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Abstract 

An unstructured grid generation method based o s  the De- 
launay triangulation is presented that is capable of gen- 
erating stretched layers along surface lines while retain- 
ing strong control over maximum angles. The method re- 
quires only minimum user input in form of a set of bound- 
ary nodes, the character of each boundary, the thickness of 
the stretched layer and the maximum aspect ratio desired. 
Upper and lower angular bounds and an upper bound in 
surface variation between neighboring cells are proven. 

1 Introduction 

Unstructured mesh methods are about to become the 
workhorse for Euler-calculations in the aeronautical in- 
dustry. Their flexibility dramatically reduces the time to 
generate a computational mesh around a complex geome- 
try from man-months for a structured multiblocked grid to 
CPU minutes for a triangular unstructured grid. Besides 
the gains during the mesh generation, even more signifi- 
cant gains during the calculation of the solution are offered 
by solution-adaptive grid refinement. While adaptivity is 
intrinsic to the concept of an unstructured mesh, it is a 
rather cumbersome procedure on structured meshes. 

However, the solution of the Navier-Stokes equations 
so far has remained a prime application for structured 
meshes as grid stretching along shock- or shear layers is a 
trivial task on structured meshes but is relatively hard to 
achieve on unstructured triangular or tetrahedral grids. 
The currently available unstructured methods that can 
generate stretched meshes do so either with the additional 
input of a user-specified structured point cloud [I] or at 
the expense of losing control of the maximum angles oc- 
curring in the mesh [2]. This loss of angular control leads 
to increased truncation errors if gradients in the solution 
exist along the face opposite to a large angle. The latter 
method also requires additional user input in form of a 
background grid for the interpolation of scales. 

The Frontal Delaunay Method, FroD, presented here is 
based on a philosophy of truly minimal user input. In 
the case of isotropic meshes for the Euler equations, mini- 
mal user input consists of the set of boundary nodes only. 
In the case of stretched meshes for Navier-Stokes calcula- 
tions, the thickness of the stretched layer and the desired 
maximum aspect ratio are also needed to make the prob- 
lem well-posed. However, simple qualitative information 
about the boundary surfaces will be used to strongly im- 
prove grid quality. 

The Frontal Delaunay Method [3,4,5] is a Steiner trian- 
gulation, i.e. starting from an initial triangulation, nodes 
are inserted incrementally in a frontal manner until a final 
grid with an appropriate node distribution is produced. 
The concept is based on the Delaunay triangulation [6] 
whose construction principle to connect closest nodes is 
exploited for the automation of the grid generation pro- 
cess. Moreover, Delaunay grids have many interesting 
properties, including the fact that a Delaunay triangu- 
lation maximizes the minimum angle of all possible trian- 
gulations with a given set of vertices and is in this sense 
the smoothest triangulation. An extensive documentation 
on Delaunay methods can be found in [7]. 

In FroD, the strong angular control of ordered rectangu- 
lar meshes in a stretched layer is combined with the sim- 
plicity of the unstructured mesh generation in an isotropic 
region. The two different ways of generating nodes are em- 
bedded in a frontal process that introduces the nodes into 
an existing Delaunay triangulation. Local isotropic and 
stretched length scales are interpolated on a background 
mesh that is derived from an automatically modified tri- 
angulation of the boundary nodes. 

2 Generation of the background 
mesh 

The Delaunay triangulation of all boundary nodes is com- 
puted as an initial triangulation to begin the node gen- 
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eration process. This triangulation provides at no extra 
cost a suitable background mesh to interpolate a local 
value of desired distance between nodes a t  any point. This 
"spacing" is interpolated in a possibly nonlinear fashion 
between the three nodal values of the background trian- 
gle that contains the interpolation point. The spacing h 
at the nodes of the background triangles is computed as 
the average distance to its two neighboring nodes on the 
boundary. 

