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NONLINEAR INCREMENTAL INVERSE PERTURBATION METHOD FOR STRUCTURAL REDESIGN
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Abstract

A procedure is described for the redesign of
undamped structural systems to meet natural fre-
quency and/or mode shape objectives. The procedure
can be applied to large or small modal changes and
is based on a single finite element analysis of the
baseline system. Perturbation of the baseline sys-
tem is used to develop a set of equations which
characterize the redesign process. Depending on
the number of modal objectives S and design vari-
ables ¢ the problem is formulated as: (1) an un-
derconstrained problem if S < g, (2) a properly
constrained problem if S = g or (3) an overcon-
strained problem if S > ¢g. All three problems are
solved using an incremental predictor-corrector
technique within the feasibility domain defined by
the practical constraints imposed on the design
variables. The procedure is illustrated by two ex-
amples: (1) a redesign of a cantilever beam to
achieve frequency and mode shape objectives and (2)
a redesign of a 1254 degree of freedom casting for
a frequency objective.

Nomenclature
cij Participation of the jth mode to
changes in the ith mode.
i Index associated with the ith mode.
3j Index associated with the jth mode .
F K Generalized stiffness matrix of the
baseline structure.
[\ N Generalized stiffness matrix of the

objective structure,
[k} Stiffness matrix of the baseline
structure.

[k'] Stiffness matrix of the objective
structure.

[kal Stiffness matrix of element e .

F M Generalized mass matrix of the base-~

line structure.

a8 - LN Generalized mass matrix of the objec-
tive structure.

[m] Mass matrix of the baseline structure.

[m*] Mass matrix of the objective struc-
ture.

[ma] Mass matrix of element e .

N Total number of Lncrements in
predictor-corrector solution,

n Number of deqrees of freedom in the
structural model.

S Number of modal objectives.
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s Number of modes involved in the re-
design process.,

1 1T, { T Denotes transpose of a matrix and vec-
tor respectively.

Greek Symbols

[+ 78 Fractional change to element e .

A Prefix denoting change.

[Ak] Change to stiffness matrix.

{Am] Change to mass matrix.

[A$] Matrix of mode shape wvector changes.

A(miz) Change to the itM baseline structure

eigenvalue, miz.

o Number of structural changes.

[¢] Matrix of mode shape vectors of the
baseline system.

[$'1] Matrix of mode shape vectors of the
objective system,
{v}; ith mode shape vector of [¢].

i kxth degree of freedom of the ith base-
line mode shape.

{v*}; ith mode shape vector of [¢'}.

Wi ith baseline structuare natural fre-
quency.

wi' ith objective structure natural fre-
quency.

I. Introduction

In many structural problems the criteria for
an acceptable design involves constraints on the
free vibration characteristics of a structural sys-
tem. The constraints may be on one or more of the
natural frequencies and/or mode shapes. Several
degrees of freedom may be constrained on any one
mode. In most cases the first design does not sat-
isfy all the free vibration objectives and/or prac-
tical constraints. Therefore reanalysis of the
structural system which requires expensive finite
element formulation and analysis is necessary.
Alternatively, the redesign procedure of the base-
line system (first design), based on the perturba-
tion technique proposed in this work can be used.
This procedure does not require additional finite
element analyses and can be applied to large or
small modal changes. The procedure is hereafter
called Inverse Perturbation Redesiqgn (IPR) proce-
dure, because it gives the designer the capability
of determining structural system particulars based
on system response properties without using itera-
tive methods.

Iet ¢ be the number of design variables in the
IPR procedure, that is, the number of structural
system particulars allowed to change during the re-
design, and S be the number of modal objectives.
If s is the number of modes involved in the re-
design procedure and the practical constraints,
problem can be reduced to one of the following:

the

Problem P1: Underconstrained problem if
S < g. In this case the design is not unique and
the problem can be formulated as an optimization

problem. For this purpose an optimality criterion



is needed such as minimum structural weight or min-
imum change from the baseline system. The opti-
mization variables in this problem are the ¢ design
variables in the IPR, plus s*n where n is the num-~
ber of structural degrees of freedom. The S re-
design objectives and the s*n free vibration equa-
tions become equality constraints in the optimiza-
tion problem. Further, practical constraints in
the form of inequalities may be imposed.

