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Abs t r ac t  

During the  pas t  two decades ,  considerable 
r e s e a r c h  effort  has  been spent to convincingly prove  
that the  u s e  of aerodynamic  forces  to assist in the 
o rb i t a l  t r ans fe r  can significantly reduce  the fuel 
consumption a s  compared  to the pure  propulsive 
mode. Since in th i s  ae roass i s t ed  mode, prc l imi-  
n a r y  maneuvers  in  the vacuum effect the result ing 
per formance  in thc  a tmospher ic  phase ,  and v ice  
v e r s a ,  the two, space  and a tmospher ic  maneuver s ,  
are, to a g r e a t  extent, coupled. This paper  sum-  
m a r i z e s ,  via op t imal  control theory,  the funda- 
menta l  r e su l t s  in the  problem of orb i ta l  t r ans fe r  
using combined propulsive and aerodynamic forces.  
For the a tmosphe r i c  phase, the u s e  of the  Chap- 
man‘s  var iab les  reduced the number  of the physical 
cha rac t e r i s t i c s  of the  vehicle and the a tmosphere  
to a minimum and hence allows a bet te r  genera l iza-  
t ion oftthe resu l t s .  The paper  concludes with s o m e  
i l lus t ra t ive  examples.  

I. Introduction 

During the pas t  two decades ,  considerablc 
r e s e a r c h  effort  h a s  been spent to convincingly 
prove  that the use of aerodynamic  fo rces  to a s s i s t  
in the  o rb i t a l  t r a n s f e r  can significantly reduce  the  
fuel consumption a s  compared  to the  pure propul- 
s ive  mode. 
o rb i t  t r a n s f c r  covering an extensive l i t e r a tu re  h a s  
been presented  by Walberg a t  the AIAA 9th Atmo- 
spher ic  Flight Mechanics Confcrencc.  The  pio- 
neering r c s e a r c h  has been gea red  toward engincer- 
ing feasibil i ty and design concept based  on  s o m c  
bas ic  maneuvers  such  a s  in the problems of o rb i t a l  
plane change, r e tu rn  f r o m  High E a r t h  Orbi t  (HEO) 
to Low E a r t h  Orb i t  (LEO) and planetary aero-grav-  
i ty capture .  J u s t  as in the s ix t ies ,  during the 
period of development of the theory  of optimal pro-  
pulsive o rb i t a l  t r a n s f e r ,  the problems investigated 
have  covered  the full range ,  f r o m  high-thrust  to 
low-thrust  propulsivc sys t ems ,  f r o m  the s imple  
Hohmann t r a n s f e r  to the complex multi- impulse 
rendezvous problem,  i t  is expected that in the 
coming y e a r s  thc ana lys i s  of ae roass i s t ed  o rb i t  
t r a n s f e r  will become m o r e  and m o r e  involved. 

An excellent review of ae roass i s t ed  

Basically,  the use of ae roass i s t cd  t r a n s f e r  
a i m s  at minimizing the fuel consumption which, f o r  
a high-thrust  propulsive sys t cm,  is  m e a s u r e d  by 

the  cha rac t e r i s t i c  velocity, the  s u m  of all velocity 
changes,  produced by applications of the thrus t .  
This is schematically r ep resen ted  in Fig. 1 where  
S and S denote the init ial  and the  final s t a t c ,  
rgspectively.  

i 

Fig. 1. Orbi ta l  maneuvers.  

Lc t  A be thc space where aerodynamic f o r c e  i s  in- 
volved. Le t  0 be the bes t  t r a j ec to ry  for a pure  
propulsive t r a n s f e r  in the vacuum result ing in a 
to ta l  cha rac t c r i s t i c  velocity AV”;.  
s e n s e ,  if the s t a t e s  S and S are far  a p a r t ,  th i s  
cha rac t e r i s t i c  velocity may 6 c  excessively high. 
We may consider a n  a l te rna t ive  by t r a n s f e r r i n g  the  
vehiclc f rom S to A, through t r a j ec to ry  0 1 ,  with 
a cos t  d V 1 ,  th& use aerodynamic  maneuver  with- 

f 
out fuel consumption to move the s t a t e  c lose r  to S 
fo r  a final t r ans fe r ,  through t r a j ec to ry  0 with a 
cos t  A V  This  combined aerodynamic  propulsive 
maneuver  IS optimal if 

Now, in some 

0 

2 ’  
1 ’  . 

AV, t AV 2 < AV’” (1) 

As  a m o r e  concre te  cxample,  for  a t r a n s f e r  f r o m  
a IIEO ( s t a t e  So) a LEO ( s t a t e  Sf), the direction 
of thc t r a j ec to ry  in  the space A i s  such that the 
energy  is decreas ing ,  and f u r t h e r m o r e  if a plane 
change is involved ( the  angular d i s tance  between 
S and S i s  l a rge ) ,  then th i s  case i s  definitely a 
s F m n g  candidate for ae roass i s t ed  maneuver .  f 

I t  is proposed, in this papcr ,  to s u m m a r i z e  via 
optimal cont ro l  theory ,  thc fundamental  r e s u l t s  in 
thc problem of orb i ta l  t r a n s f e r  using combined 
propulsive and aerodynamic  forces .  