As this initial mesh is a Delaunay triangulation, only 
closest nodes have been connected. In other terms, the 
circumcircle of each triangle does not contain any other 
vertex of the grid. One can exploit this property to  find 
a second set of nodes a t  a user specified distance, say 6, 
to define the stretched region. In this region, the interpo- 
lated stretching a decays from the user defined maximum 
aspect ratio C a t  the solid boundaries to  an isotropic value 
used in the isotropic domain. If the radius of the circum- 
circle of a triangle with a solid boundary face is less than 
6, a node normal to  the face a t  distance 6 can be intro- 
duced without any interference with other regions. The 
stretching a t  this node will be the isotropic value. Two 
layers interfere if the radius is smaller than 6 and the tri- 
angle in question connects different solid boundaries. In 
that case the stretching will decay only to  an appropriate 
fraction of the stretching a t  the solid boundaries. Inter- 
fering layers can be observed in figure 2 between the flaps 
and the main aerofoil. 

In order to have a decay of the aspect ratio with increas- 
ing distance from the wall in form of a geometric series, 
the linearly interpolated stretching value is mapped with 
a nonlinear function. Given the thickness of the stretched 
layer 6, the maximum face length a t  the wall H and the 
maximum aspect ratio C, we can calculate a constant ratio 
of the two aspect ratios of successive cells and the number 
of cells needed to fill the layer. The equation of a super- 
circle, xq + y4 = r4, has been selected to approximate this 
decay and the exponent q can be calculated from the given 
values by the computer. 

The spacing values assigned to these nodes can be in- 
terpolated on the background grid before the nodes that 
define the stretched layer are introduced. We take the 
spacing to be the smaller value of the interpolated spac- 
ing h and the stretched scale. The stretched scale u is the 
length of the longest solid boundary face divided by the 
local stretching value a as will be seen in section 3. 

We find a monotonic variation between the fine spacing 
on interior boundaries and the coarse spacing on a far- 
field boundary if the background triangle connects directly 
from the interior to the exterior boundary. But along 
concave contours it may happen that Delaunay connects 
between finely spaced interior boundaries and the back- 
ground grid will specify a too large area of fine spacing. 
Consistent with the philosophy of minimal user input, the 
program introduces the necessary nodes to break the un- 

Figure 1: Initial triangulation of the boundary nodes used 
to  derive a background grid and the interior triangulation. 

wanted connections. The user only specifies which bound- 
aries he does not want to have connected. The procedure 
will be to  detect an illicit liaison and place a background 
node a t  the circumcenter of the badly connecting trian- 
gle. During a subsequent retriangulation most if not all of 
the triangles shared between the two bodies will be bro- 
ken and few extra nodes suffice. Due to its placement, 
the new node is equidistant from all ill-connected bound- 
aries. The spacing is extrapolated from the more finely 
discretized boundary using the average spacing gradient 
of the initial triangulation. 

3 Frontal node generation 

A frontal technique is employed to  construct nodes from 
frontal edges that refine the existing triangulation. The 
process of generating and connecting interior nodes for 
our initial triangulation of the boundaries can be distin- 
guished into three different parts: building wedges with a 
scale v in the stretched regions along solid boundaries or 
wakes, building triangles with the stretched scale u in the 
remaining stretched regions, building triangles with the 
isotropic scale h in the rest of the domain. While building 
triangles in the stretched and isotropic regions is essen- 
tially the same process with different scales, the building 
of wedges is a fundamentally different procedure. 



Figure 2: Background grid with 6 = .1 and disconnection 
between the main aerofoil and the main flap. 

3.1 Building stretched wedges 

Shear layers expose high gradients normal to the layer 
while the gradients tangential to  the layer remain low. 
Refining isotropically in both directions is not affordable. 
In the framework of minimum user input, grid stretch- 
ing can be aligned with attached boundary layers or user- 
specified wakes or shocks. Once the layer separates from 
the surface, solution-adaptive refinement procedures have 
to be used to modify the grid. Similarly, the grid ought to 
be less stretched in regions where these 'boundary layer 
assumptions' don't hold. 

