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Abstract

During the past two decades, considerable
research effort has been spent to convincingly prove
that the use of aerodynamic forces to assist in the
orbital transfer can significantly reduce the fuel
consumption as compared to the pure propulsive
mode. Since in this aeroassisted mode, prelimi-
nary maneuvers in the vacuum effect the resulting
performance in the atmospheric phase, and vice
versa, the two, space and atmospheric maneuvers,
are, to a great extent, coupled, This paper sum-
marizes, via optimal control theory, the funda-
mental results in the problem of orbital transfer
using combined propulsive and aerodynamic forces.
For the atmospheric phase, the use of the Chap-
man's variables reduced the number of the physical
characteristics of the vehicle and the atmosphere
to a2 minimum and hence allows a better generaliza-
tion offthe results. The paper concludes with some
illustrative examples,

I. Introduction

During the past two decades, considerable

" research effort has been spent to convincingly
prove that the use of aerodynamic forces to assist
in the orbital transfer can significantly reduce the
fuel consumption as compared to the pure propul-
sive mode. An excellent review of aerocassisted
orbit transfer covering an extensive literature has
been presented by Walberg at the AIAA Gth Atmo-
spheric Flight Mechanics Conference. ! The pio-
neering rcsearch has been geared toward engineer-
ing feasibility and design concept based on some
basic maneuvers such as in the problems of orbital
plane change, return from High Earth Orbit (HEO)
to Low Earth Orbit (LEQO) and planetary aero-grav-
ity capture. Just as in the sixties, during the
period of development of the theory of optimal pro.
pulsive orbital transfer, the problems investigated
have covered the full range, from high-thrust to
low-thrust propulsive systems, from the simple
Hohmann transfer to the complex multi-impulse
rendezvous problem, it is expected that in the
coming years the analysis of aeroassisted orbit
transfer will become more and more involved.

Basgically, the use of aeroassisted transfer
aims at minimizing the fuel consumption which, for
a high-thrust propulsive system, is measured by
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the characteristic velocity, the sum of all velocity
changes, produced by applications of the thrust,
This is schematically represented in Fig, 1 where
So and S, denote the initial and the final state,
respectively.

Fig. 1.

Orbital maneuvers,

Let A be the space where acerodynamic force is in-
volved. Let O be the best trajectory for a pure
propulsive transfer in the vacuum resulting in a
total characteristic velocity AV¥. Now, in some
sense, if the states SO and §, are far apart, this
characteristic velocity may be excessively high,
We may consider an alternative by transferring the
vehicle from S to A, through trajectory Ol’ with
a cost AY , then use aerodynamic mancuver with-
out fuel consumption to move the state closer to S
for a final transfer, through trajectory O, with a
cost AV_, This combined aerodynamic propulsive
maneuveér is optimal if

AV + AVZ <

. av® (1)

As a more concrete example, for a transfer from
a HEO (state S ) to a LEQ (state S_), the direction
of the trajectory in the space A is such that the
energy is decreasing, and furthermore if a plane
change is involved {the angular distance between
S and 3, is large), then this case is definitely a
s?rong candidate for aercassisted maneuver.

It is proposed, in this paper, to summarize via
optimal control theory, the fundamental results in
the problem of orbital transfer using combined
propulsive and aerodynamic forces.

II. Optirnal Control

The general problem is the problem of control-
ling the Orbital Transfer Vehicle (OTV), through
Elle propulsive force _'I", and the aerodynamic force
A, to bring it from the initial state, at time to’



- -
with position vector r_, velocity VO and mass m _,
o

to the final state r., V. and m_, at the final time

such that a certain performance index, such as
tfle final mass, is maximized (Fig. 2).
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Fig, 2. Transfer trajectory.