Problem P2: Properly constrained problem if
S =¢ . In this case there are S + s°n equations
which can be simultaneously solved for the ¢ + s°n
unknowns yielding either a finite number of struc-
tural designs or no solution. From the point of
view of optimization this is a constraint bound
problem which can produce a finite number of fea-
sible designs or prove the problem to he infea-
sible. In the latter case the problem should be
treated as in case P3 below.

Problem P3: Overconstrained problem if S > g.
In this case the S + s°*n equations cannot be sat-
isfied by the ¢ + s°n unknowns. Consequently a
minimum error criterion is needed in order to get a
finite number of acceptable designs which will sat-
isfy the equations and practical constraints within
a minimum error.

II. Literature Review

Historically procedures involving natural fre-
quency objectives were first developed. Since the
first procedure developed by Rayleigh in 1873, many
methods have been proposed.1 Only recently have
methods aiming at solving the combined frequency
and mode shape objective problems, such as the one
presented in this paper, been developed. Some of
the methods falling in both cateqories are briefly
described in this section.

Frequency objective procedures usually are of
type P1 described in the introduction, that is,
their goal is to minimize the mass of a structure
which has the specified frequency values or max-
imize the frequency for a given total mass. Prac-
tical constraints are sometimes placed on design
variables such as thickness of plates, cross sec-
tional area of axial bars or moment of inertia of
beams. Turner proposed one of the first methods to
solve this problem.2 The free vibration equations
were considered as equality constraints and handled
using the Lagrange multiplier method. Taylor
solved the problem for an axially vibrating bar by
minimizing the total energy of system using
Hamilton's principle.3 1In an extension of his
work, Taylor introduced inequality constraints on
the cross-sectional area of the bar in addition to
the total mass constraint.® This new constraint
was included in the problem through a continuous
Lagrange multiplier. Sheu extended the work of
Turner and Taylor to situations where the number of
constant stiffness segments was specified, but the
boundries and specific stiffness values of the seq-
ments were design variables in the minimum bar
weight problem.> Sippel considered similiar prob-

lems using a variational method to derive the mini-
mum mass optimality criterion.® Structural systems
composed of N-element sandwich-type structures sup-
porting nonstructural mass were considered. McCart
used an iterative process to solve the minimum mass
problem applied to portal frames.’ The boundary

value nature of the free vibration equations was

used in conjunction with a steepest descent method.
Rubin used a two step process in which he assumed
the optimal desiqgn laid on a frequency constraint.8
The first step was a frequency modification mode
where separate gradient equations were developed to
achieve the natural frequency goal. In the second
step he used the method of steepest descent to find
the minimum weight structure for the specified nat-
ural frequency. Armand developed the problem as an
optimal control problem with distributed para-
meters.® The method is powerful for simple struce
tures and was demonstrated on a plate-~like struc-
ture. For a more detailed review of many of these
earlier methods the reader is referred to the sur-
vey by Pierson. !0

In more recent work Taylor investigated the
frequency only constrained problem in terms of
model correlation.ll! A procedure was developed to
scale an existing structural model to meet exper-
imentally measured natural frequencies. The modi-
fication scheme is based on the first order terms
of a Taylor series expansion about the baseline
model., Bellagamba employed an exterior penalty
function technique based on the first derivatives
of the violated constraints.!? Additional con-
straints were imposed on static displacements and
element stresses.