L 11. Optimal Control 
Th i s  work was supported by the J e t  Propulsion 

Labora tory  under  cont rac t  No. OT2 537. The  genera l  p roblem is thc problem of control-  

+c propulsive fo rce  T ,  and the  aerodynamic  fo rce  
A ,  to bring it f r o m  the initial s t a t e ,  at t ime  to,  

4 L b ling the  Orbi ta l  T r a n s f e r  Vehicle (OTV), through 
P r o f e s s o r  of Aerospace  Engineering. 

C’opjright 0 Arnrriran I n s t i l i i t ~  u l  Acronsulirs and 
A ~ t c m a t u i c ~ ,  In-., 1983. Al l  riphlsrrserred. 1 



- - 
with position vector r , velocity V anti m a s s  m 

to the final s ta te  V and m a: thc final t ime  
t such  that a ce r t a in  per formance  index, such a s  
t i ,  f ina l  mass, i s  maximized (Fig.  2). 

0, 0’ 

f ’ .  f f ’  

X J  

Fig .  2. T rans fc r  t ra jec tory .  

The motion of the vehicle,  considcrcd as a 
point mass with varying mass, flying in a gcne ra l  
gravitational f o r c c  ficld and subject to aerodynamic 
f o r c e  and thrusting force ,  is g o v e r n c d  by thc equa- 
t ions with s tandard  notation 

If we choose the  operating mode such that the 
thrusting phase is  always in the vacuum, A = 0 ,  
and the  aerodynamic maneuver  is per formed wit& 
powder off, T = 0, then only one  vector control,  T 
or A , is ac t ive  at any given t i m e  a n d  wc :an der ive 
independently the optimal cont ro l  law f o r  T a n d  A. 
This  is typical fo r  an  ae roass i s t ed  m i s s i o n  profile. 
Thc  r e su l t s  can he eas i ly  modified to account for a 
s m a l l  variation of the  mass in the  cast where  a 
continuous th rus t  is applied to balancc thc aero-  
dynamic d rag  for a tu rn  inside the upper atmo. 
sphere.  

-* 

In the c a s e  where  the propulsive sys tem i s  
operating in the  vacuum, it i s  advantageous fo r  a n  
analytical  study to use the th rus t  accc le ra t ion  

as the  vector control. The  mass, a s  v<,riablc, i s  
then rep laced  by the cha rac t e r i s t i c  velocity 

t 
c = J IF1 dT (4) 

0 

and a s  such, w e  rep lace  the  l a s t  equation in 
sys t em (7.) by 

T h r u s t  Control 

Using the ma+um principle,  w e  introduce the  L i 

adjoint v e c t o r s  p ,-pv a n d  p, , assoc ia tcd  to thc 
s ta te  vec to r s  I-, V ,  and C ,  to fo rm the Hamiltoni- 
an  

H =  p ’ . $ t G  V . (Fig) t p  r ( 6 )  
Thc  vec tor  t h r u s t  acce le ra t ion  must  be sclected 
such  that,  at ezch instant,  i t  maximizes  the Ilamil-  
tonian. 

maximized Hamiltonian 

Then r mus t  b c  di rec ted  along the vector 
W c  then have the 

* 
called the  p r i m e r  vcctor.  

PV’ . . 
* + - -  

H*< = p, . V t pv . g + sup  K T ]  (7)  

where  
K = p t p  ( 8 )  v c  

is called the  switching function. 
bounded 

Since the th rus t  is 

me have the  control law 

r =  r when K > 0 (maximum-thrus t  a r c )  
max 

r =  o when K < 0 ( coas t  a rc )  (10) 

r = in te rmedia te  w h e n  K 0 for a finite t ime  
interval.  * 

Along th_c optimal t ra jec tory ,  the s t a t e  Y ,  and 
adjoint p m u s t  satisfy the canonical s y s t e m  

The  solution to any specified case  is obtained by 
solving a two-point boundary values problem. In 
par t icu lar ,  p = constant = -1 for a minimizing C 
and K = p 
approximated a s  an impulse ,  with t ime  in te rva l  
At-0, the  magnitude of thc p r i m e r  vec tor ,  pv = 1, 
a t  the point of the application of the  impulse ,  and 
between two impulses ,  on a coas t  arc ,  r = O,-and 
pv < 1. The  problem i s  solved if the  vec tor  pv is 
known on a coas t  arc. 

Aerodynamic Control 

- f . If the maximum th rus t  phase is V 

If the  propulsion sys t em is inactive when * 
A f 0 ,  then m = constant,  and f rom sys t em ( 2 ) ,  w e  
consider the Hamiltonian 

* * *  
H = p ‘ V t p  . (ztg) (12) V 

+ 
whcrc  a is the  acce lera t ion  due to t h e  aerodynamic 
force.  
Loosed into a drag  fo rce  D ,  opposite to the velocity 
V I  and a lift fo rce  1. orthogonal to it, to maximize  
the Hamiltonian, the lift f o r c e  has  to he-rotated 
such that the  th ree  vec tors  A ,  pv and V a r e  co- 
planar ,  that  is3 

Since the aerodynamic fo rce  A i s  decom- 

* *  * 
( V x p v ) ’  A = 0 (13) 

This gives the optimal bank angle and we have the  
situation in Fig. 3. L 

2 



s i m i l a r  depcndence for  thc a tmospher ic  density and 
engine pe r fo rmance ,  then we havc the  vec tor  inte- 

Fig.  3. Optimal lift cont ro l  . 
In  the f igure ,  because  of the relations 

+ 
the  t e rminus  of the vector A moves  alon$ a drag  
polar. If+< thc angle between V and p the dot 
product A .  p 
when 

Y’ . in the  Hamiltonian is maximized  
V 

115) 
a c D  

a CL 
t a n €  = - 

This  formula  provides the control law f o r  the lift 
coefficient. Again, f o r  a e r o d y n a m i c p n t r o l ,  it 
r equ i r e s  to know the  p r i m e r  vector pv and the 
solution is obtained by integrating the s y s t e m  (11) 
subject to boundary cons t ra in ts .  