An important problem of stretching in triangular 
meshes is the control of the angles in the cells. If the 
maximum angle approaches 180°, the truncation error in 
that cell becomes exceedingly high if gradients along the 
opposite face are present. More or less the only reliable 
way to avoid large angles while retaining high aspect ra- 
tios is to emulate ordered quadrilateral grids in the region 
where the shear layer is to be expected and choose a di- 
viding diagonal. Isotropic meshing should take place in 
the regions far from the surfaces or where the layers begin 
to develop. 

It thus seems natural to define a stretched scale v as the 
length of the longest solid boundary face H divided by the 
local stretching value a. Starting from the concatenated 
strings of nodes that define the closed solid boundaries, a 
string of nodes is created around each previous string with 
distance v between the nodes until the stretched regions 
are filled. The strings serve to link the nodes such that an 
average surface normal can be calculated to displace the 

Figure 3: Closeup of a three element aerofoil with a 
stretched layer around the components, C = 1 : 10. 

nodes by v. This will create cells with large aspect ratios 
where mesh spacing h is coarse and more isotropic cells 
where the user decided anyhow to have finer spacing like 
e.g. at  a corner. 

Isotropic meshing with nearly equilateral triangles is 
more appropriate wherever the user chose such a fine 
boundary discretization that v is larger than the length of 
the frontal edge. In a similar way the strings of nodes are 
split around corners in the geometry as the flow features 
around a corner cannot be assumed a priori and isotropic 
refinement has to be used. The effects of reduced stretch- 
ing and reversion to isotropy can be seen in figure 4 around 
the vane flap and at  the lower right corner of the main 
aerofoil and in figure 5 around the leading edge. 

A Delaunay triangulation maximizes the minimum an- 
gles in the mesh. On the other hand, the solvers impose 
constraints on the maximum cell angle rather than the 
minimum angle [7]. While the differences between Min- 
Max and Max-Min triangulations are minor in isotropic 
grids, the differences are fundamental in stretched meshes. 
Consequently, one has to apply constraints to the trian- 
gulation while introducing nodes in the stretched regions. 
As the possible connections between the different strings 
of nodes are known, the triangles that properly connect 
between strings can be flagged and exempted from retri- 
angulation. Hence, the algorithm to build layers of wedges 
can be cast in the following steps: 

for each string of nodes 
open a new string of nodes 
for each node in the string 



Figure 4: Detail of the three element aerofoil between the 
main aerofoil and the main flap, C = 1 : 10. 

evaluate the local stretching value 
on the background grid, 

build a new node at  distance u to 
the node normal to the string, 

check whether that node lies within 
the proper stretched region, 

check whether that node is properly 
spaced with the nodes in the grid. 

if properly spaced and located 
append the new node to the new string, 
introduce the node into the constrained 

triangulation, 
protect the newly formed wedges 

between strings. 
fi 

rof 
close the new string of nodes 

rof 

The actual implementation is slightly more complicated 
to properly evaluate the normal at the ends of the strings 
and to allow for an interruption of the string in case one 
of the checks fails or a corner is detected. 

3.2 Building triangles in stretched re- 
gions 

Once the stretched layers have been filled with wedges, 
the remaining areas in the stretched regions around cor- 
ners and edges and the rest of the computational domain 
are filled with isotropic triangles [4]. The only difference 

between stretched and isotropic regions is the evaluation 
of the local length scale. In order to match the short 
sides of the wedges, the length scale for triangles in the 
stretched region has to be u. 

Figure 5: Detail of a three element aerofoil at the leading 
edge, C = 1 : 10. 

Figure 6: Detail of a three element aerofoil at the trailing 
edge, C = 1 : 10. 

As a consequence of this reversion to isotropy, the dis- 
cretization of the solid boundaries has to approach the 



stretched scale v at  corners or open ends. Then a smooth 
transition from isotropic quadrilaterals with a dividing di- 
agonal to isotropic triangles is guaranteed by the Delaunay 
principle. 