The combined natural frequency and mode shape
constrained problem has lately received consid-
erable attention in terms of perturbation based
solution techniques. Stetson proposed a first or-
der perturbation method based on the assumption
that the new mode shapes could be expressed as ad-
mixtures of the baseline mode shapes.l3 1In sub-
sequent works, the technique was cast in terms of
finite elements and was applied to several prob-
1ems.1“‘16 Stetson's procedure, however, used a
method of specifying mode shape constraints based
on admixture coefficients which had no obvious phy-
sical interpretation. Sandstrom developed first
order equations which are similar to Stetson's, but
provided a method for specifying mode shape con-
straints based on physical quantities.”l18 Kim
formulated the problem using the complete nonlinear
perturbation equations.lg He employed a penalty
function method where the objective function was a
minimum weight condition and the penalty term was a
set of residual force errors.

ITI. Mathematical Formulation

The undamped free vibration of a baseline dis-
crete structural system is governed by the matrix
equation

Imlngn{¥Inx1 + Klngn{¥lnx1 = {0}nx4 (1)

An eigenvalue analysis produces the eigenvectors
[¢] = [{‘P}u{‘ll}zr LR l{\’/}n] (2)

and the natural frequencies
w12 0

P w2l = . (3)

Y un

Using the calculated eigenvectors the governing
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equations can be uncounpled and written as

fRY = PMIPw2 (4)

where § K J is the generalized stiffness matrix

PRI = (61T 4] (5)

and b M is the generalized mass matrix

fMJ = [6)TImI 4] (6)

Similarily,
system are

the uncoupled equations of an objective

PR = bM JR w2y (7)

where P XK' J is the objective system generalized
stiffness matrix
FxTd o= 91T (9] (8)

and P M' J is the corresponding generalized mass
matrix
EM Q= (61T Im 14"] (9)

Relationships between the two systems can be de-
fined in terms of perturbations of the baseline

system, that is,
m'] = [m)] + [Am] (10)
[k'l = [k] + [Am] (11)
Pw'2d = Pw2d + MA(w2)d (12)
[4'] = [4]) + [A¢] (13)

Through these definitions, the uncoupled equations
(7) of the objective system can be rewritten in
terms of the baseline system as

{6"1T[AKI¢"] (6 1T[AmI {910 w'2

[6'1TImI [ 10 0'2d - (1T [kI$') (14)
Equation (14) is called the general perturbation
equation. It is nonlinear in terms of the modal
quantities, [¢'] and [w'2], but is linear with re-
spect to the desired structural changes, [Ak] and
{Am]. To facilitate the solution of these equa-
tions we note that (14) is composed of n2 scalar
equations of the following form

(o h3Traxd{y g - (v 35T AmI {9 b0 2

(o b T {p biwg 2 = (035 TxIet ;. (19)
for i, § = 1,2,¢¢4, n
be satisfied by the objective system.
should satisfy the S modal objectives.

Fquation (14) or (15) must
Further it

The structural change can be decomposed into ¢
element change properties, ae . In sheet metal or
die cast systems, many elements are required to
change together for manufacturability. In this
case, 0 is the number of groups of perturbed ele-
ments.

[Ake ]
1

(K] systen (16)

i ~ma

e

[Amg ] (17)

1

[Am]system

t ™MaQ

e

Furthermore, each element change can be expressed

as a fractional change from the baseline system (or
a sum of terms as needed to separate bending,

stretching, and torsion) as
[Ake)l = [kel ae (18)
[Ame] = [me)] e (19)

These linear equations of qg are used in the IPR
procedure developed in this paper. Nonlinear re-
lations can readily be implemented in the algorithm
for other applications. For example, the effect of
plate thickness on stretching stiffness is linear,
while its effect on bending is of third order. The
¢ change properties ag are the design variables in
the IPR. Finally, several of the design variables
may be subject to practical constraints. These may
be maximum or minimum size constraints or relative
size constraints between the elements.,

In problem P1, Adefined in the introduction,
equations (14) or (15) and the S modal objectives
constitute equality constraints and the practical
constraints constitute the inequality constraints.
In problem P2, equations (14) or (15) and the S
modal objectives can be simultaneously solved for
the o o's which must fall in the feasibility
domain defined by the practical constraiants., 1TIn
problem P3, equations (14) or (15) and the S modal
ohjectives can bhe satisfied along with the prac-
tical constraints within a specified error to vield
the ¢ o0g's.