111. Integrals of the Motion 

4 For the  inteLration of the  canonical sys t em (111, 
the  init ial  s t a t e  x is p re sc r ibed  at t while the 
final s t a t e  xf is usual ly  partially prescr ibed .  This 
l e a d s  to a ce r t a in  t r ansve r sa l i t y  conditions involv- 
ing x and p . The  s imples t  method is to choose 
an init ial  varue $ f o r  the  integration and adjus t  it 
to ul t imate ly  sati%fy the-final an+d t r ansve r sa l i t y  
conditions. However,  x and p arc ext remely  
sens i t ive  with r e s p e c t  to p 
made  to develop d i rec t  numer ica l  techniques f o r  the 
computation of the  optimal t ra jec tory .  
paper by A. MieIe contains 147 references on the  
subject. 
one may s e a r c h  fo r  some eu_act_and explicit r e l a -  
tions between the  var iab les  x ,  p and t. Such rela- 
t ions are called in tegra ls  of the motion. F o r  ex- 
ample ,  m = constant is an  in tegra l  along a coas t  
arc while p t p  = 0 is an  in tegra l  along an in te r -  
media te - thrus t  arc. For both the  th rus t  control 
phase  and the aerodynamic  control phase the mos t  
u se fu l  in tegra ls  are the  following. 

0 0 

+ 

f -  f and e f fo r t  has  hecn 
0 

The su rvey  

T o  alleviate the computational e f for t ,  

v c  

If the  gravitational f ield is time invar ian t ,  w e  
have  the Hamiltonian in tegra l  

Hi< = c (16) 0 
where the constant co i s  aero if the final t i m e  is not 
prescr ibed .  

If the  problem has  a spher ica l  symmet ry ,  that  
is if the gravitational acce lera t ion  is cen t r a l  and 
only depends on the rad ia l  distance,  and if we have  

-2 

3 

* 
where  A is a constant vector.  

F u r t h e r m o r e ,  for flight in the vacuum, along a 
coas t  a r c ,  T = 0, the  motion is Keplerian,  the 
equations of motion can  be  integrated,  and the equa- 
t ions l o r  the t r a j ec to ry  is ohtained in closed form.  
Ry canonical t ransformat ion ,  the adjoint vec to r s  
are a l so  obtained. F o r  thc t ime- f r ee  case ,  Ha = 0, 
we have the solution 5 

p- = A  ? + A -  x ; t ( ; x i ; ) x ;  t;x(?xA-) v 1  2 3 3 
(18) 

where  A is a constant and A A a r e  two constant 

vec tors .  Since dp /dt = -8~1’:c/av = - p , we de-  
duce 

(19) 

* -  

1 * 2 ’ 5, * 

V 

p* r - A  ;t;x h’ t 3 x  (h’ x 3) - ;x (;x A-) r 1  2 3 3 

i s  the gravitational acce lera t ion  for a Newtonian 
cen t r a l  force field. By forming the c r o s s  products 
in Eq. (17), we have a re la t ion  between the constant 
vcc to r s  ‘4 and < 

In addition, w e  have a scalar in tegra l  

IV. Switching Relations for  Impulsive Trans fe r  

A + 
The  vec tor  in tegra ls  f o r  pv and p and the r 

scalar in tegra l  B appea r  to have no prac t ica l  value 
s incc  they w e r e  obtained along a coas t  arc. 
due to the outstanding work done by Mare=? a n d  
Marchal ,  they consti tute,  together with the Ham; 
i l tonian in t eg ra l  H*c = 0 ,  and the vector in tegra l  A, 
the key to thc solution for f r ce - t ime ,  op t imal  im-  
pulsive t r a n s f e r .  

But 

Consider a t r a n s f e r  orh i t  0 between two im- 
pulses  I and I . Along th is  orh i t ,  and with a 1-0- 
tating coord ina tes  s y s t e m  as shown i n  Fig.  4, the  
p r i m e r  vec tor  pv is known, with r ad ia l  component 
S ,  t r a n s v e r s e  component T and l a t e ra l  component 
W. At the point of the  application of an impulse ,  

p V 
f o r  p Hence, d(pv2) /d t  = -2  p v .  p = 0 . 
It su f f i ces  to wr i te  the existing relations i t  the  
point I and I respec t ive ly  to have the pertinent 
re la t ions  fo r  the optimal t r ans fe r .  
we have 

1 2 
* 

* 
is a unit  vec tor  and its magnih tdc  is r p x i m i z e d  

< 1 .  
V. - 

1 2 For example,  

(22) 
2 2  2 2 

S t T 1  t W 2 = 1  , S 2  t T  2 t W  = 1 
1 1 2 2 

where  S . ,  T. ,  and W.  are the d i rec t ion  cos ines  of 
the impulse I. 
volvcd, Marcca l  has  obtained thc explicit r e l a -  

5 tions 

1 t e  cosv = . 

