumbersome, especially if we want to achieve a high level of
accuracy. Moreover, if the damage detection effort has to be
performed while the mechanical system is in operating conditions,
this would require developing multiple databases corresponding to
the different regimes [5]. In a similar fashion, the model updating
approach could be difficult to implement. This class of methods
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requires the development of an accurate finite element model of the
healthy structure, which is normally a very challenging task to
achieve for complex mechanical systems. This aspect becomes even
more challenging if we are interested in the structural response in
high-frequency ranges. Moreover, the model updating methods are
generally very time consuming and require considerable computa-
tional resources.

II. Problem Statement and Research Objectives

For the preceding reasons, the present paper aims to investigate a
new approach in which the location of a breathing-crack-type defect
can be detected through real-time measurements, without relying on
a baseline signal or on a finite element model of the structure.

In the past few years, researchers [6,7] have already pointed out the
peculiar behavior of a structure with a breathing crack excited by an
external dynamic load. The frequency spectrum of its nonlinear
structural response, in fact, shows the appearance of higher order
harmonics that are integer multiple or fractional multiple of the
driving frequency. These harmonics are commonly denominated
superharmonics and subharmonics, respectively. A more specific
denomination of these harmonic components (ultrasubharmonics,
combinational tones, etc.) can be used to characterize their origin and
relation with both the driving frequency and the structural modes [§].

These higher order harmonics are generated at the crack location
due to the crack’s opening and closing mechanism triggered by the
external dynamic excitation. These waves, identified by very specific
frequencies, travel through the structure carrying with them the
information about the spatial origin of the wave source. Once the
wave is generated, in fact, the phase associated with the signal varies,
in a linear structure, linearly with the distance traveled by the wave.
By properly processing the time signal and the associated phase
information at two different locations in the structure, we can identify
the spatial origin of the wave source, that is, the location of the crack.
This approach is, in principle, suitable to detect cracks at their earliest
stage where they already exhibit the aforementioned nonlinear
behavior, but are still too small to be detected with global vibration-
based damage detection techniques. Also, although the proposed
method uses an excitation load in the low ultrasonic frequency range,
it does not require solving, as frequently happens with the ultrasonic-
based approaches, for the entire wave field, which usually requires
the knowledge of the reflection and transmission coefficients.

Based on this specific nonlinear behavior of a breathing crack, this
paper will present a methodology to determine the location of the
defect by exploiting the information associated with the superhar-
monics components present in the spectrum of the nonlinear struc-
tural dynamic response.

III. Approach

To illustrate the proposed approach without losing generality, a
rectangular isotropic beam with free—free boundary conditions is
used as a test bed structure in this study. A single fatigue-crack-type
defect is assumed to be developed by the structure as a consequence
of a high cycle fatigue environment. Under this assumption, the
structure can be considered linear in terms of mechanical properties,
except for a very small area close to crack tips where the material
undergoes plastic deformations. At its earliest stage, the crack can
reasonably be considered in a closed configuration, that is, the two
sides of the crack stay in contact at the initial instant. We believe that,
although the results shown in this paper deal with the specific crack’s
configuration described earlier, the proposed damaged detection
algorithm will still be valid either for low cycle fatigue cracks (unless
there are extended plastically deformed areas in the structures
producing considerable fluctuations in the wave velocity) or for crack
exhibiting an initial opening as far as the external dynamic excitation
is able to induce the “breathing” of the crack.

As already demonstrated by other researchers, a fatigue crack
exhibits a peculiar behavior when excited by a dynamic load. The
excitation, in fact, forces the crack to open and close (commonly
referred as to breathing) and the resulting clapping of the crack’s

edges produces harmonics that are integer multiple or fractional
multiple of the forcing frequency. These harmonics are commonly
referred as to superharmonics and subharmonics, respectively.

The damage detection technique proposed in this paper exploits
the specific information carried by the superharmonic components
produced by the crack’s nonlinear response to a prescribed external
dynamic excitation. The steady-state part of the time response is
processed through three different data postprocessing approaches, all
integrating the same localization algorithm, but relying on different
analytical principles to extract the parameters relevant to the crack
location. A finite element model is developed to simulate the beam’s
structural response and to create a database of results, which will be
successively used to test the proposed damage detection algorithm. It
is important to note that this model is not a part of the identification
procedure but is just a means to generate the input data necessary to
test and illustrate the detection algorithm.

In summary, this paper is organized as follows:

1) A damage detection technique able to identify the location of a
breathing crack is proposed along with its analytical formulation.

2) Three different data postprocessing procedures are developed
and compared. These procedures integrate the same damage detec-
tion algorithm but rely on different approaches to extract, from the
steady-state structural response of the damaged structure, the input
needed to implement the localization algorithm formulated.

3) The nonlinear behavior of an isotropic structure including a
breathing-crack-type defect is simulated through a finite element
(FE) model integrating nonlinear contact elements. The damage
detection algorithm along with the three data postprocessing ap-
proaches is numerically tested through the data produced by the
nonlinear FE model for five different crack locations.

A. Localization of an Unknown Wave Source

The damage localization technique presented in this paper is
synthesized based on the algorithm proposed by Doyle [9,10] to
determine the location of an unknown dispersive pulse in an isotropic
beam. The algorithm was originally formulated to determine the
spatial location of an external impact using strain measurements.