3.3 Building triangles in the isotropic re- 
gion 

In contrast to Advancing Front techniques, tracking of the 
front is not required for the generation of isotropic trian- 
gles as we provide over a closed Delaunay triangulation 
at any stage of the process. A frontal edge is defined as 
a face shared between a well shaped cell with all three 
sides of similar length and a badly shaped cell with an 
obtuse or acute angle opposite to the shared edge. For 
each frontal edge a new node is constructed on the me- 
dian into the badly shaped cell such that the distances 
between the new node and the two vertices forming the 
edge approximate h,  the isotropic length scale. A further 
check is required to make sure that the new node is suffi- 
ciently distant from the remaining nodes in the grid and 
from the other new nodes. For the distance check with 
the nodes that are already introduced into the structure, 
the Delaunay properties can be used to limit the search 
area to a few triangles that surround the one containing 
the new node. Once a spacing violation with old nodes is 
detected, the new node is discarded. The check with the 
other nodes waiting to be introduced is extensive, unless 
an efficient bucketing data structure is used. New nodes 
that are found to be too close to each other are merged. 
With these new nodes in place, the Delaunay algorithm is 
re-run and the process can be repeated until all bad trian- 
gles have vanished. More details about the isotropic node 
generation process and examples can be found in [3, 41. 
Hence, the algorithm can be cast into the following steps: 

do while new nodes are found 
for each triangle in the grid 

for each face of the triangle 
if this face is frontal 

find a node to form a triangle 
with the face, 

check whether the new node is not 
too close to any other old node, 

check whether the new node is not 
too close to any other new node, 

if the node is well spaced 
append the node to the list 

of new nodes 
fi 

fi 
rof 

rof 
for each new node 

introduce the node into the structure 
rof 

The computational cost of the isotropic node generation 
process can be shown to be asymptotically optimal as  the 
number of operations required is of O((p + l )N log N),  
where 0 5 p 5 1 is the fraction of new nodes created at 
a particular frontal step. With a tree data structure one 
finds p = 0 as the cost of searching through the list of new 
nodes reverts to O(N log N). For an Euler grid around 
the three element aerofoil configuration in figure 3, 1943 
nodes were created in 10.1 seconds on a DEC 5000. The 
Navier-Stokes grid around a NACA 0012 aerofoil with an 
ensuing wake given in figs 7,8 contains 2526 built to  form 
wedges and 759 nodes built isotropically. Constructing 
the nodes for the wedges took 5.4 seconds, constructing 
the isotropic nodes took 4.5 seconds on a DEC 5000. Thus 
the stretched generation process runs three times as fast, 
although the implementation is not yet optimal. Further 
improvements in efficiency can be achieved with the use 
of an tree data structure. 

Figure 7: Detail of a NACA 0012 aerofoil a t  the leading 
edge, maximum aspect ratio 1:1000. 

4 Examples 
A classic case for an unstructured grid generator is the 
grid around a multi-element aerofoil. Structured grid gen- 
eration already requires sophisticated extensions to deal 
with this problem. The background grid for the aerofoil 
given in figure 2 was modified from the intitial. triangu- 
lation shown in figure 1 by the automatic insertion of 97 
nodes to form the stretched layer and one node to discon- 
nect the main aerofoil from the main flap. The thickness 



Figure 8: Detail of a NACA 0012 aerofoil with a wake, 
maximum aspect ratio 1:1000. 

of the stretched layer 6 is given as .1 chordlengths, the 
maximum aspect ratio C is 1 : 10. At the midsides of 
the main aerofoil, where the maximum face length H is 
found, 8 layers of wedges with constantly decreasing as- 
pect ratio have been generated. The "viscous" process was 
interrupted a t  the lower right corner due t o  the geometry 
jump (figure 4). No wedges were generated around the 
vane flap and only very few around the main flap due to  
the fine discretization. The region between the three aero- 
foils is filled isotropically. At the leading edge (figure 5) 
the node generation process reverts to isotropy as the node 
spacing on the boundary was chosen very fine and, hence, 
the stretched scale u exceeded the local mesh spacing h. 
A fully stretched leading edge would be obtained for a 
higher C as can be seen in figure 7. 