1 1  By hirninating the  constants in. 

2 
2 (I-cos A)[  1 - 2 s  -SISZtO (S1tS2)T2 ] 

YW2 
1 It(S T S T )sinA-(S S t T  T )cosA-  

1 2 - 2 1  1 2  1 2  
(23 )  



and 
l t e c o s v  = 

2 2 
(1-cosA)[ 1-2S1 -S  S - 0  (S tS ) T  ] 

1t(S T .S T )sinA-(S S tT T )cosA-W W 
1 2  2 1  1 2  1 2  1 2  

where v and v are the  trite anomal ies ,  along the 
1 2 .  t r a n s f e r  o rb i t  with eccentricity e ,  anti 

2 1 '  

with A being the t r a n s f e r  angle. 

1 2  1 2  1 

(24) 

A =  v - v  0 = t an  (AI21 ( 2 5 )  

Another usefu l  re la t ion  i s  
3 2 2  2 e (T -T ) ( s  ts ) t e ( s  ts ) [  3-2s  - 2 s  ' - s  s 

2 1 1 2  1 2  1 2 1 2  
2 ,  2 -3T T -W1W2] t O [  2 1 2 - 2 T - T  S t 3 r  S 2-3T S 

1 2  1 1 1  1 2  2 1  

t T  S ] t (S tS  )[ 1-2S12-2S2 t 3 S  S - T  T - W  W ] 
2 2  1 2  1 2  1 2  1 2  

2 2 

= o  (26) 
Thesc  relations a r e  thc  optimal switching re la t ions ,  
and thc i r  usefulnoss will be displaycd i n  Ihc l a s t  
section. 

Fig. 4. Optimal swi tch ing .  

V. Equations for Atmospheric- 

While in orb i ta l  maneuver  in the vacuum, 
especially f o r  the c a s e  of t ime- f r ee ,  impulsive 
t r a n s f e r ,  the  theory is ve ry  complete and  has  ex- 
plicit  solutions fo r  many c a s e s  of prac t ica l  inter-  
est , '  the theory for optimal maneuver in thc upper  
a tmosphe re  using lift and d rag  modulation is s t i l l  
in the  development stage. 
the  r e su l t s  obtained by var ious  au thors  on the Same 
type of problem,  such  a s  the problcm of synergetic 
plane change, o r  the problem of ae roass i s t ed  re- 
t u rn  f r o m  a geosynchronous o rb i t  (CEO) to a LEO, 
they a r e  s imi l a r  and hence, corroborating on each 
o ther ,  it is s t i l l  diffi u l t  f r o m  a vas t  l i t e r a tu re  
surveyed  by Walberg to obtain a definitc conclu- 
s ion  f o r  each  specific problem due to thc  fac t  that ,  
f o r  a tmospher ic  flight, the a tmospher ic  density i s  
not prec ise ly  known, and f u r t h e r m o r e  each OTV 
considered has  its own physical cha rac t e r i s t i c s .  
To have a unified approach, we have suggested 
using Chapman's variables3* ' 

Although qualitatively 

F 

to r cp rcsen t  the  alt i tude and the  speed var iab le ,  
and the d imens ionless  arc length 

L t 
s = c o s y  dt ( 2 8 )  

0 
to rep lace  the  t i m e  as independent variable.  
d rag  polar used  is  the parabolic drag  polar 

The  

(29 )  
CD = C t K C L  2 

DO 

E 
with the  condition at maximum lift-to-drag ra t io  

c L. = c * -  - @ ? , c l , = c D * = 2 c  
DO 

Then, if (r is the bank angle,  a tmospher ic  con t ro l  
can be achievcd through the modulation of the 
ver t ica l  and the l a t e ra l  component of the normal iz -  
ed l i f t  

( 3 1 )  
C L  C L  

cL  C L  
A =  - ,:~ cos  w , R = 7 s in  c 

Then, with a Newtonian gravitational field and a 
locally exponential a tmosphere ,  that  i s  with the 
differential  var ia t ion  

4 dp = - 0 ( r )  p dr (32) 
and with the  sphe r i ca l  coordinates a s  shown in 
Fig. 5 f o r  the  position and velocity, we have  the 
univcrsa l  d imens ionless  equations of motion 

2 _ -  d Z  - - k Z t a n y  
d s  

( 3 3 )  

dB 
d s  cos+  
- =  

In these  equations. the only physical cha rac t e r i s t i c  
of the  vehicle is its maximum lift- to-drag ratio,  
E * ,  and thc  na ture  of the a tmosphere  is specified 
by the constant value kz = 0 I-, called Chapman's 
a tmospher ic  parameter .  For the E a r t h ' s  atmo- 
sphere ,  w e  have the value k = 900. 2 

Introducing the adjoint var iab les  p we fo rm x' the Hamiltonian 

v 

4 



W 

. i /  * 

Fig. 5. Spherical  coordinates  f o r  a tmo- 
spher ic  flight. 