The motion of the vehicle, considercd as a
peint mass with varying mass, flying in a general
gravitational force field and subject to aerodynamic
force and thrusting force, is governed by the equa-
tions with standard notation

dr -

dt ~ v

dv 1 = = - o

ey (T+A)+g(r,t) (2}
dm G

— = -~ T ,

dt 14

If we choose the operating mode such that the
thrusting phase is always in the vacuum, A = 0,
and the aerodynamlc maneuver is performed w1th
pewer off, T = 0, then only one vector control, T
or A is active at any given time and we can derwe
mdependently the optimal control law for T and A.
This is typical for an aercassisted mission profile,
The results can be easily modified to account for a
small variation of the mass in the casc where a
continuous thrust is applied to balance the aero-
dynamic drag for a turn inside the upper atmon
sphere.

In the case where the propulsive system is
operating in the vacuum, it is advantageous for an
analytical study to use the thrust acceleration

= - {3)

as the vector control, The mass, as variable, is
then replaced by the characteristic velocity

t -
S IT}ar (4)
0

and as such, we replace the last equation in
system (2} by

= = T (5)

Thrust Control

Using the maximum principle, we introduce the
—_ -

adjoint vectori P Py and p_, associated to the
state vectors r,  V, and C, to form the Hamiltoni-
an —_ — — — -
H= - V4 « (C'+g)+p T 6
P, Py - (rg)+p (6)

The vector thrust acceleration must be sclected
such that, at each instant, it maximizes the Hamil-

tonian, Then I' must be directed along the vector
Py called the primer vector.” We then have the
maximized Hamiltonian
H :IS’I Viipy gt supl KI] (7
where
K = Py + P (8)
is called the switching function. Since the thrust is
bounded
0 < I'< T (9)
— — " max

we have the control law

I'= I
max

=0

when K > 0 {maximum-thrust arc)

when K < 0 {coast arc). {10)

0 for a finite time
interval,
Along thf optimal trajectory, the state x, and
adjoint p must satisfy the canonical system
g% | 9H*(p,x,8 dp_ (B, b
=L ) L L L ) SN LT S

dt op Tode ox

The solution to any specified case is obtained by
solving a two-point boundary values problem. In
particular, p = constant = -1 for a minimizing C
and K = Py - If the maximum thrust phase is
approximated as an itmpulse, with time interval
At=0, the magnitude of the primer vector, p., = 1,
at the point of the application of the impulse, and
between two impulses, on a coast are, I' = 0, and
Py < 1, The problem is solved if the vector p; is
known con a coast arc.

I' = intermediate when K =

(1)

Aerodynamic Control

If the propulsion system is inactive when
A # 0, then m = constant, and from system (2), we
consu:]er the Hamiltenian

H = p * Vip, - (d+g) (12)
where 2 is the acceleration due to thi aerodynamic
force. Since the acrodynamic force A is decom-
posed into a drag force D opposite to the velocity
v , and a lift force T orthogonal to it, to maximize
the Hamiltonian, the lift force has to be rotated
such that the three vectors A p\‘r and Vare co-
planar, that is

(Vxp - & = 0 (13}

This gives the optimal bank angle and we have the
situation in Fig. 3.



Fig, 3.

Optimal lift control .

In the figure, because of the relations
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the terminus of the vector A moves alon_g a drag
polar. If € is the angle between V and Py the dot
product A~ Py in the Hamiltonian is maximized
when
8
CD

—— e

BCL

tane = {15)

This formula provides the control law for the lift
coefficient. Again, for aerodynamic_gontrol, it
reguires to know the primer vector p,, and the
solution is obtained by integrating the system (11}
subject to boundary constraints.