The regularity of the grid is entirely due to  the frontal 
insertion, no smoothing filter was applied. Overall, the 
cell surface varies very smoothly with a factor of about 100 
000 from the smallest cells a t  the trailing edge of the vane 
flap (figure 4) to  the largest cells a t  the outer boundary. 
The algorithm proves to be very robust, as can be seen 
from the regularity of the triangulation of the lower rear 
corner and the trailing edge of the main aerofoil in figure 4 
and the trailing edge of the main flap in figure 6. 

An example of a higher maximum aspect ratio is given 
in figures 8 and 7, a NACA 0012 profile with an ensu- 
ing wake and C = 1 : 1000. As the wake picks up the 
stretching of the main aerofoil, the spacing of the bound- 
ary nodes a t  the trailing edge does not have to revert to 
isotropy. The node distribution has been refined a t  the 
leading edge in a rather blunt, binary way to show that 

the smoothness of the grids does not depend crucially on a 
smooth boundary point distribution as the isotropic node 
generation process combined with a Delaunay insertion 
shows some smoothing properties. 

5 Angular bounds for the 
isotropic frontal node insertion 

As the generation and introduction of nodes in FroD is 
embedded in the rather rigorous mathematical framework 
of the Delaunay triangulation, the algorithm can be anal- 
ysed mathematically. On the other hand, for the more 
heuristic Advancing Front method [2], no derivation of 
angular bounds or bounds in surface variation is known. 
The smoothness of the grids created with the Advancing 
Front method relies on aposteriori smoothing. 

Upper and lower bounds for the angles in the interior 
isotropic triangulation obtained with FroD can be derived 
on the assumption of vanishing spacing differences at the 
nodes involved in the construction process. Although this 
simplification seems rather restrictive, it only comes into 
effect in the outer flowfield when the cell size is large and, 
hence, the solution gradients are small and large angles 
are permissible. The other constraint actually is more im- 
portant. To ensure boundary conformality and to preserve 
the connectivity of the stretched triangulation, the Delau- 
nay principle is violated locally. In other words, close to 
these interfaces there may be triangles that contain other 
vertices than their own in their circumcircle and the proofs 
given underneath may fail. However, the Delaunay prop- 
erty will be respceted if the local boundary discretization 
reverts to the isotropic scale u a t  the ends of the solid 
surfaces and to the isotropic spacing h a t  the outer edge 
of the stretched layers. 

5.1 Upper angular bound 

FroD will detect short faces in triangles that are consid- 
ered too obtuse or too acute and will construct a node on 
the median of that frontal edge in order to refine the trian- 
gulation locally and to improve the grid. The new node is 
placed a t  approximately a distance h from the two nodes 
that form the frontal edge. However, the introduction of 
the node is subject to a distance check. If the new node is 
located too close to any existing node, it cannot be intro- 
duced and the refinement will not take place. The node is 
too close if the distance to  the closest node is lower than 
a tolerance a times the local mesh spacing h. 

In this way, one has to  consider as a worst case a trian- 
gle with non-desirable properties that cannot be refined 
because the local point density is already too high. Fig- 
ure 9 shows this case: the obtuse triangle ABC with a 
circumcircle 0 of radius r. As this triangle is Delaunay, 
there is no other node of the triangulation in 0 and we can 



Figure 9: Obtuse triangle with maximum angle. Figure 10: Acute triangle with minimum angle. 

always introduce the new node D if its spacing disc with a 
radius ah around D is contained in 0. Consequently, the 
worst case occurs when the two short faces of the triangle 
ABC have the minimum permissible length of ah. If we 
were to increase this length, r was to increase as well and 
the disc around D was included in 0 already at a smaller 
angle 7. Hence, given the tolerance a we can calculate the 
maximum angle y: 

spacing disc around D become tangent. In this case we 
find 

1 B = 2 arctan JG + 2 .  (3)  

The smallest minimum angle is found for a = 1. as P = 30' 
and decreases monotonically to P = 19.3' for a = .5. 