For the purpose of damage localization, we first derive an
algorithm to determine the spatial location of an unknown wave
source generating a continuous nondispersive longitudinal wave in
an isotropic rod.

Given the rod in Fig. 1, subjected to an external longitudinal dyna-
mic load and assuming the origin of the longitudinal axis coincident
with the point of excitation, the equation of motion can be written as

d2
IME§+#WWZO (1)

Whereas, the boundary condition is

EA du(x, 1)

=F(f) atx=0 )
dx

Considering the well-established general solution of the
homogenous wave equation in spectral form,

M(X, l‘) — Z Be—ikx—wn + Z Ceiltkxton 3)

Using Eqgs. (2) and (3), the solution for the outward moving wave can
be written as

— L ﬂ —i(k,x—w,1)

u(x, 1) = SEA 2, i e (@)
where u(x, t) is the displacement in each of the two sides of the rod at
time 7 and location x, E is Young’s modulus, A is the cross-sectional
area of the rod, k,, is the wave number corresponding to the frequency
w,, F, is the spectral amplitude of the external force, and i is the
imaginary unit.

To emphasize the relation between the phase terms, Eq. (4) can be
written as
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Wave source/Crack —

Boundary 1 -
- B1 Reflected wave
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~ Boundary 2

Fig. 1 Schematic of a rod with a wave source in an unknown location.
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Where D, and D,, are constant coefficients describing the
amplitude, and ¢,, ¢, and k,x represent the measured phase at
location x, the initial unknown phase of the excitation, and the change
in phase due to the propagating wave, respectively.

We can extract, from Eq. (5), the relation between the measured
phase and the location x of the applied force as follows:

$n = Pon — knx (6)

Inverting Eq. (6) with respect to x gives the basic relation to find
the location of the wave source:

1
X = k_n (QD()n - (pn) (7)

Equation (7) provides the distance x between the origin of the
reference system (previously assumed coincident with the source
location) and the point where the phase ¢,, is measured. This equation
has two unknowns, x and ¢,,,, and therefore cannot be directly solved
for the location of the source. To overcome this problem, we can use
two measurement points, one on each side of the source. Writing
Eq. (7) for the two different points and knowing the absolute distance
between the sensors, we get the following set of equations:

1 1
X = k*(%n Q) X = k*(%n — @) X1t+x=L (8)

Finally, eliminating the initial phase ¢y, , we get

1 1 1. Ag
= —— — =1 —
Xy 5 2%, (@10 — ¥21) 5 2%,
1 1 1. Ag,
x2_§L+_2k,, (@10 — @2n) —§L+ 2%, )

It has to be noted that, before solving Eq. (9), the measured phases
@1, and @,, have to be unwrapped. In this way, the ambiguity at £,
produced by the arctangent function when calculating the phase, can
be easily overcome.

It clearly appears, from Eq. (9), that the source location is
calculated estimating the difference in the path length traveled by the
outward moving waves to the sensors. This means that, for an
accurate localization of the source, both magnitude and sign of
the Ag, are equally important. This observation will be important
when comparing the performances of the different postprocessing
approaches.

We must note, also, that Eq. (9) is derived considering only the
outward moving wave from the source. Therefore, this set of

equations would give, theoretically, the exact estimate of the source
location if we considered an unbounded structure where the propa-
gating signal hits the sensors only once. In a finite structure, however,
boundaries produce reflected waves that propagate back toward the
sensors, giving additional phase contributions. In a linear behaving
structure, this problem has been overcome acquiring only the first
passage of the initial signal [9,10] and appending the long-term
theoretical solution for the beam dynamic response. This procedure
allows one to get a good estimate of the spectral content while
removing the effects of the reflected waves.

In this paper, however, we investigate a different approach where
the following applies:

1) The spectral content is estimated from the acquired steady-state
response including, therefore, boundary and crack reflections. The
reason for considering the steady state is due to the fact that the initial
transient response does not necessarily include the superharmonic
components.

2) The host structure is weakly nonlinear; therefore, there is not a
close-form solution which could be used to append the long-term
response to the measured data.

B. Breathing Crack as a Source of Excitation

As already stated in Sec. III, a structure including a breathing-
crack-type defect exhibits a characteristic behavior when subjected
to an external dynamic excitation. In particular, the external load
produces tensile and compressive stresses on the two edges of the
crack, leading to a continuous (eventually periodic) opening and
closing of the crack, usually referred as breathing. The impact
produced by the clapping of the two edges, when subjected to
compressive stresses, creates new wave fronts for which the frequen-
cies are integer multiples or fractional multiples of the driving fre-
quency associated with the external dynamic load. This behavior
suggests that the breathing crack can be considered as a source of
excitation whose spectrum contains the driving frequency plus
its superharmonic and/or subharmonic components. Under this
assumption, the crack behaves as a wave source similar to what was
shown in Sec. IIL.A. It follows that processing the phase information
associated with the higher order harmonic components, in a similar
fashion as illustrated by Eq. (9), will result in locating the position of
the superharmonics source that, ultimately, is the spatial location of
the crack.