III. Integrals of the Motion

For the integration of the canonical system (11},
the initial state ;; is prescribed at t_ while the
final state x_ is usually partially prescribed. This
leadi to a cErf;ain transversality conditions invelv-
ing x_ and p_ . The simplest methed is to choose
an initial vaflue p. for the integration and adjust it
to ultimately satiosfy the final and transversality
conditions. However, x, and p, are extremely
sensitive with respect to [; and effort has been
made to develop direct numevrical technigques for the
computation of the optimal trajectory. The survey
paper by A, Miele contains 147 references on the
subject. To alleviate the computational effort,
one may search for some exact and explicit rela-
tions between the variables x, ; and t. Such rela-
tions are called integrals of the motion. For exa
ample, m = constant is an integral along a coast
arc while p_+p = 0 is an integral along an inter-
mediate~-thrust dre. For hoth the thrust control
phase and the aerodynamic control phase the most
useful integrals are the following.

If the gravitational field is time invariaﬁt, we
have the Hamiltonian integral
H* =
‘o
where the constant <, is zero if the final time is not
prescribed,

(16)

If the problem has a spherical symmetry, that
is if the gravitational acceleration is central and
only depends on the radial distance, and if we have

similar dependence for the atmospheric density and
engine performance, then we have the vector inte-
gral

A =

-+ - -

I‘Xpr-i-VXp_; (17)

.
where A is a constant vector,

Fuarthermore, for flight in the vacuum, along a
coast arc, T = 0, the motion is Keplerian, the
equations of motion can be integrated, and the equa-
tions for the trajectory is obtained in closed form.
By canonical transformation, the adjoint vectors
are also obtained. For the time-free case, H*= 0,
we have the soluti-:m5

T AN VAN XT (X)X N _4rx (Ux N
Py ?\1 )\2 r (r ) St ( 3)
(18}

—= .
where A, is a conatant and 7\2 , A are two constant

1 - il -
vectoxs. Since dpy fdt = -0H* /BV = - P we de-
duce

— - [ — o v — i"’ . —»X —»X )\—;-

pr K1g+VX ?\2+ X (?\3)( e gX|(r 3) (19}
where 3

g = -p T (20)

is the gravitational acceleration for a Newtonian
central force field. By forming the cross products
in Eq. {17}, we have a relation hetween the constant
vectors A and }::

In addition, we have a scalar integral
— -

2T P, - V- p:r = B (21

IV, Switching Relations for Impulsive Transfer

The vector integrals for p_;[ and i; and the
scalar integral B appear to have no practical value
since they were obtained along a coast arc. DBut
due to the outstanding work done by Marec? and
Marchal, 7 they constitute, together with the Ham_:
iltonian integral H* = 0, and the vector integral A,
the key to the solution for free~time, optimal im.
pulsive transfer,

Consider a transfer orbit O between two im-
pulses I. and 12 . Along this orbit, and with a ro-
tating coordinates system as shown in Fig. 4, the
primer vector 1; is known, with radial component
S, transverse component T and lateral component
w. At the point of the application of an impulse,
Py is a unit vector and its magnitudi is rilaximized
for p, < 1. Hence, ap2)/at =2 p, - p = 0.

It suffices to write the existing relations at the
point 11 and 1, respectively to have the pertinent
relations for the optimal transfer. For example,
we have

2 2 2 2 2

slyrliwlo1 st f w2

PR 2 (22)

where 5., T,, and W. are the direction cosines of
the imp&lsell. . By éliminating the constants in.
volved, Marchal has obtained the explicit rela-

tions 2
(l-cos A)[ 1-2 S2 _8132-!»0 (SI+SZ)T2 ]

.

1 1+(SIT2..SZT1)s1nA-(SISZ+T1T2)cosA-V&£W2
{3

l+e cosv



and .
pSC_* 2
l+tecosv, = I TR i N 5
2 Z = Zm B o F gr (27)

{l-cosa)| 1.28 s 5. -0(S+5.)T ]
112 1 2 1 to represent the altitude and the speed variable,