With respect to the aerodynamic controls ,  A and s2,  
the  Hamiltonian is maximized ei ther  a t  t he i r  bound- 
a r i e s  o r ,  i n  the in te r ior ,  in a modulated mode,  
such that 

E* P 

zup c o s y  

E>:< p 

A = Y  n=---!k-- ( 3 5 )  
2UPU ’ U 

d 

Hence, a s  shown in the genera l  vector  formulation 
above, the optimal aerodynamic control  i s  function 
of the adjoint var iables  p , p and p components 
of the p r i m e r  vector  p . By writ ing the adjoint 
equations,  dp I dt  = - gH/ ax, it i s  easy to ver i fy  
the following Fntegrals 

+ u y ’  * ‘  

H = c  , pe = c1  , p+ = c s in  9 - c cos 9 ,  
2 3 

p = c1 s i n 4  t ( c  cos Q t c s in  9 )  c o s 4  

(36)  
* 2 3 

The l a s t  t h r e e  integrals  can be deduced f r o m  the 
vector  in tegra l  , a s  given in Eq. (17), by canon- 
ica l  t ransformation.  3 

pZ,  p,, and p . 
It r ema ins  the integration of the equations f o r  

Explicit ly,  we have .. 
2 2  Y - ~ 

_ _  dPZ 2 k u ( l t A  t n  ) - k pz tan y t p 
ds  u E”  c o s y  

k i l  kR - -  

Because of the Hamiltonian integral ,  w e  can de- 
l e t e  one of these adjoint equations, but in prac t ice  
to generate  an opt imal  t ra jec tory ,  for  a specified 
initial condition, we can integrate  the s ix  s ta te  
equations (33 )  and the t h r e e  adjoint equations (37) 
while using the Hamiltonian integral  a s  a check for  
the accuracy  of the numer ica l  integration. 
t h r e e  adjoint var iab les  pe , p 

The 
and p a r e ,  of c o u r s e ,  

given by the exact  in tegra ls  b 6 ) .  * 
The optimal equations der ived in  this  section 

can be used to obtain thc solution to any uncon- 
s t ra ined reent ry  problem, and a s  a spec ia l  c a s e  
the problem of plane change i n  a n  a e r o a s s i s t e d  
o rb i t a l  maneuver.  

For example,  i n  the c a s e  of opt imal  aerodynamic 
turning we have the initial condition a t  entry 

s = o ,  z e’ u e’ Ye. B e  = = *e = o  ( 3 8 )  

The speed u, and flight path angle y 
the  pre l iminary  space  maneuver .  Tfie value Z i s  
evaluated at the top of the sensible  a tmosphe re?  It 
i s  proposed to u s c  lift and bank modulation to 
achieve a maximum plane change i , and hence we 
u s e  the performance index 

r e su l t  f r o m  

(39)  f 
J = - cos if = - cos + cos  + f 

At the final, exit point, we requi re  that 

f e ’  f 
z r Z  uf = p r e s c r i b e d ,  y = f r e e  (40) 

Since the final t ime and the f ina l  longitude a r e  not 
prescr ibed ,  we have the t ransversa l i ty  conditions 

c = o ,  c = o  (41) 0 1 

To s t a r t  the integrat ion,  it r e q u i r e s  select ing the 
values for  the constants  c 2  and c i n  the expres- 

3 . ’ .  . sions f o r  p and p and the three  ini t ia l  values  for  
pz,  pu and $ . B$t, s ince  in the Hamiltonian and 
in the adjoin? equations,  the adjoint var iab les  
appear  e i ther  l inear ly ,  o r  i n  the f o r m  of a ra t io ,  
through A and R a s  shown i n  Eq. ( 3 5 ) ,  we can use 
one of the constants ,  say c a s  a normalizing 
factor .  This  is achieved by drvidmg a l l  the q u a -  
t ions by c and using thc resca led  adjoints 7 = 

nttat ion,  in the fo l  owing discussion,  w e  sha l l  omi t  
the  b a r  in the var iab les .  Then, we have to es t imate  
four  constants ,  but bccause of the Hamiltonian in-  
t egra l ,  only t h r e e  p a r a m e t e r s  a r e  t ru ly  independent. 
The problem of sensi t ivi ty  in select ing these  con- 
s tan ts  can be alleviated by an educated guess  based 
on the knowledge of the control  as follows. 

From Eq. ( 3 6 ) ,  a t  the init ial  t ime,  we have 

2 ’ .  . . 

and cl = :,I c2 . To simplify d e  
2 

P I C 2 ’  ..., 

p ( 0 )  = - c 3  , P*(O) = 1 (42) + 
Next, we notice that 2 

cos Y 

Then, a c o r r e c t  guess  of the ini t ia l  hank angle ,  LT , 

5 
I t ( Z - u ) ]  - kp Z A s i n y - 2 k p  Z R t a n y  

Y * 



and normal ized  l if t  cocfficient, C I C  ;*, will pro- 
vide a good es t imate  of p (O), a n k p  (&. F u r t h e r -  
more, fo r  s h o r t  range, 'p = constant ant1 if thc 
final latitude i s  f r e e  the cokstant is zero.  Ilcnce 
c i s  a small constant. 