It has to be noted, however, that, in this case, the dynamic response
of the structure is nonlinear due to the presence of the breathing
crack. The crack is, in fact, associated with a localized change in the
stiffness value. When the crack is open, due to a tensile stress state,
the local stiffness drops at a value Kops whereas, when the crack is
closed due to a compressive stress state, the local stiffness is restored
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to the value K > K, associated with the healthy structure. When the
system is excited by an external dynamic excitation, which alternates
compressive and tensile stress states on the crack, the continuous
opening/closing behavior of the crack induces a periodic change
in the local stiffness (between the limit value K and K,,) which
determines the nonlinear character of the overall dynamic response.
Nevertheless, a small breathing crack produces small changes in the
stiffness matrix, making the system weakly nonlinear [11,12] and
usually assuring the existence of a steady-state periodic solution.
Therefore, to extend the algorithm described in Sec. IILA to the
present structure, we need to derive the phase-based relation,
equivalent to Eq. (9), valid for the steady-state response of a weakly
nonlinear system.

In this study, the external dynamic load is assumed to be a single
frequency periodic excitation applied in the longitudinal direction, so
that the dynamic response of the structure can be described according
to the wave propagation in rods. The other assumptions are as
follows:

1) The clapping of the crack, produced by the external dynamic
excitation, takes the place of the wave source (i.e., external impact)
considered in Sec. IIL.A.

2) The crack can be considered as a weak nonlinearity and the
steady-state solution is almost periodic.

3) The dynamic response of the structure under the external axial
load can be described according to the wave propagation theory in
rods.

C. Harmonic Balance Solution of a Weakly Nonlinear Rod

The first step involved in the extension of Eq. (9) to determine the
crack location in a weakly nonlinear system consists of evaluating the
phase relation, under steady state, between the wave source/crack
location and another point in the structure.

According to Musil [13], the dynamic response of a structure
including a breathing crack can be calculated using a finite element
model where the breathing crack is modeled through a piecewise
linear spring. The system can be described by the following dynamic
equation:

Mii(t) + Cu(t) + Ku(t) + fo(t) = F(t) (10)

where M, C, and K represent the mass, damping, and stiffness
matrices, f(#) is the restoring force produced by the spring with
piecewise linear stiffness, and F(¢) is the external applied dynamic
load. The piecewise linear spring allows taking into account the
opening/closing behavior of the crack which, as explained before, is
associated with a change into the local stiffness, which switches
periodically between the open crack K, and the closed crack K
values. In this study, we consider an axial spring because we are only
interested in the longitudinal response of the structure.
The effect of the spring can be expressed in the following way:

fe(®) = Kclu, () — u,(Old, = Kcuc()d, = Kcuc(t)Huc(1)]d,
(11)

where u(t) = [u,(t) — u,,(t)] represents the relative axial displace-
ments of the two endpoints of the nonlinear spring (i.e., the two edges
of the crack) having a stiffness K. H[u(#)] is the Heaviside unit
function used to localize the stiffness change, whereas f- =0
represents the unchanged stiffness condition (crack closed) and
F¢ = Kcuc(t) represents the stiffness decrease due to the crack
opening. The vectord, =[0,...,1,...,1,...,0]” characterizes the
location of the crack.

To calculate the steady-state response of this nonlinear system, the
harmonic balance approach can be applied to the system of Egs. (10)
and (11). The dynamic excitation can be expressed in Fourier series
as follows:

F(t) =) Fped@te0 for k=0,1,2.3,... (12)
k

where F, ko, and ¢, represent the amplitude, frequency, and phase
of the kth harmonic of the excitation load, respectively.

Following the same approach, we can expand the displacement
field in Fourier series:

u(t) =Yy e for k=0,1,2,3... (13)
k

The restoring force f, can be approximated through the Fourier
series [11] as

fe(®) = ifck[cos(kwt) +6;] fork=0,1,2,3... (14)
=0

Substituting the Eqgs. (12-14) in Eq. (10), we obtain an expression
valid for the kth harmonic:

ey — Gi(ikw)e ¥ Fr = —f e e gy (ko) s)

where G (ikw) represents the transfer function of the mechanical
system for the kth harmonic and can be expressed as

G(ikw) = (K + ikoC — K2o*M)™! (16)

The term f e represents the kth harmonic of the restoring force
produced by the axial spring, whereas /" g, (kw) is a term related to
the location of the spring. The term e™* g, (kw) is obtained from

eirkgtk(ka)) = gck(ikw) = Gk(ikw)dc

Equation (15) represents the equilibrium equation for each
harmonic at the steady state for a weakly nonlinear system. From
Eq. (15), we can extract the relation that holds at the steady state, and
for each harmonic between the phase of the displacement, the applied
external force and the crack’s restoring force. Noting that the applied
external force is chosen to be a periodic function at a specific
frequency w, F; in Eq. (12) is different from zero only for k =1
which corresponds to a periodic signal of frequency w. Therefore, the
phase relation at the superharmonic frequencies (i.e., for
k=2,3,4,...)is given by

\Ijk = 8/{ + Fk (17)

where W, is the phase associated with the measured displacement, 6,
is the initial unknown phase of the spring restoring force, and I'; is a
phase associated with the spatial location of the crack and therefore is
a function of the longitudinal coordinate x. Observing that the
considered structure has a linear behavior, except for the area located
around the crack, we can assume that the phase I', will vary as
Ty (x) = —k,x according to the longitudinal wave propagation
theory in linear structure. With these assumptions, it can be noted that
Eq. (17) is equivalent to Eq. (6) extending, therefore, its range of
applicability to the steady-state solution of a weakly nonlinear rod.