H(slTZ"Sle)SinA-(Slsg+T]_T2)COSA'W WZ and the dimensionless arc length
(24}
where v, and v, are the true anomalies, along the g = f y cos y dt (28}
transfer orbit with eccentricity e, and ¢
A= Vo-Vy s 0 = tan (A/ 2) (25) to replace the time as independent variable. The
drag polar used is the parabolic drag polar
with A heing the transfer angle. 2
Cp = CD tKCp (29)
Another useful relation is o
63(T .- T.)(S.+5_) 4 02(5.45_)[ 3-28°.26.°.5.8 with the condition at maximum lift-to-drag ratio
2 U1 T2 1 2 1 2 12
. 2 m @ 2
-3T1T2-W1W2] +0[ ZIZ-le-Tlsl +3'1 152 -3T281 . . ) ..
C. =C_* = , C.,.=C 2 C ,
S %1 4(5.48,)[1-252-28.7435.5. - T T W W | Lok v Py
TT,8, T 1{518,)1-25)-28,435,5, - T\ T - W W, -
B = L - 1
=0 (26) tT C 7 (30)
These relations are the optimal switching relations, D 2 KCD
and their usefulness will be displayed in the last o
section. Then, if v is the bank angle, atmospheric control

can be achieved through the moedulation of the
vertical and the lateral component of the normaliz-
ed lift
_ CL _ CL . 3
A-C* cosar,Q~C*smo‘ (31)
L

Then, with a Newtonian gravitational field and a
locally exponential atmosphere, that is with the
differential variation

dp = - B{x) pdr (32)

and with the spherical coordinates as shown in
Fig. 5 for the position and velocity, we have the
universal dimensionless equations of motion

Fig. 4, Optimal switching . az 2
-— = -k Ztany
ds
dw __ xza(rateg’) (2o) tan v
V. Equations for Atmospheric Flight ds E*cosy
While in orbital maneuver in the vacuum, %ﬁ' = %gzﬁ' +1 - "1; (33)
especially for the case of time-free, impulsive
transfer, the theory is very complete and has ex- a0 _ cosy
plicit sclutions for many cases of practical inter- ds cos ¢
est, 2 the theory for optimal maneuver in the upper dg i
atmosphere using lift and drag modulation is still ds o™ ¥
in the developmz'ant stage. _Although qualitatively éd-fk - kZQ - cos y tan &
the results obtained by various authors on the same ] coszy
type of problem, such as the problem of synergetic
plane change, or the problem of aercassisted re- In these equations, the only physical characteristic
turn from a geosynchronous orbit (GEQO) te a L.EO, of the vehicle is its maximum lift-to~-drag ratio,
they are similar and hence, corroborating on each E*, and the nature of the atmosphere is specified
other, it is still difficult from a vast literature by the constant value k2 = B r, called Chapman's
surveyed by Walberg™ to obtain a definite conclu- atmospheric parameter, For the Earth's atmo-
sion for each specific problem due to the fact that, sphere, we have the value k™ = 900,

for atmospheric flight, the atmospheric density is
not precisely known, and furthermore each OTV
considered has its own physical characteristics.
To have a unified approach, we have suggested
using Chapman's variables”’

Introducing the adjoint variables p_, we formn
. . x
the Hamiltenian



2 2
kZu(l1+A 40}

H = -kZZpZ tany - pu[ + (Z-u)tany:l

E#* cosvy
kZA 1:[ cos .
41 -~
+p\' [cos‘\( ! u +p8 cos ¢ +p¢ sind
k
+ p\p[ > - cos i tan dp:] (34
cos vy
z
b
¢
/ -
/ yr v
0 7
> r 4 ‘
g % i
N M
~ | .
|
o ~
X

Fig. 5. Spherical coordinates for atmo-

spheric flight.
With respect to the aerodynamic controls, A and §,

the Hamiltonian is maximized either at their bound-
aries or, in the interior, in a modulated mode,
such that