IV. Solution Technique

Solution of equations (14) or (15) will pro-
vide the required structural changes to meet the
modal objectives. Direct solution, however, is us-
ually not possibhle because of the implicit nature
and complexity of these equations. The solution of
the general perturbation equations (15) developed
in this work is based on a predictor-corrector
technique. The predictor phase uses the solution
procedure for the first order equation to provide a
first approximation to the elemental changes [Ak]
and [Am]. Using these approximate elemental
changes, approximate objective elgenvectors are
calculated. 1In the corrector phase these eigen-
vectors are uged in the general perturbation equa-
tions (15) to correct the elemental changes. The
solution algorithm is diagrammatically shown in

Figure 1., In the case of large modal character-
istic changes, the algorithm is applied in incre-
ments.

Predictor Phase
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In the predictor phase of the solution al-
gorithm a first order solution to equations (15) is
required. The first order equations developed here
were originally proposed by Stetson and extended by
Sandstrom.13-18  In the first order perturbhation
development of Stetson, the mode shape changes were
represented as linear combinations of the mode
shapes obtained in the analysis of the baseline
system

[A¢] (¢1(cT (20)
where the admixture coefficients Ciye i, j

1,2, «vs, n are small and cj; = 0. This represen-
tation transforms the space spanned by the eigen-
vectors {¢};, L = 1,2, ..., n into one which is

numerically more convenient. Any method which uses



such a transformation is an indirect search method
since it searches for the admixture coefficient
values instead of the eigenvector changes.

Applying this relationship for the eigenvector
changes and neglecting terms of order A2, A3 and A4
we get the first order perturbation equations in
terms of A

{0 Tax1 {9} T - (9} TAn) {9} 032 =
] ]
M A(wiz)

My Cij(‘”iz - wjz)

DESIRED MODAL
CHARACTERISTICS

BASELINE MODAL
AND STRUCTURAL
CHARACTERISTICS

|

DETERMIME MNUMBER
OF TMNCREMENTS -

N

SPECIf¢ MODAL CHANGES
FOR THE rth STEP

l

LINEAR FERTURBATION

|

CALCULATE APPROXIMATE
PERTURBED EIGENVECTORS

I

GENERAL PERTURBATION
ANALYSIS

l

UPDATE ELEMENTAL MASS AND
STIFFNESS MATRICIES

|

CALCULATE NATURAL
FREQUENCIES FOR rth STEP
(RAYLEIGH 'S NUGTIENT}
ELEMENTAL CHANARES

-

N

r

CALCULATE TOTAL
ELEMENTAL CHANGES

Figure 1 Predictor-Corrector Solution Technique

Solution of the first order equations require the
specification of the frequency changes, A(wiz), and
the mode shape changes, Ayx;, in terms of the ad-
mixture coefficients, Cije where Ayxi is the change
in the kth degree of freedom of the ith mode.

In order to eliminate the admixture coeffi-
cients, whose physical interpretation is difficult,
the following algebraic manipulations are per-
formed. Note that the change to the xth degree of
freedom of the it mode in terms of the admixture
coefficients is
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Atki = cibkr + Cia¥k2 +oeee + CiLia1¥k,ie1
Ci,i+1Vk,i+1 + +o¢ + Cinlkn
n
= I cijlkj (22)
3=1
j#i

Also note that by rearranging equation (21) when
i #j the admixture coefficient c;jj can be ex-
pressed as

3
({p}5Trax] g}y -
Mj(wiz - w39
wiz(w}jT[Am]{¢}i) (23)
Applying equation (23} to (22) we develop an ex-
pression which directly relates the physical mode
shape changes to the structural changes