It should be noted that all the phases are calculated with respect to
the external excitation.

D. Optimal Sensor Placement

Although Eq. (17) states that the phase measurement can be
performed at any point on the structure, it can be shown that the
location of the sensors plays a major role in the performance of the
proposed localization algorithm. Table 1 shows the phase change, at
the sensor locations, occurring to the traveling wave after each
reflection when the sensors are located symmetrically with respect to
the boundaries, as in Fig. 1. We can observe how the absolute value of
the phase difference is always constant while, at the even-order
reflections, the Ag changes sign. Note that, for simplicity, the initial
phase ¢, is omitted because this constant term cancels out when
calculating the phase difference Ag.

We must observe that, even if the phase difference occurring at the
even-order reflections changes sign, the corresponding amplitude is
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Table 1 Change in phase following the reflections; m = 2, 4, 6, ... indicates the order of the even-order reflections

Sensor 1 Sensor 2 Phase difference
Ap =9, — ¢
Incident wave k,x; k,x, k,(x, — x;)
First reflected wave k,xi + 2k, x3 k,xy + 2k, x5 k,(x, — x1)
Second reflected wave 2k, xy + 4k, x3 + k,x, 2k, x, + 4k, x3 + k,x, —k,(x; — x7)
(m — 1)threflections  (m — Dk,x; +2(m — Dk, x5 + (m —2)k,x, (m— 1)k, x, + 2(m — Dk,x3 + (m — 2)k,x, k,(x; — x1)
mth reflections mk,x, + 2mk,x3 + (m — )k,x, mk,x, + 2mk,x3 + (m — 1)k, x, —k,(x, — x7)

always lower than the (m — 1) odd-order reflections (because they
traveled a larger distance), where m represents the even-order
reflections. Consequently, even if the overall amplitude will be
affected, the resulting phase difference Ag will keep the same sign
determined by the incident waves. On the contrary, if the sensors are
not symmetrically located with respect to the boundaries, the phase
difference associated with the odd-order harmonics changes also in
absolute value. Even if the wave resulting from the superposition of
the odd-order reflected waves will have small amplitude (when
considering a sufficient number of reflections), the associated phase
difference can still produce a shift on the measured Ag that can
considerably affect the performance of the detection algorithm.

These simple considerations show that, to minimize the effect of
the reflected waves, the sensors must be placed in a symmetric
configuration with respect to the boundaries, as shown in Fig. 1.
Similar considerations apply also to the phase balancing of the waves
reflected from the crack interface and from the far ends of the sensors,
respectively.

For the crack interface, it is assumed that their contributions to the
overall phase is negligible because the crack area A, is small
compared to the cross-sectional area A of the rod (A./A < 10%).
Also, the reflections taking place at the far ends of the sensors can be
neglected. Reflected waves from the sensors are symmetric with
respect to the boundaries (therefore, rules at Table 1 apply similarly
as shown for the case of boundary reflections) and their amplitude is
negligible due to the small interface area between sensor and
structure.

E. Structural Finite Element Model

To test the algorithm described by Eq. (17), a finite element model
of abeam including one breathing crack has been developed. The test
structure is a rectangular shaped beam in aluminum 6061 T6511. The
geometrical and mechanical properties are as follows: the length,
width, and thickness are 0.2, 0.008, and 0.0026 m, respectively;
Young’s modulus is 68.94 GPa, density p is 2700 Kg/m?, and
Poisson’s ratio v is 0.33.

The finite element model, shown in Fig. 2a, has been built through
the commercial FE software Patran using 3D hexahedral 8 nodes
linear solid elements.

To reproduce as close as possible the behavior of a breathing crack,
nonlinear gap elements have been added between the two edges of
the crack. The gap element acts essentially as a bilinear spring
with zero stiffness when the end nodes have a positive relative
displacement (i.e., when the crack is subjected to a tensile load) or
with a theoretical infinite stiffness when undergoing a negative
relative displacement (i.e., when the crack is subjected to a com-
pressive load). This gap element allows the two sides of the crack
1) to close, remaining in touch with each other and avoiding any
material overlapping, when they are subjected to a compressive load
(Fig. 2b), and 2) to freely open when they are subjected to a tensile
load (Fig. 2c).

The external dynamic excitation needed to interrogate the system
is assumed to be produced by piezoelectric patches bonded onto the
host structure. These transducers, however, are not physically
modeled (this is a reasonable assumption considering that their mass
is negligible with respect to the mass of the host structure), although
the excitation produced by these actuators is taken into account
through a frequency-dependent dynamic load acting along the
boundary of the patch itself. This load is intended to simulate the high

frequency dynamic excitation produced by the piezoelectric actuator
when driven with a sinusoidal voltage at a prescribed frequency.

Three piezoceramic transducers (PZTs) are used to interrogate and
to sense the dynamic response of the structure. In particular, the
actuators labeled as PZT 1 and 3, depicted in Fig. 2a, are used to
excite the structure simulating an axial dynamic load. PZT 1 and 2,
instead, are used to collect the dynamic response of the rod. Based on
this modeling approach, different crack configurations will be
analyzed.