E*p E*p
A= Xt o= Y (35)
Zupu 2upu - RY

Hence, 2s shown in the general vector formulation
above, the optimal aerodynamic control is function
of the adjoint variables p ,p , and p, , components
of the primer vector p-‘ By writing the adjoint

equations, dp /dt = « XH/ dx, it is easy to verify
the following i{ntegrals
H = = = j -
€y Pg Ty p¢ ¢, sin 0 ¢, cos e,
p\p = o sin ¢ +(c2cos9+c3sm9)cos¢>

{36}

The last three integrals can be deduced from the
vector integral A, ag given in Eq. (17), by canon-
ical transformation.
It remains the integration of the equations for
Py P and p . Explicitly, we have
u Y

dpg N I ku(1+4%4 %)
ds Pz Y Pu E¥* cosy
p kA P k2
Y cosy G coszy
d 2 2
Pa _  [kzZ(+A+0%) Py
as  Pull Evcosy tany ] - 3
u (37}
d 2 2
Py $2, [kZu(HA 195 sin y
- "Pz7 Py E*
cos™y
+(2—u)] - kaZA siny - kalp ZQtany

Because of the Hamiltonian integral, we can de-
lete one of these adjoint equations, but in practice
to generate an optimal frajectory, for a specified
initial condition, we can integrate the six state
equations (33} and the three adjoint equations (37)
while using the Hamiltonian integral as a check for
the accuracy of the numerical integration. The
three adjoint variables p, and p are, of course,

i by the exact inte rg.ls ?36). ¥
given by g

The optimal equations derived in this section
can be used to obtain the solution to any uncon-
strained reentry problem, and as a special case
the problem of plane change in an aeroassisted
orbital maneuver.

For example, in the case of optimal aerodynamic
turning we have the initial condition at entry
= = 0

Lpe

=0, % LV, = 38
s o Yot Yo o $ (38)

e e
The speed u, and flight path angle v _ result from
the preliminary space maneuver. The value Z _is
evaluated at the top of the sensible atmosphere.e It
is proposed to use lift and bank modulation to
achieve a maximum plane change i , and hence we
use the performance index

J=-cosi, = - cos ¢ cos |, {39)
At the final, exit point, we require that
VA = /7 = i =
. 7e . oug prescribed, ¥; free (40)

Since the final time and the final longitude are not
prescribed, we have the transversality conditions

C:0,01:0 (41)

o
To start the integration, it requires selecting the
values for the constants ¢, and ¢, , in the expres-
sions for p, and p_ and the threé initial values for
Pz Py and . But, since in the Hamiltonian and
in thé adjoint equations, the adjoint variables
appear either linearly, or in the form of a ratio,
through A and € as shown in Eq. (35), we can use
one of the constants, say ¢,, as a normalizing
factor. This is achieved by dividing all the equa-
tions by ¢, and using the rescaled adjoints B, =
P /C.Z’ .o, andc, = c3/c . To simplify tHe
n%tatmn, in the folf‘owing discussion, we shall omit
the bar in the variables. Then, we have to estimate
four constants, but because of the Hamiltonian in-
tegral, only three parameters are truly independent.
The problem of sensitivity in selecting these con-
stants can be alleviated by an educated guess based
on the knowledge of the control as follows,

From Eg. (36}, at the initial time, we have

B, (0= -cy s B,(0)= 1 (42)
Next, we notice that P 2 c 5
2, 2 Ex 2 2 W L
AT+QT = ) {p "+ Y= (=%)
ZuPu ¥ cosz‘{ CL
P {43)
£ = — = tan o
A chosy

Then, a correct guess of the initial bank angle, o,



and normalized lift coefficient, C_/ C_*, will pro~
vide a good estimate of p_(0}, ande (d')‘. Further-
more, for short range, 'p, ¥ constant and if the
final latitude is free the cofstant is zero. Tence

<3 is a small constant.

In summary, we have three parameters to be
adjusted such that three final and transversality
conditions are identically satisfied. The first con-
dition is that when Z = Z_= Z , the speaed is equal
to the prescribed speed ug he second condition
is that since g is free

p = 0 {44)
Y
This condition implies that o, = 90°.