U 

3 
In s u m m a r y ,  w e  have t h r e e  pa ramc te r s  to be 

adjusted such that t h ree  final and t r ansve r sa l i t y  
conditions arc identically satisfied.  The first con- 
dition i s  that when Z = Z = 2 , the spccri i s  equal 
to the p re sc r ibed  speed .ff . ?he Seconti  condition 
is that  s ince  y 

= o  (44) 

is f r e e  f 

This  condition impl ies  that  LT = 90'. 
f 

the pe r fo rmance  index (39). we havc 

a J  

F o r  the final t r ansve r sa l i t y  condition, based on  

f 
- s i n +  cos 11, = c s i n 0  - c  c o s 0  - _ .  

f f 2 f 3  
(45) 

a4f 

P*f w f  
_- - c o s 4  ~ i n $ ~  = ( c  cos 0 I C  s i n 0  ) 

f 2 f 3  f 
a J  

c o s  +f 
Taking the ra t io  of thesc  cquations and using c f o r  
the  ra t io  c I c 
which mu,? be'identically satisfied at thc final t i m e  

(46) 

w e  have the t r ansve r sa l i l y  coniit ion 

1 i c  t an  0 

tan 8 - c 
f 3  

VI. Examples  of Aeroass i s ted  Ti-ansfcr 

f ' s in  + 3 t a n $  = 
f 

As i l lus t ra t ive  examples ,  w e  sha l l  ronsicicr thc  
following two problems. 

P l ana r  Rotation of Orb i t  

It is proposed to ro ta te ,  with minimum fuel 
consumption, the l ine of a p s e s  of a n  orb i t  by a n  
angle 2 0  (Fig.  6). 

Fig. 6. P l ana r  rotation of orb i t  

The  optimal solution is e i ther  by two impulses  
o r  via parabolic orb i t s .  
fer, the  solution is obviously symmet r i c  a s  shown 
in the  F igure .  
fined by the i r  common conic pararnetcr P and 

F o r  a two-impulse t r ans -  

The  given t e rmina l  o rh i t s  a r e  de- 

6 

eccent r ic i ty  E. The  unknown e lements  are the 
corresponding pa rame te r  p and & f o r  the t r a n s f e r  
orbit. If r is the rad ius  at the impulses  I or I 

1 2 '  it  i s  defined by the t rue  anomalies v on the t r a n s -  
fer orb i t ,  and ( a t VI) on the initial orbit .  W e  
sha l l  use the notation in section IV. I n  pa r t i cu la r ,  L 
i f  A is thc  t r a n s f c r  angle between impulses  

e = tan - , t v :: 7 , tan v = - 0  (47) 

1 

A 
2 2 1  1 

W e  define the new var iab le  
r 

(481 
1 x = - =  

1 p 1 t e c o s v  

Then 
(x-1) 0 (49) 

1-x  , e s in"  = ~ e c o s v  1 = - x 1 x 

Ncxt, s ince  r = P/[ l t E c o s ( a + v ) ]  = p x ,  w e  have 
1 

2 
( 5 0 )  

E c o s ( a t v )  = - Y - 1 
1 x 

i s  ana thcr  new variable.  W c  now take  benefit of the 
optimal switching relations in section I V .  Lc t  6 be 
the angle between the T-axis  and the  impulse  I 
I3y definition 1 '  

T = cos 6 , S = sin 6 (52) 1 1 
Because  of the symmet ry  between I and 12, we have 

1 
T = - T  S = S  W = W  = 0 , v  = - v  

151) 
2 1 '  2 1 '  2 1 2 

I - - /  

TJsing these  relations in the  optimal condition (261, 
we havc 

( O t a n S - I ) [ ( l t 2 0  2 ) t a n S - ( l - t a n  2 6 ) 0 ]  = 0 (54) v 
The first fac tor  is a pa ras i t e  solution and f r o m  the  
second f ac to r  we have 

2e 
tan 2 6 = ___ (551 2 

1 t 2 0  

which i s  a n  interesting re la t ion  between the  th rus t  
angle and the t r a n s f e r  angle. On thc o ther  hand, i f  
w e  use the symmet r i c  condition in the optimal 
switching condition (231, we have 

2 2 
(561 

1 tl ( 1 - 2 t a n  6 - 2 O t a n S )  
X 2 2  
-~ 

1 - 2 8  t a n 6  t 0 t an  6 

l l s ing  the condition (55)  f o r  simplification, we 
obtain 

-t 
l,'inally, i f  T- and V 
hcfore  and a f t e r  the application of thc impulse ,  we 

(58)  
have 

ny  projecting th i s  vector relation into the S and T 
axes, we have 

are the  velocity vcc tors  

A'; t ?- = Gt 

T I A V t  r 

By eliminating A V ,  w e  havc 
.-. (591 



( x + y + l )  tan that th i s  ae roass i s t ed  maneuver  can  be  optimal,  we 
cons ider  the case of a rotation of 180°, and with a 
per igee  of the init ial  o rb i t  sl ightly abovc the a tmo-  
sphere .  Then the only significant cos t  i s  the cos t  
of t r a n s f e r  f r o m  ve ry  low c i r cu la r  o rb i t  to thc final 
ell iptic orb i t  with 

(60)  ~ s i n ( a t v ) =  Y 
1 x 

From the second of the Eq. (59),  we deduce thc 
total cha rac t e r i s t i c  velocity 2 A  V 

2 AV 
v 

(61) 

Lawdcn h a s  der ived  these  same relations using the 

2y (1 - Y )  

(66) _ _ -  AVA - ( I tE)  - 6 
G 

= x c o s b  

In  this spec ia l  casc,  the two-impulse t r a n s f e r  be- 
comes  the Hohmann t r a n s f e r ,  connecting the apo- 
gecs ,  with solution 6 = 0 ,  x = 1, y = 

ordinary  theory  of max ima  a n d  minima. * W e  a l s o  
notice that the two cquations i n  (57) is equivalent to 
Lawdcn's equation 