F. Nonlinear Time Response Analysis

The previously described FE model is used to simulate the time
response of the damaged structure excited by a continuous sinusoidal
load. Further information about the selection of the driving frequency
will be provided later on in this paper.

The FE model has been solved for the nonlinear time response
through the commercial finite element solver Nastran, using a step-
by-step integration algorithm. A 0.5 us time step, corresponding to a
Nyquist frequency of 500 kHz, has been used and the integration has
been carried on up to 80 ms. Also, a structural damping of 2% has
been applied. Ateach time step, the structural response is collected in
terms of velocity at the edge of PZT 1 and 2, depicted in Fig. 2a as
output 1 and 2.

To obtain the spectral content of the structural response, the
steady-state part of the solution is processed through the discrete
Fourier transform. An example of the time response, collected from
the PZT1, along with its spectral content, is shown in Fig. 3, both for
the healthy and the damaged configuration. A direct comparison of
Figs. 3b and 3d reveals that the presence of the crack is associated
with the appearance of superharmonic components at frequencies
that are even-integer multiple of the forcing frequency. This is a

Closed Cragk

=

Crack
Location

b)

Open Crack

=

a) c)
Fig. 2 Finite element model of the isotropic beam, including a) a
breathing crack, which assumes b) closed or c) opened configurations
depending on the local stress distribution.
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phenomenon typical of a breathing crack as also reported by other
authors [14-16].

G. Selection of the Driving and Superharmonic Frequencies

The selection of the driving frequency of the external load, used to
interrogate the structure, is a key parameter in determining the
performance of the detection algorithm. Although a detailed analysis
of the optimal driving frequency is not in the scope of this paper,
some considerations have to be drawn to obtain a good estimate of the
crack location.

According to the general theory of nonlinear dynamic systems
[8,17], to maximize the amplitude of the response of the super-
harmonic components, the driving frequency €2 should be close to
Q = w,/m, where m is an integer number and w,, is the nth structural
modes. This simple rule would suggest selecting a driving frequency
for which the correspondent superharmonic is as close as possible
to a structural mode. However, the proposed damage detection
algorithm implies some limitations on the selected frequencies,
preventing us from simply choosing the driving frequency according
to the previous consideration.

In the original version of this algorithm [10], each frequency
guarantees, ideally, the identification of the location of the impact
point. At the natural frequencies, however, the discontinuity in the
phase produces considerable oscillation in the estimated phase and,
consequently, in the estimated location. Therefore, frequencies
corresponding to natural modes should be kept, as much as possible,
out of the set of data used to estimate the location. Because this
observation still holds for the proposed damage detection algorithm,
it becomes evident that the choice of the driving frequency derives
from a tradeoff between getting a high-amplitude superharmonic
response and a superharmonic frequency that does not overlap with a
structural mode.

Another key observation concerns the frequency components that
have to be retained in the database used as input for Eq. (17). In the
present approach, the information about the location of the crack is
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carried only by the superharmonic components, those being the only
harmonics generated at the crack interface. For this reason, the
location of the crack will be correctly estimated only at those fre-
quencies corresponding to a superharmonic. Moreover, the driving
frequency has to be discarded because it is mainly generated at the
transducer’s location. This is also demonstrated by the analytical
simulations where, using the phase associated with the driving
frequency, Eq. (17) estimates the location of the wave source very
close to actuators 1 and 2.

It can be noted how the set of exploitable data for the damage
identification is now extremely reduced, especially if compared with
the one available in the original version of this algorithm where each
frequency could be effectively processed. This problem will be
addressed in the next paragraph where three possible data post-
processing techniques are developed and compared.

IV. Data Postprocessing Procedures

Data postprocessing has already been proven to be a major issue in
structural health monitoring. Because we are generally interested in
detecting the damage at its earliest possible stage, the changes in the
parameters are typically very small. These changes can often be
masked either by the experimental noise or simply by the overall
structural response of the system in the case where it is slightly
affected by the structural damage. This can lead to an inaccurate
characterization or to a completely erroneous estimation of the flaw,
evenif the damage detection algorithm itselfis effectively sensitive to
the defect. For these reasons, a proper data postprocessing procedure
able to extract features directly related to the presence of the damage
becomes of crucial importance to guarantee the performances of the
damage detection algorithm.

To the sources of error, previously cited, we must add a third cause
that is directly related to the nature of the proposed algorithm. As
discussed in Sec. IIL.D, the wave fronts reflected from the boundaries
travel back toward the sensors giving an additional phase con-
tribution that, if not taken into account, can considerably corrupt
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the accuracy of the estimated location. A possible way to contain the
effects of the reflected waves has already been discussed in Sec. [II.D
and is based on a proper placement of the sensors. However, it has to
be noted that, because the detection algorithm relies on the phase
difference at two different locations, it is intrinsically robust against
additional constant phase terms that cancel out once evaluating
Eq. (9). Nevertheless, errors in the evaluation of the relative phase
difference Ag can significantly affect the estimated damage location,
so that a specific data postprocessing procedure is still needed to
extract the phase information with sufficient accuracy.

For these reasons, three different data postprocessing techniques
have been developed and compared to evaluate their performances
on the phase-difference estimation and on their robustness against
undesired reflections. In particular, the proposed postprocessing
techniques, described hereafter, are based on 1) discrete Fourier
transform (DFT), 2) cross transfer function (CTF), and 3) Hilbert
transform (HT).