§ LS
{
1 Mj(wi2 - wj2)

1

Ayj = ({ed5TraxI {w}; -

R o =

J
J

wiz{w}jT[Am]{¢}i)) (24)

Using the relationships for the structural changes
defined by equations (18) and (19), the first order
perturbation equations for a natural frequency
change to the ith mode can be written as

({0 T 1 {}s - w32 {9} Time 1 {9} ) e

1
(25)

and for changes to the kth degree of freedom on the
ith mode as

A(wiz) =

[+
2
e=

n
(=
1 9=1
j#i

Dy (Lw}5Toax {y}; -

I ™MQ

e Mj(wj_2 - wj2)

miz{w}jT[Am]{w}i))ae (26)

Equations (25) and (26) are a set of linear equa-
tions with respect to the aeg's which, when solved,
will provide a first order approximation to the
structural changes. Should nonlinear expressions
be used instead of equations (18) and (19) then
equations {25) and (26) would be nonlinear.

The predictor phase problem can be of Pt, P2
or P3 type depending on the relation between ¢ and
S. In any case the problem solution will vield
first order approximate values to the ¢ element
change properties oag.

Corrector Phase

In the corrector phase, the first order ap-
proximations to the structural changes are used to
calculate a first order approximation to the objec-
tive eigenvectors. These approximate eigenvectors
are used in the general perturbation equations to
correct the elemental changes.

The approximate eigenvectors are calculated
using the linear mapping provided by equation (20},
where the admixture coefficients, cij's, are calcu-
lated from equation (23). With the approximate
eigenvectors developed, the general perturbation
equations (15) combined with the definitions for
structural changes {18) and (19) are used to



develop equation (27)

g
Z({w'}jTIke]{w'}i - wi'z{W'}jT[me]{W'}i)ae

e=1

(o330 ml {0 iws 2 = Qo3 TkI {0}y (27

which provides the corrected structural changes.
This equation is used for all modes where frequency
constraint is specified. The corrector phase prob-
lem can be of type Pt, P2 or P3 depending on the
relation between ¢ and the number of specified nat-
ural frequencies. At the end of the predictor
phase, however, all the unconstrained modal degrees
of freedom have been computed to first order and
are known in the corrector phase problem. Thus the
only unknowns are the ¢ structural changes, ae's,
and in practice the corrector phase problem is
usually type P3. When i=j equation (27) enforces
the frequency constraint on the ith mode. wWhen 1t
equation (27) is interpreted as enforcing orthogon-
ality between the it" ana jth mode shapes.

V. Cantilever Beam Fxample

Vibration of the 2-element cantilever beam
shown in Figure 2 is used to illustrate the pro-
cedure, Only planar motion is considered where
shear deformation and axial displacement are ex-
cluded. The structural characteristics of the
baseline system are shown in Table 1.

y

1.
/
/
/
/

/ Element 1 Element 2 ey X
/ |Node 1 Node 2 Node 3
/

/ l I
/1% J2’1'_——’|‘_!"2_"!

/

Figure 2 Cantilever Beam Model

An eigensolution of the baseline structure
using the inverse power method option in MSC/
NASTRAN provided the modal characteristics shown in
Table 2, The natural modes were normalized by set-
ting the generalized mass of each mode to unity.

In order to demonstate the potential of the
method, both a mode shape objective and a frequency
objective are imposed on the structure. The objec-
tive structure is a system where the natural fre-
quency of the first mode is increased by 12.6% from
3.551 rad/sec to 4.000 rad/sec. Further, let the
objective value for the node 3 translation of the
first mode ({y5};) be increased by 6.1% to 2.100
from a baseline value of 1.,979.

Two structural properties are allowed to
change (o 2), that is the second area moment of
cross section of elements 1 and 2 respectively.