2 (-1) ( 6 2 )  Eq. (61), w e  deduce the cost  tan 6 = 
fi. F r o m  

( x t l ) ( x t 2 )  

AvH - 2 G - 2(I -E)  (67) 

The  equations are sufficient f o r  solving thc problem Then, by comparing the l a s t  t h ree  equations, para- 

G -  which shows that the maximum thrus t  a n g l c  is such  
that tan 6 = 6 -*, Smax = 17. 632194O. 

max  

For example,  by squaring the Eqs. (50) and (60) 
and adding, and with the aid of Eq. (62) we have 

2 Y ( x t y t l )  (x-1) + (y -x) (63) E > 0.836842. Hence thc Hohmann t r ans fe r  is non- E =  

bolic mode  is be t t c r  than thc Ilohmann t r a n s f e r  
when E > 0, 535334, while the Hohmann i t se l f  i s  

2 2 2 2  be t te r  than the ae roass i s t ed  mode  when 

2 X 2 optimal. Between the ae roass i s t ed  mode  and the x ( x t l ) ( x t 2 )  
parabolic modc ,  ae roass i s t ed  t r ans fe r  is be t te r  
when On the o the r  hand, by eliminating E bctween these  

cquations, using Eqs. (57) and ( 6 2 ) ,  w e  have E < 4 6 1 9  2: 0.628539 . (68) 

(x-l)[ xy 2 - (x t l )y -x (x t I ) ]  t a n a  = Optimal Transfer  f r o m  LEO to CEO and Return  

The  gene ra l  p roblem of r e h r n  f r o m  H E 0  to (64) 
2 2  

(xtl)[(Zxi-l)y *(x - l )y-x(x t2) ]  tan b 

For given E and a ,  
solved fo r  x and y and  the o ther  e lements  of the 
transfer orbit Can be deduced. The minimum total 
cha rac t e r i s t i c  velocity,  normalizcd with r e spec t  to 
circular speed  a t  distance P is given by Eq. (61). 
This minimum cost for two-impulse transfer has to 
be compared  with the cost  for t r ans fe r  via p a r a -  
bolic orb i t s .  This mode, not considered by Lawden, 
is as follows. 
of the init ial  o rb i t  to t r ans fe r  the vehicle into a 
parabolic o rb i t ,  o r  in prac t ice  into an elongated 
ell iptic orb i t .  At infinity the rotation of the l ine of 
a p s e s  is per formed,  f r e e  of fuel consumption s ince  
the speed the re  is zero.  Af tc r  the rotation, thc 
vehicle is sen t  back to the per igee  of the final o rb i t  
f o r  inser t ion  by another impulse. 

last two equations Can be LEO with plane change i s  d i scussed  e l ~ e w h e r e . ~  
Here ,  w e  considcr a par t icu lar  case  of minimum 
fuel t r a n s f c r  f r o m  a LEO a t  d is tance  r = 6728 kni 
(i. e .  , 350 km alt i tude),  with an inclinaltion i = 28. 5: 
to a G E O  a t  r2 = 42,241 km. 
a tmosphe re  is R = 6498 km. 
mission, the OTV returns 

.~ The rad ius  of the 
Aftcr completion of i t s  

In genera l ,  the problem involves the r a t io s  
An impulse  i s  applied at the pe r igee  ( ~ i ~ .  7 )  

bes ides  the plane change i and the maximum lift-to- 
d r a g  ra t io  E': of thc OTV. The  t r ans fe r  between 
non coplanar c i r cu la r  o rb i t s  is e i ther  by two im- 
pulses ,  o r  t h ree  impulses ,  o r  via parabolic o rb i t s ,  
depending on the given values n and i . 

c = r / R  ( 6 9 )  1 
n = r  l r  

2 1 '  

The  total cos t  
f o r  th i s  maneuvcr  is  

AV 
- 2 G )  - 2(1tE) (65) 7 5 -  

Since the cos t  is independent of the rotation angle ,  
trans f e r  via parabol ic  o rb i t s  is m o r e  economical 
when (I is large.  

Another f r e e  rotation can be  achieved using 
ae roass i s t ed  maneuver ,  even in the c a s e  where  the 
vehicle has  no l if t  capacility. In this case ,  one 
dcce lcra t ive  impulse  is applied a t  the apogee to 
reduce  the per igee  to the top of the sens ib le  a tmo-  
sphere.  
the o rb i t  will c i rcu lar ize .  
f iguration the pe r igee  is open for selection hence,  
the rotation of the l ine of apses  is achieved f r e e  of 
fue l  consumption. 
vehicle into the f ina l  orbit .  

Then with the action of d rag  n e a r  per igee ,  
In the final c i r c u l a r  con- 

A reverse maneuver  will put the 
To display explicitly 

7 

I L  
I. 

. 
PARABOLA > -- -=El---..---- 

Fig. 7. T rans fe r  between noncoplanar 
c i r cu la r  o rb i t s  . 

In the c a s e  f r o m  LEO to GEO the opt imal  t r ans -  
f e r  is by two impulses ,  via a generalized Hohmann 
o rb i t ,  with plane change made  at  both impulses.  