The first two approaches (DFT and CTF) have been historically
used to evaluate the spectral content and the cross correlation
between two time signals. However, it will be demonstrated in the
following paragraphs how these techniques do not provide enough
accuracy and data points to be effectively used in conjunction with
the proposed damage detection algorithm. The Hilbert transform,
instead, provides an extended data set for each frequency, thanks to
its capability to retain the time information. Moreover, it will prove
to be much more robust to the effects of wave reflections and
windowing parameters.

This concept will be further clarified in the following paragraphs.

A. Discrete-Fourier-Transform-Based Approach

The first data postprocessing approach, discussed in this paper,
relies on the use of the discrete Fourier transform to evaluate the
phase content associated with the signal collected at each sensor. A
block diagram illustrating the sequence of operations needed to
estimate the crack location is showed in Fig. 4.

The output collected at the two sensors, labeled as output 1 and 2,
are first processed through a moving window, then fed into the
DFT block to estimate the phase associated with each frequency
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component. Successively, the phase associated with the super-
harmonics is extracted from the spectrum and the Ag is estimated.
The relative phase difference Ag is used as input for the damage
detection algorithm to estimate the crack location x,. , associated with
the nth windowed signal. Finally, the result is stored into an array and
the procedure is iterated over n windowed signals. Once the nth
iteration is completed and the array of the estimated locations is
completely filled in, the x,., are linearly averaged to provide the final
estimate of the crack location x..

The mechanism of the moving window (conceptually similar to a
moving average) is illustrated in Fig. 5. The overall time response is
windowed with a boxcar window of length L, and the firstiteration is
carried on. Then, the window is moved (n — 1)/2 times forward and
backward, respectively, by a quantity equal to At (assumed equal to
AT in these calculations) while the crack estimate is performed at
each step. Because one of the main goals of the moving window is to
minimize the effect of the reflections, L,, is chosen to be an even-
integer multiple of the time of flight (ToF) of the wave. The ToF is
defined as the time needed for the wave to travel a distance equal to
the length L of the rod. In this way, taking L,, =2 - n - ToF each
reflected wave strikes n times both the sensors and comes back to the
starting position. This procedure allows containing the impact of
the reflected wave over the estimated phase because, when
performing the Ag calculation, these contributions cancel out almost
completely.

Also, at each iteration, the window is moved (forward or
backward) a step equal to the integration time step used for the
nonlinear time response (AT = 5.E — 7 s), whereas the total number
of windows is chosen to be equal to an even-integer multiple of the
ToF. This procedure is intended to limit the effects of the waves close
to the edges of the window that most likely are not balanced in a
single iteration. Once the entire set of estimated locations is
generated through this moving window approach, the set of values is
linearly averaged to produce the final estimate of the crack location.

B. Cross-Transfer-Function-Based Approach

The second data postprocessing approach investigated in this
paper is based on the cross transfer function (CTF) concept to

Output
sensor 1

Vi(t) Moving

Window

Moving
Window

Output
sensor 2
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Damage Detection |"en
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Iterate

Fig. 4 Block diagram of the discrete-Fourier-transform-based approach.
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Fig. 5 Schematic of the moving window procedure.
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Fig. 6 Block diagram of the cross-transfer-function-based approach.

estimate the relative phase Ag between the two signals. The block
diagram illustrating the data flow is showed in Fig. 6.

This approach is similar to the DFT-based approach except that the
relative phase difference Ag is now estimated calculating the cross
transfer function between the signals, collected at the two sensors and
extracting the phase associated with the CTF, which results to be the
phase difference between the two signals.

The block labeled G, in Fig. 6 calculates the cross transfer
function according to the following relation:

_Pul)
2P

where P,(f) is the cross power spectral density between the two
measured signals, and Py, (f) is the autospectral density of the signal
collected at sensor 1.

The same considerations discussed in Sec. IV.A for the moving
window and the averaging procedure apply in a similar fashion to the
CTF-based approach.

C. Hilbert-Transform-Based Approach

The third approach proposed in this paper is based on the Hilbert
transform. A possible way to describe the Hilbert transform [18] y(#)
of a real-valued signal y(¢) is through the definition of the analytical
signal z(#):

2(1) = y(1) + jy()
or, in polar coordinates,
z(1) = A(1) je™")

where A(?) is the envelope signal and 6(¢) is the instantaneous phase
of y(#). A third quantity denominated instantaneous frequency can
also be defined as

[ |

Output
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] [V

Output —‘
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7
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Dy N
HT

@y,
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1 dé(r)

f@ =ox dr

Standing by these definitions, it follows that one possible way to
describe the Hilbert transform of a real-valued signal is

y(1) = H[x(1)] = Im[z(1)]

that is, calculating the imaginary part of the analytic signal z(¢).

One of the most interesting features of the HT consists in the
fact that it retains the time information that, otherwise, in other
approaches like the DFT or the CTF, is completely discarded. This
constitutes a major benefit in the proposed procedure and will be
addressed in further details later on in this paper.