For the final transversality condition, based on

the performance index (39), we have

aJ . ~ .
P¢f = 3¢f = sin d>f cos lpf = czsm(}f-c3 cos Gf
{45)
8J sind { 0 te sin@ )
= = L = SO
quf awf c:oscbf inyg, ¢, cos 0 te, sin f
cos ¢>f

Taking the ratio of these equations and using c, for
the ratio ¢ /cz we have the transversality conéition
which musg be identically satisfied at the final time

l-l-c3 tan Gf
= i 46
tan o, tan 6 -c. S0 % (6)
f 73
VI. Examples of Aercassisted Transfer

As illustrative examples, we shall consider the
following two problems.

Planar Rotation of Orbit

It is proposed to rotate, with minimum fuel
consumption, the line of apses of an orbit by an
angle 2« (Fig. 6).

TRANSFER
ORBIT

Flanar rotation of orbit .

Fig. 6.

The optimal solution is either by two impulses
or via parabolic orbits.’ For a two-impulse trans-
fer, the solution is obviously symmetric as shown
in the Figure. The given terminal orbits are de-
fined by their cormmmon conic parameter P and

eccentricity E. The unknown elements are the
corresponding parameter p and e for the transfer
orbit, If v is the radius at the impulses I, or I_,
it is defined by the true anomalies v, on the trans-
fer orbit, and ( & + v{} on the initial orbit. We
shall use the notation in section IV. In particular,
if A is the transfer angle between impulses

A Fa)
6 =tan — =t oy, =T

3 1 , tan vy F -6 {47}
We define the new variable
x =21 (48)
P ltecos Vl
Th
- e cosv, = 1-x esinv, = (x-1)0 (49)
17 o= 17 x
Next, since r = P/| 1+Ecos(a+vl)] = px, we have
2
Ecos(atv )} = —— .1 (50)
1 X

where

N (51)
P

is another new variable. We now take benefit of the

optimal switching relations in section IV, Let § be

the angle between the T-axis and the impulse I

By definition L
T1 = cos & , Sl = sin & {52)
Because of the symmetry between I1 and IZ’ we have
T. =-T 5. =5 W_=W. =0, v_. = ~v
i ! 1 U2
? ! b2 Y53

Using these relations in the optimal condition (26),
we have

(0tan - 1)[(1+292)ta.n6— (1- tanzﬁ)ﬁ ] =0 (54)

The first factor is a parasite solution and from the
second factor we have
260

1+20'2

tan 2 & = (55)

which is an interesting relation between the thrust
angle and the transfer angle. On the other hand, if
we use the symmetric condition in the optimal
switching condition (23), we have

1 62(1-2tan26-20ta.n6) (56)
x

1-20tand + Elztanzﬁ

Using the condition (55) for simplification, we
obtain

{x+2)

B =
’ (=1}
- -+

Finally, if V and V are the velocity vectors
hefore and after the application of the impulse, we

h - - -+
ave AV 4+ VT - v (58)

0tan & tan & (57)

x+1

By projecting this vector relation into the S and T
axes, we have

m . (e
SIAV+’\/; Es1n(a+v1) D esmvl

T av+ J;P— - _“Jfﬁ"

By eliminating AV, we have

(59)

g



+y+1
F sin {0 +v)) = X—(—’E?L—) tan & (60)
From the second of the Eq. (59), we deduce the
total characteristic velocity 2ZAV

2AV 2y (1 -v})

‘\//— = (61)
n/ P

xcos &
Lawden has derived these same reclations using the
ordinary theory of maxima and minima.”~ We also
notice that the two equations in (57) is equivalent to
Lawden's equation

{x-1)

i (=2 (62)

tan2 5 =

which shows that the maximum thrust angle is such
- - o

thattan & = A3 Az, § .. = 17.632194°,
The equations are sufficient for solving the problem,
For example, by squaring the Eqs. {50) and (60)
and adding, and with the aid of Eq. (62) we have