T h e  switching relat ions in sect ion IV arc given 
with r e spec t  to this t r ans fe r  orbit. 
are perpendicular  to the position vec tors  and hence 
S = S = 0. If 6 is the th rus t  angle  with r e spec t  to 
the T axis, then, by definition 

Thc  impulses  

1 2 .  

2 T = c o s 6  W = s i n 6  T = c o s ~ ~ . W  = s i n 6  

( 7 0 )  
F r o m  the velocity d iagrams in Fig. 8 ,  w c  have the 
relat ions 

1 1' 1 1 '  2 2 

(71) 
2 

2 

sin i 

t s in  6 
- -  1 AV2 

A V  s i n i  
_ = -  

2 
V s i n 6  ' 

VI- 1 

with the constraining relat ions 

2 s in  6 

For given n and i, to solve for  the four  unknowns 
bl, 6 2 ,  tl  and i 
is obtained by the optimal switching rclntions (23) 
and (24). Since v - 0, v = T I ,  A = n we deduce 
f r o m  these relat ions 

we need one m o r e  relation. 

1 -  2 

This  
2 '  

2B ( S  t S  )T2  = Ute)[  l tT ITZ - W1W2 1 - 2 

- 2 e ( S  tS )T = (1-e)[ltT1T2 - W W 1 - 2 
1 2 1  1 2  

( 7 3 )  1 2  

Eliminating the fac tor  8 ( S  t S  ), which ohviously 
has  a f ini te  l imi t ,  and noticing that  e = ("-1)l ( n t l ) ,  
we have 

1 . 2  

n s i n 6  + s i n 6  = 0 (74) 1 2 

T h e  solution is obtained by solving thc X q s .  (72) 
and (74). 
shown that  

By combining these  equations i t  can be  

2 
s in  ( 6  t 6  ti) = 

1 2  

~ n i l - [ ~ ~ / ( n t l ) l c o s ( 6 ~ + 6 ~ t i ) )  
s in  ( 6  +S ) 

2 1 2  
( 7 5 )  [ n  t 1 -  2 n c o s  (al+ 6 2 ) ]  

For given n and i, we solve f o r  ( 6  t 6  ) and deduce 
the o ther  e lements  of the t ransfer lorg i t .  
case considered,  n = 6.278389, i = 28.5 , we have 
i = 2.212O, i2 = 26.28U0, 6 = 7.002', 1 1 L 
-49.943', with thc resul t ing cha rac t e r i s t i c  velocity, 
normalized with respec t  to c i r cu la r  speed a t  
dis tance R 

F o r  thc 
0 

6 = 

= 0.538068 (76) 
AVH 

.\/I./. 
To re tu rn  f r o m  GEO to LEO, f o r  a pure propuls ive 
mode,  the reverse operat ion appl ies ,  and we have 
the s a m e  cha rac t e r i s t i c  velocity. 

Now, if ae roass i s t  is cons idered ,  thcn for the 
r e tu rn  t ra jec tory  the following parabol ic -acro-  
a s s i s t ed  mode i s  the absolute optimal. 
mode,  an  acce lera t ive  impulse i s  applied a t  GEO,  
to send the vehicle into a parabola. At infinity, 
the plane change, for  any amount, is pcrformed 

In this 

H 

W 

Fig. 8. Velocity d iagrams as viewed toward 
center  of a t t r ac t ion .  

without fuel  consumption. 
along a parabolic o rb i t  grazing the a tmosphere  a t  
dis tance R. Following an o rb i t  contract ion due to 
drag  fo rce  acting a t  per igee,  the apogee will de-  
crease progress ive ly  to the LEO level  where an 
acce lera t ive  impulse i s  applied for  c i rcular izat ion.  
'The total cha rac t e r i s t i c  velocity for  this mode i s  

The vehicle then r e tu rns  

w 

where n and c are the ra t ios  defined in Eq. (69). 
With the given radi i ,  this normalized cha rac t e r i s t i c  
velocity has the value 0.171043 which is only 32% of 
the cost  f o r  pu re  propulsive maneuver .  Again, we 
notice that  this  parabol ic -aeroass i s ted  mode i s  in- 
dependent of the amount of plane changc and only 
r equ i r e s  drag  capacility for  the OTV. If we want 
an immedia te  r e tu rn  f r o m  GEO, then with a dece ler -  
a t ive  impulse applied a t  GEO, the vehicle r e tu rns  
with a plane change i to en ter  the a tmosphcre  a t  
dis tance R with a sma l l  entry angle y and a re la -  
tively high en t ry  speed u 
and mcthod displayed in sect ion V allows the corn- 
putation of the a tmospher ic  plane change, with exit 
speed sufficient for  climbing to LEO altitude f o r  
c i rcular izat ion.  In this ca se ,  we a l so  have plane 
change without fuel  consumption in the amount of 
i = 22.5O.  The remaining angle i = 6 mus t  be 
performed a t  GEO. 
with an OTV having a maximum lift-to-drag rat io  
E* = 1. 5 . The total cha rac t e r i s t i c  velocity, a l so  
normalized with r e spec t  to c i r cu la r  speed a t  
dis tance R ,  i s  now 0.2040, and hence a t  about 30% 
of the cos t  for  pu re  propulsive maneuver .  

1 

= V 2/gR.  eThe equations e e  

0 

A 1 
The computation has  been done 

v 
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