It can be seen from the block diagram in Fig. 7 that the outputs
collected at the two sensors are first processed through a series of
zero phase-shift bandpass filters centered at the superharmonic
frequencies to separate the component of the time response due to a
specific harmonic. Then, each signal is separately processed through
the Hilbert transform to get the instantaneous phase ¢, ,(#) and
¢,.,(1) associated with each harmonic. Successively, the phase
difference Ag, is calculated and fed into the damage detection
algorithm block that will produce an estimate of the crack location
based on each superharmonic component. Finally, the array of the
estimated location is linearly averaged to get the final estimate of the
crack location.

V. Numerical Results

Analytical simulations have been carried out to estimate the
capabilities and the performances of the proposed algorithm along
with the data postprocessing approaches. The time response of the
damaged structure has been generated through the FE model
discussed in Sec. IILE and the crack location has been estimated

E: Ad Damage Detection |
3 Algorithm

Fig. 7 Block diagram of the Hilbert-transform-based approach.
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Fig. 8 Schematic of the five crack configurations.

using the three different postprocessing procedures discussed in
Sec. IV.

In particular, five different crack configurations have been
considered and compared. Each configuration corresponds to a
specific FE model, including one breathing crack with a different
location along the longitudinal axis but with the same geometrical
properties (2 x 0.86 mm), as shown in Fig. 8. It can be noted that,
starting from configuration C1 up to configuration C5, the crack is
shifted progressively farther from sensor S2.

The external excitation used to interrogate the structure is a
sinusoidal axial load with a frequency equal to 40 kHz and a zero to
peak amplitude equal to 100 N.

A. Discrete-Fourier-Transform-Based Data Postprocessing

The time response produced by the FE model for the five different
configurations are postprocessed through the procedure proposed in
Sec. IV.A. Table 2 shows a comparison between the real and the
estimated locations of the crack.

It can be noted that, although the configurations C1 and C2
are fairly well predicted, the accuracy of the estimation starts
deteriorating from C3 to C5. Moreover, for the C5 configuration, we
observed a wrong estimate of the sign of the A¢, which results in an
erroneous prediction of the portion of the beam where the crack is
located. This inconsistent behavior in the prediction capabilities
of the algorithm is even more accentuated when changing the
windowing parameters used for the moving window approach.

Different causes have been identified to explain this phenomenon.
The DFT approach calculates the relative phase treating the signal
coming from the two sensors as decorrelated signals. This may result
in an amplification of eventual systematic errors leading, therefore, to
an erroneous estimate of the relative phase difference. This aspect
becomes even more important considering that the estimated
location is considerably affected by the choice of the windowing
parameters and from the frequency resolution of the spectrum. The
windowing parameters, in fact, cannot be matched for both the
signals to minimize the leakage effect. This produces considerable
fluctuations in the predicted values depending on the initial choice of
the window.

Moreover, the DFT approach is extremely sensitive to the choice of
the frequency resolution. Because of computational limitations
related to the solution of the FE model in a nonlinear time domain, we
could not achieve a frequency resolution lower than 20 Hz. However,
it can be easily shown through a set of analytically generated sine
waves (reproducing a condition similar to the one produced by the
model structural response) with a known phase difference that, in this

Table 2 Comparison between real and estimated
locations calculated through the DFT approach

Real location, mm Estimated location, mm  Error, %

Cl 60 59.53 0.8
Cc2 68 70.63 3.8
C3 76 53.89 -29.1
C4 84 55.14 —34.4
Cs 92 46.58 50.6

specific case, the DFT achieves a good accuracy for the phase
estimate only when using a frequency resolution of 1 Hz or lower.
The authors believe that the frequency resolution issue can be easily
overcome when acquiring experimental data where the frequency
step can be dropped down to 1 Hz or even lower. However, for
numerically generated data, this is still a major problem preventing
the use of this algorithm for prediction purposes.

Finally, the ratio S, /Ssy between the amplitude of the driving
frequency Sp versus the amplitude of the superharmonic component
Ssy has also been found to play a major role in the accuracy of the
DFT-based algorithm. In particular, it has been found that the higher
this ratio, the lower the maximum achievable accuracy.

B. Cross-Transfer-Function-Based Data Postprocessing

To overcome the issues encountered with the DFT-based method-
ology, we moved to a CTF-based approach, described in Sec. IV.B,
to postprocess the structural response. A summary of the estimated
crack locations produced by this approach is shown in Table 3.

It can be noted that a good agreement between the actual and
the estimated location is obtained for configurations C2, C4, and C5,
with a maximum percentage error of 5.1% corresponding to con-
figuration C5. Although, configurations C1 and C3 show a higher
error (greater than 20%) with respect to the other configurations, a
major improvement is obtained through the CTF approach when
compared with the DFT. For the whole set of configurations, in fact,
the term sgn(Ag) is always well predicted resulting, therefore, in the
correct estimate of the crack in the right portion of the beam. The
improved consistency of the results is due to the fact that the relative
phase Ag is now calculated extracting the phase associated with the
cross transfer function between the two signals. This approach is
much more robust to systematic error and provides a higher accuracy
(compared with the DFT) even in presence of a high S, /Sy ratio.

However, some of the problems discovered in the DFT approach
still persist. In particular, it has been found that the accuracy is still
sensitive to the choice of the windowing parameters, giving rise to an
oscillation in the values of the predicted location dependent on their
initial choice. Also, in this approach, the frequency resolution is
limiting the overall accuracy.