2 2 2 2
2, Y betyrl) el Ly -3)

E
xz(x+l)(x+2) xz

(63)

On the other hand, by eliminating E between these
cquations, using Eqs. (57) and (62), we have

(x-1)[ xyz_(x+1)y-x(x+1)] tang =

et D[ 2341y =+ (% 1)y -x(31 2)] tan & (64)

For given E and o, the last two equations can be
solved for x and y and the other elements of the
transfer orbit can be deduced. The minimum total
characteristic velocity, normalized with respect to
circular speed at distance P is given by Eq. {(61).
This minimum cost for two-impulse transfer has to
be compared with the cost for transfer via para -
bolic orbits., This mode, not considered by Lawden,
is as follows. An impulse is applied at the perigee
of the initial orbit to transfer the vehicle into a
parabolic orbit, or in practice into an elongated
elliptic orbit, At infinity the rotation of the line of
apses is performed, free of fuel consumption since
the speed there is zero. After the rotation, the
vehicle is sent back to the perigee of the final orbit
for insertion by ancther impulse. The total cost
for this maneuver is

AV
H = 2N 2{I+E) - 2(HE)
/P

Since the cost is independent of the rotation angle,
trans fer via parabolic orbits is more economical
when ¢ is large.

(65)

Another free rotation can be achieved using
acroassisted maneuver, even in the case where the
vehicle has no lift capacility. In this case, one
decelerative impulse is applied at the apogee to
reduce the perigee to the top of the sensible atmo-
sphere. Then with the action of drag near perigee,
the orbit will circularize. In the final circular con-
figuration the perigee is open for selection hence,
the rotation of the line of apses is achieved free of
fuel consumption. A reverse maneuver will put the
vehicle into the final orbit. To display explicitly

that this aeroassisted maneuver can be optimal, we
consider the casec of a rotation of 180%, and with a
perigee of the Initial orbkit slightly above the atmo-
sphere. Then the only significant cost is the cost
of transfer from very low circular orbit te the final
clliptic orbit with

AV

Vi P
In this special case, the two-impulse transfer be-
comes the Hohmann transfer, connecting the apo-
gees, with solution 8 =0, x=1, y= 4/ 1.E. From
Eq. {61}, we deduce the cost

AV
H

= 2V1.E - 2(1.E)
Yp/ P

Then, by comparing the last three equations, para-
bolic mode is better than the Hohmann transfer
when E > 0, 535334, while the Hohmann itself is
better than the aeroassisted mode when

E > 0,836842. Hence the Hohmann transfer is non-
optimal. DBetween the aercassisted mode and the
parabolic mode, aercassisted transfer is better

when o W 2/9 = 0.628539 .

Optimal Transfer from LEQ to GEQ and Return

= (I4F) - +E (66)

(67)

(68)

The general problem of return from HEOQ to
LEQ with plane change is discussed elsewhere.
Here, we consider a particular case of minimum
fuel transfer from a LEO at distance r, = 6728 km
(i.e., 350 km altitude), with an inclinall:ion i=28.59
to a GEC at T, = 42,24] km, The radius of the
atmosphere is R = 6498 km, After completion of its
mission, the OTV returns to LEQ,

In general, the problem involves the ratios
{Fig. 7)
n = rZ/ r

c= rl/ R (69)

1
besides the plane change i and the maximum lift-to-~
drag ratio E* of the OTVY. The transfer between
non coplanar circular orbits is either by two im-
pulses, or three impulses, or via parabolic orbits,
depending on the given values nand i .

PARABOLA

PARABOLA

e e e -

Fig. 7. Transfer between noncoplanar

circular orbits ,

In the case from LEO to GEO the optimal trans-
fer is by two impulses, via a generalized Hohmann
orbit, with plane change made at both impulses.