-5.3 .. Upper bound in surface variation 

The two cases shown in figure 9 and 10 also represent 
- - -  - ,the two limiting cases in surface variation between two 
h - 2  neighboring triangles. In both cases an enlargement of 

the bigger triangle would enable refinement of the config- 
uration. The case A of figure 9 of an obtuse triangle next 

ah 
7 = 2 arccos - . (2)  to a slightly acute one is the case that will produce larger 

2r variations in size: 
The lower limit is obtained for a = 1 with 7 = 120'. 
However, this restrictive tolerance will inhibit the inser- S ( A  E B )  2r --- - 1. 
tion of D if V h  = 0 as D then is too close to C and B. S(ABC) ah cos % (4) 

The maximum angle increases monotonically to 141' for The maximum surface ratio for this case ranges from 3 .  
a = .5. for a =  1. to 8.1 at  a = .5. 

Case B, as given in figure 10, is formed with a larger 
5.2 Lower angular bound triangle that has an acute angle with the minimum P. 

As the face AB has the minimum allowable length in a Similarly, one can derive a lower angular bound when re- 
triangulation of ah,  the triangle ABE must be equilateral. 

fining acute triangles with one short face. This case is Hence, the ratio in surfaces in case B is 
depicted in figure 10. As long as the circumcircle 0 is 
large enough to contain the spacing disc around D, refine- S(ACB) - 1 
ment of the triangle ABC will always be possible and the S(ABE) - 4 tan 4 (5)  
acute angle /3 will increase after the insertion of D. Again, 
as one further decreases /3 in ABC, 0 will shrink until The ratio for case B ranges from 2.15 for a = 1. to 3.39 
the limiting case is reached where 0 and the rim of the for a = .5. 



5.4 Measured bounds of angles and sur- 
face ratio 

The numerical experiments with various a performed with 
isotropic grids around the three element aerofoil of figure 3 
strongly confirm the upper angular bound as can be seen 
in figure 11. However, the maximum angle found in the 
grid does not increase monotonically with decreasing a: a 
local minimum at a = .6 is found. 

max angles 
min angles 

120. 

Figure 11: Measured maximum and minimum angles and 
lower and upper bounds in function of the tolerance a. 

Ratio 4 

lation remains at roughly 20' except for the lowest a = .5. 
Again, a rather favorable value is found for a = .6. The 
disparity might be due to the fact that in the case of an 
acute triangle with two long faces the assumption of negli- 
gible gradients in spacing does not hold as well. Still, the 
lower bound derived gives a good estimate for the mini- 
mum angles. 

The limit in surface variation of case A is well observed 
except for the case with the narrowest tolerance of a = .9 
(figure 12). Again, a local minimum in surface variation 
is found for a = .6. 

5.5 Distribution of angles and surface ra- 
tios 

More important than maximum values of the above pa- 
rameters are their distributions over the grids. As to be 
expected, a narrower tolerance might decrease the largest 
angle of the grid, but will not improve grid quality as a 
whole. Distributions of minimum and maximum angles 
and surface ratios over the entire grid can show the grid 
quality better. As the figures 13-15 show, a narrow peak 
close to the optimum values is found for a rather large 
tolerance a = .6 with a very small number of cells with 
excessive angles y 2 90' or a surface variation larger than 
2. On the other hand a small tolerance of a = .9 will 
produce a broader variation with a larger number of un- 
desirable cells. Still, even the distributions with a = .9 
are very satisfactory. 

0.150 

a 
b 
ratios 

Figure 13: Distribution of maximum angles. 

Figure 12: Measured surface variation and bounds of sur- 
face variation for the case A and B in function of a. 

6 Conclusions 

The lower angular bound is not as well observed as the 
upper angular bound. The minimum angle in the triangu- 

The Frontal Delaunay Method, FroD, has been extended 
to be used with stretching surfaces like shocks or wakes 



Figure 14: Distribution of minimum angles. 
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Figure 15: Distribution of surface ratios for a = .6. 
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is found and the high mesh quality i f  the isotroiic part 
of the algorithm is retained. Within the stretched layers, 
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