C. Hilbert-Transform-Based Data Postprocessing

As described in Sec. IV.C, the third data postprocessing approach
proposed in this paper is based on the Hilbert transform. Table 4
shows the locations of the crack for the five different configurations
obtained through this approach.

Table 3 Comparison between real and estimated
locations calculated through the CTF approach

Real location, mm Estimated location, mm  Error, %

Cl 60 74.43 24.0
C2 68 70.93 43
C3 76 60.04 —21.0
C4 84 83.33 —-0.8

Cs 92 96.68 5.1
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Fig. 9 Phase difference calculated through the Hilbert transform for

the 22 harmonic.

With the exception of C2, where the error on the estimated
location is around 20%, the algorithm shows a fairly good
prediction of the crack location for the other configurations.
Nevertheless, the most interesting outcome of these results is not the
overall accuracy but the observed consistency of the results versus
the choice of the windowing parameters. In fact, the major advan-
tage produced by this approach (if compared with the CTF or the
DFT) is that the accuracy of the results is not sensitive to the
windowing parameters. Regardless of the choice for the initial
window, in fact, the results are always very consistent and the term
sgn(Ag) is always correctly estimated. Moreover, the HT approach
has proven to be computationally much faster than the previous
approaches, being, therefore, a more suitable algorithm for real-time
damage detection.

The improved consistency of the results produced by this
algorithm is explained by the fact that the Hilbert transform provides,
as described in Sec. IV.C, the history of the instantaneous phase
versus time for each specific superharmonic. This results in two
major advantages. First, we can keep track of the phase oscillation
due to the effects either of the reflected waves or of the nonlinear
behavior of the system. Second, the average value of the phase can be
better estimated due to the extended set of phase values associated
with each specific frequency, as opposed to the single value produced
by the CTF or DFT approaches. This concept is better clarified by
Fig. 9 which shows the relative phase difference for the 2€2 harmonic
calculated through the HT approach. Whereas the CTF approach
provides only one value for the estimated phase difference at the
specified frequency, the Hilbert transform gives N = (¢, — t,) /AT
samples. In this way, even a simple linear average is able to reduce the
effect of the reflected waves and phase oscillations due to the
nonlinearities, allowing a good estimate of the A¢. The results shown
in Table 4 have been calculated using the first three superharmonic
components (i.e., 22, 4, and 6%) for which the ratio
Sp/Ssu < 10*. Harmonics greater than 6§ were too weak to be
retained.

Finally, it is expected that the accuracy of this approach can be
improved, extending the set of data by performing multiple
interrogation at different driving frequencies and exploiting the
information associated with a larger set of superharmonics.

Table 4 Comparison between real and estimated
locations calculated through the HT approach

Real location, mm Estimated location, mm  Error, %

Cl1 60 66.92 11.5
Cc2 68 81.57 19.9
C3 76 71.79 2.3
C4 84 73.17 —-12.9
C5 92 86.37 —6.2

VI. Conclusions

A damage detection technique able to identify the location of a
breathing crack in an isotropic rod is presented. The procedure takes
advantage of the nonlinear behavior proper of a breathing-crack-type
defect, allowing the localization of the damage relying only on real-
time measurements of the structural response.

To test the performances of the localization algorithm, a specific
nonlinear finite element model integrating a breathing crack has
been developed. The model has been solved for the nonlinear time
response to generate the set of data needed as input for the detection
algorithm. Three different data postprocessing approaches integra-
ting the proposed localization technique have been developed and
compared. These approaches rely, respectively, on the use of the
discrete Fourier transform, the cross transfer function, and the Hilbert
transform to estimate the relative phase difference between the
collected signals at the superharmonic frequencies.

The three approaches have been compared based on their
capability to correctly characterize five different crack configura-
tions, both in terms of the absolute percentage error and the right
estimate of the term sgn(Ag), which characterizes the portion of
the rod where the crack is located. The Hilbert-transform-based
approach has proven to be the most successful technique due to its
ability to provide information about the instantaneous phase of the
signal. In particular, its capability to provide an extended set of data
for each harmonic, along with its considerable robustness against the
choice of the postprocessing parameters and its reduced computa-
tional time, makes it a suitable candidate for data analysis in the
present damage detection approach.

Overall, the results illustrated in this paper showed that the
proposed methodology has the potential to successfully identify the
location of a breathing-crack-type defect without relying either on a
database or on an accurate FE model of the structure. Although the
results obtained for some crack configurations show a percentage
error close to 20%, it is expected that the use of an extended set
of data produced through a multiple frequency interrogation could
considerably improve the overall accuracy. Also, the results pre-
sented in this paper highlighted the existence of some key param-
eters, having a considerable impact on the performances of the
damage detection algorithm. In particular, the relation between the
driving frequency, the amplitude of the response at the super-
harmonic frequencies, and the crack location should be further
investigated to provide a rigorous procedure for the selection of the
interrogation frequency. In the future, a more rigorous selection
criterion should be established to identify the proper subset of
superharmonics to be retained in the postprocessing approach.

As a concluding remark, it should be noted that, although the
current technique has been applied to a specific type of defect (i.e., a
breathing crack), itis expected that this procedure could be applied in
a similar fashion to other kind of faults exhibiting similar nonlinear
behavior. As an example, in fact, the phenomenon of the super-
harmonic generation in a structure subjected to an external dynamic
excitation has also been observed for closing delamination in
composite material [19].
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