The switching relations in section IV arec given
with respect to this transfer erbit. The impulses
are perpendicular to the position vectors and hence

Sl =8, =0, lf35 is the thrust angle with respect to
the T axis, then, by definition
= W_ =353 = = gi
Tl cos 61, 1= sin 61 s T‘2 cos 62, WZ sin 62
{70

From the velocity diagrams in Fig. 8, wc have the
relations

/_\.Vl ) 51n1I /_\.VZ . sin 12 o
- siné  ° + T sin §
v 2
V1 1 2
with the constraining relations
i+ - 3 M = ﬂ.
1T T sin 6, Vo
sm(12+62) ) > o)
sinf:Z - n+l

For given n and i, to solve for the four unknowns
61, 5§_,i, and i, , we need one more relation, This
is obtained by the optimal switching relations (23)

and (24)., Since v, = 0, v, = T, A =T we deduce
from these relations
= - W -
20(8,45,)T, (L) T T, - W W, -2

(73)
- = (l- - W W -
20(S15 )T, = (l-e}[ 4T|T, W1 -2

Eliminating the factor 8({S +8_), which obviously
has a finite limit, and noticing that e = (n-1)/ (n+l),
we have

nsin 61+ sul&z = 0 (74)
The solution is obtained by solving the Figs. (72}
and (74), By combining these equations it can be
shown that

.2 oo
sin (51+62+1) =
+1) }

2n{1-[2Vn/ (n+D)] cos (8,46,

sin® (4 +5.)
1tz
[n2+l-—2ncos(51+ 5,1

(75)
For given n and i, we solve for (61+6 ) and deduce
the other elements of the transfer Or%it. For the

case considered, n = 6. 278389, i = 28. 50, we have
i =2.212° i, = 26.288°, 5, = 7.002% 6, =
-49.943°, with the resulting characteristic velocity,
normalized with respect to circular speed at
distance R

AV
H

A/ R

To return from GEC to LEQ, for a pure propulsive
mode, the reverse operation applies, and we have
the samme characteristic velocity.

= 0.538068 (76)

Now, if aesroassist is considered, then for the
reburn trajectory the following parabolic-aerc-
assisted mode is the absolute optimal, In this
mode, an accelerative impulse is applied at GEQO,
to send the vehicle into a parabola., At infinity,
the plane change, for any amount, is performed

| Ve
_’bz sz 8.2

K
)

+

VZ

Fig. 8. Velocity diagrams as viewed toward
center of attraction .

without fuel consumption. The vehicle then returns
along a parabolic orbit grazing the atmosphere at
distance R. Following an orbit contraction due to
drag force acting at perigee, the apogee will de-
crease progressively to the LEO level where an
accelerative impulse is applied for circularization.
The total characteristic velocity for this mode is

PA

Vi/R
where n and ¢ are the ratios defined in Eq. {69).
With the given radii, this normalized characteristic
velocity has the value 0. 171043 which is only 32% of
the cost for pure propulsive maneuver, Again, we
notice that this parabolic-aercassisted mode is in-
dependent of the amount of plane change and only
requires drag capactlity for the OTV, If we want
an immediate return from GEQ, then with a deceler-
ative impulse applied at GEO, the vehicle returns
with a plane change i, to enter the atmosphere at
distance R with 2 small entry angle y and a rela-
tively high entry speedu_ =V ngR. ®The equations
and method displayed in Section V allows the com.
putation of the atmospheric plane change, with exit
speed sufficient for climbing to LEC altitude for
circularization. In this case, we also have plane
change without fuel consumption in the amount of
1, =22 5%, The remaining angle i, = 6 must be
performed at GEO, The computation has been done
with an OTV having a maximum lift-to-drag ratio
E* = 1,5 . The total characteristic velocity, also
normalized with respect to cireular speed at
distance R, is now 0. 2040, and hence at about 38%
of the cost for pure propulsive maneuver.

{77)
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