The procedure is applied to the structure with
a single increment which results in the prediction
of the following baseline system modifications,

I, - Increased by 40.8% to 1.408 in4
I, - Decreased by 67.9% to 0.514 in4

Analysis of the modified system using MSC/NASTRAN
yields a first mode natural frequency of 4.00t1 rad/
sec and the node 3 translation of the first mode

of 2,097. These values represent a 0.02%

error in the desired frequency value and a 0.14%
error in the desired mode shape value. It should
be noted that in this example the constraints im-
posed on the objective system provide a unique sys-
tem of eguations in the predictor phase {problem
P2) and an overconstrained system in the corrector
phase (problem P3).

Comparison of the results with the first order
method demonstrates the advantages of this proce-
dure., The first order solution predicts a 36.8%
increase of Iy and a 276.7% decrease of I;. A re-
duction of Iy by more than 100.0% is not physically
possible. Therefore the linear method failed in
this example.

VI, Disk Drive Aluminum Casting Redesign

The purpose of this example is to redesign the
aluminum casting of the Irwin-Olivetti Winchester
disk drive to raise the first natural frequency by
30%. Solution of the problem is considered using
the design objective of a least change from the
baseline structure.,

Element Number MODE
1 2 DOF 1 2 3 4
I - Second Area Moment
of Cross Section (in4) 1.0 1.6 Frequency, wj (rad/sec) - 3.551}124.369) 86.637}273,500
A - Area (in?) 1.0 1.0
2 - Length (in) 0.5 0.5 Node 1 Translation]| 1 0.0 0.0 0.0 0.0
E - Young's Modulus Node 1 Rotation 2 0.0 0.0 0.0 0.0
(1bs/in?) 1.0 1.0 {¢}i= Node 2 Translation| 3 | 0.693| 1.457f 0.112| 0,967
v - Poisson's Ratio 0.3 0.3 Node 2 Rotation 4 1-2,372| 2.181 17.479|-19,255
p - Density Node 3 Translation] 5 1.979(|~1,908 2.304 3.807
(1bs—sec2/in4) 1.0 1.0 Node 3 Rotation 6 [-2.643| 8.762|-20.751}|-73.,304
Table 1 Baseline Cantilever Beam Table 2 Baseline Cantilever Beam Modal Characteristics

Element Properties
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Figure 3

Disk Drive Aluminum Casting

Finite FElement Model

of the
to re-
sup-

It is desired to consider the vibration
structure as a free body in space. In order
move the rigid body motions the structure is
ported by a soft foundation.

A total of 312 structural elements were used,
involving 209 nodes and 1254 deqrees of freedom
(Figure 3). There were 144 beam elements, 8 spring
elements, 159 quadrilateral plate elements and 1
triangular plate element. The quadrilateral and
triangular plate elements were used to model the
basic casting geometry while the beam elements were
used for the various stiffeners. The spring ele-
ments were used for the soft foundation.

The eigenvalue analysis was performed using
the inverse power method option in MSC/NASTRAN.
The natural modes were normalized by setting the
maximum value of each mode to unity. The first
natural frequency of the baseline structure oc-
curred at 351 Hz. The motion of the structure cor-
responds to a twisting of the main floor (Figure
4).

Design Variables

The design variables for the analysis are the
plate thicknesses of the structural elements. Beam
and elastic spring elements are held at their base-
line values. Variation of plate thickness only is
not considered a significant limitation on the an-
alysis since the plate elements contain over 75% of
the strain energy in the 15t mode. Design variable
linking is employed to link the thickness of sev-
eral elements to one design parameter. A total of
16 design parameters remain after linking the 160
plate elements. Linking is performed on the bhasis

7

Figure 4 1St mpde - Floor Twist
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of similar geometric and structural properties.
Manufacturability and perturbation analysis cost
considerations are primarv reasons for variable
linking.

To further reduce the number of significant
variables the strain enerqgy of each one of the 16
parameter set was calculated. Only set numbers 1
and 4 through 8 have significant strain energy val-
ues for the 15t mode. fTherefore only these sets
are included in the analysis. Due to constraints
described below, however, set numbers 2 and 3 are
also included in the analysis (Figure 5).

Constraints on Design Variables

Several constraints are imposed on the design
variables to ensure a practical design. The thick-
ness of any plate is limited to a minimum of 0,070
inches while the maximum thickness is unlimited,
Furthermore, the thicknesses of the plates compos-
ing the lower surface are constrained to he within
+25% of other plate thicknesses on the lower sur-
face. This placed the following inequality con-
straints on sets 2, 3, 4 and 6,

0.75 tj < &4 i, 3 2,3,4,6
where tj and tj are the thicknesses corresponding

to the ith ana jth element sets,
Results

The analysis was performed using 3 increments
of the predictor-corrector technique., 1In the first
increment the objective for the first mode natural
frequency was 375.0 Hz., in the second 410.0 Hz,
and in the third the objective was the final value
of 456.0 Hz. These represent 6.8%, 16.8% and 30.0%
increases over the baseline value of 351 Hz.

In the predictor phase the problem was formu-
lated as a type P1 problem with

o
(1) A minimum change objective: min. I aez .
e=1
(2) 8 optimization variables (¢ = 8).
(3) 1 egquality constraint, that is, equation

(25) for the first natural frequency.

(4) 8 inequality constraints defining the
lower bounds for plate thicknesses and B
more defining the relative thickness
bounds .

This optimization problem was solved using the
Nelder and Mead simplex method .20

In the corrector phase the problem was for-
mulated as a type P2 problem with

(1) 8 unknowns (¢ 8).
(2) 8 equations of type (27) for the first 8
modes .,

The simultaneous solution of the 8 equations
yvielded one solution which fell outside the fea-
sibility domain. The problem was then reformulated
as a type P3 problem which produced a solution that
minimized the error in the equality and inequality
constraints,
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Figqure 5 Aluminum Casting

Results for the predictor and corrector phases
of each increment, as well as the total changes,
corresponding to each parameter set are shown in
Table 3. In each increment the difference between
the predicted changes and the corrected changes is
significant. This is interpreted as the adjustment
of the predictor phase changes to account for
higher order effects and enforcement of the ortho-
gonality conditions hetween modes.

Analysis of the structure using the changes
determined above resulted in a first mode natural
frequency of 434.0 Hz. This represents a 24% in-
crease over the baseline structure versus the de-
sired increase of 30%. This difference in the re-
sults is due to the combined effect of the reduc-
tion of the feasibility domain by the constraints
imposed on the design variables and error accumu-
lation caused by the large number of operations
which are required for systems of high number of
degrees of freedom. Significantly better results
were obtained for the corresponding unconstrained
problem.

Design Parameter Sets

Summary

A nonlinear incremental inverse perturbation

method for structural redesign has been developed.
The method uses a single finite element analysis of
an undamped baseline structural system, and can he
applied to large or small natural frequency and/or
mode shape changes. The redesign problem is solved
using an incremental predictor-corrector technique.
A cantilever beam has been redesigned to achieve
frequency and mode shape objectives and a 1254 de-
gree of freedom aluminum casting has been rede-
signed for a frequency objective.
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Increment Number

1 2 3
Set
Number | Predictor [Corrector |Predictor {Corrector {Predictor |Corrector| TOTAL
1 9.7 9.7 15.3 6.8 15.0 6.8 25.2
2 8,0 13.4 12.0 20.2 13.2 9.2 48.9
3 1.7 13.4 15.9 21.5 14.3 14.0 57.1
4 9.9 6.7 9.4 14.4 13.8 2.4 33.5
5 7.4 7.2 13.9 5.6 9.7 -3.0 9.8
6 8.9 9.4 13.3 20.3 15.8 12.4 48,0
7 9.6 11.6 9.9 1.9 10.4 25.1 56.3
8 2.2 5.3 15.7 -14.3 7.9 4.9 -5.3

Table 3 Element Set Percentage Thickness Changes
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