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Abstract

We report on electromagnetic wave (EM) scattering experiments using a 17 GHz signal propagated through an
electric propulsion Hall thruster plume at different radial and axial distances. The goals of the experiments were to
evaluate the spectral modification of the EM signals after propagating through the plume. These spectral
modifications are attributed to temporal variations in the plasma due to propagating density perturbations. The
experiments were performedon a D-55 Hall thruster manufacturedby TNIIMASH (Research Institute of Machine
Building) and the University of Michigan 5 kW Hall thruster. Close to the exit plane on the D-55 thruster axis, the
spectral response is dominated by a first sideband at approximately +/- 100 kHz with respect to the 17 GHz signal.
Further downstream in the axial direction, first and second sidebands are both present for the D-55. The spectral
response is not distinguishable above the baseline noise beyond +/- 300 kHz with respect to the signal. For the UM
thruster, only first sidebands at +/- 12 kHz were observed as a function of axial distance. We show that present
models do not adequately predict the observed axial variations or sideband levels. A revised model that assumes a
rotating Gaussian density perturbation and which is assumed generated by azimuthal drift wave oscillations is

shown to allow better matching of sideband levels and their variations along the plume axis.

Nomenclature
E Electric field (V/m)
k Wave number (m-1)

Mamp, Mfreqy ~ Modulation Factors for amplitude

Mphase (unitless), frequency (rad/s), phase (rad), and
density noise or oscillations (unitless)

ne Electron number density (cm'3)

ne Critical electron density (cm)

Ne(x,y,t) Electron density as a function of time and
space at a fixed axial position (cm™)

Ne(x,y) Electron density as a function of space at a

fixed axial position (cmM™>)
Radial distance from thruster.

’
z Axial distance from thruster
s Position of ray

t Time (s)

®.ucm  Phase shift due to free space

@piasms  Phase shift due to plasma

A¢ Phase shift of propagated wave relative to
' phase with out a plasma

(1) Phase of wave at time, ¢ (rad)

A Wavelength (m)

o Standard deviation (width) of azimuthal

- Instability (cm)
7] Radial frequency (rad/sec)
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1eIntroduction

Recently, there have been results reported on the
use of microwave interferometers as highly accurate,
non-intrusive diagnostic tools in the plumes of Hall
and arcjet electric propulsion thrusters [1, 2]. Other
studies have measured and modeled the impact of
microwave signal propagation through these plasma
plumes to assess their impact on spacecraft
communication, radar, or radio navigation systems
[2, 3]. In general, it has been shown that for present
day, kilowatt-class Hall thrusters, significant
attenuation is primarily observed in the lower
microwave frequency bands (below about 8 GHz)
principally due to refractive spreading effects[1, 2].
However, phase modification of electromagnetic wave
(EM) signals is significant throughout the microwave
frequency range to above 20 GHz and well out in the
plume [2]. Further, both amplitade and phase
temporal variations can generate frequency sidebands
on microwave EM signals propagating through
plumes such as seen in Figure 1 for an SPT-100 Hall
thruster {2, 3]. These effectswill become even more



significant as power levels for Hall thrusters increase.
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Figure 1 — Spectral response of the SPT-100 at
1.6 and 17 GHz [3].

In much of this work to-date, an assumption of
azimuthal symmetry in the plasma plume has been
made. This appears to be a good approximation for
thrusters  studied  where time-averaging of
measurements is used [4, 2]. However, here we wish
to consider the effect of important plasma oscillations
in Hall thrusters and their introduction of asymmetric
azimuthal temporal variations in the Hall thruster
plasma plume. Specifically, we focus on coherent
azimuthal drift waves which, along with other more
stochastic disturbances, were reviewed by Choueiri
[5}. They were also the focus of recent in-situ
experimental measurements of Hall thruster transient
behavior reported by Hargus et al. [6].

Below, in Section 2 we review present temporal
models describing EM signal propagation through
plasma plumes which assumes azimuthal symmetry
and also briefly summarize known plasma
instabilities in Hall thrusters. In Section 3 we
describe our experimental set-up for measurements
(described in Section 5) which are used to
demonstrate the limitations of existing models as
described in Section 4. Section 5 will present a
revised model that assumes the oscillations are
rotating azimuthal plasma disturbances and that they
show good agreement with observations. We will
conclude with a discussion and summary in Section
6 of these results.

. 2¢Theoretical Background

Electromagnetic Wave Interactions

A plane wave propagating through a plasma can
be modulated both in phase and in amplitude. The
following is a mathematical summary of amplitude
and phase modulation

Suppose we have a plane wave

E(r) = E,(r)cos(w,1) M
Pure amplitude modulation is represented as
©E(R) = E,(Poos(w,t)(1 + Mg, cOS(W,1) @)

which can be expanded via a well known
trigonometric identity to

E(r) = E,(cos(w,t) + m—;"f— [cos((wo +w,)t)

3)
+ cos((wo -w,, )t)] -

Here m,,, is a modulation fraction and ®, is the
modulation frequency. In the above expression we see
explicitly contributions from the original signal plus
the first sidebands.

Similarly, using phasor notation, pure phase
modulation may be represented by

E(r) = E,(r)exp(j(w,t + M 5, COS(w 1)) (4)

Here m,,,, is a modulation fraction and ®, is the
modulation frequency. Recall when using phasor
notation, to obtain physical field we must take the
real part of E(r). The frequency spectrum may be
obtained by expanding the exponential in terms of
Bessel functions of the first kind. We use the
following identity,

exp(jxcos(6)) = 2 j"J,(x)cos(n) )

where J,(x) is the n-th Bessel function. Expanding
and taking the real part yields

E(r) = E,(r)(J (M, ) cOS(W,2)

- Iy (Mg NsIn(w, + w, )t + sin(w, —w,)t) ©
+ Jz(mphase)(cos(wo + 2wp )t —cos(w, — 2wp)t)
+...)

Whereas pure amplitude modulation gives rise only to
the first harmonics, pure phase modulation gives rise
to an infinitude of harmonics. If the argument
m_phase is less than one, the magnitude of the Bessel
function decrease as the frequency of the harmonics
increase.

Hall Thruster Instability Summary

Here we briefly summarize the kinds of
oscillations that occur inside the SPT acceleration
channel. A more detailed review has been given by
Choueiri [5]. As the ions and their associated
electrons are accelerated into the plume, time
variation in the local electron density in the plume
may be affected. The oscillations include low
frequency azimuthal drift waves, axially propagating
"transit-time" oscillations, high frequency azimuth
drift waves, ionization instability waves and wave
emission  associated with  weakly ionized,
inhomogeneous plasma in crossed electric and
magnetic fields.

In addition to Hall thruster type, operating
conditions of the thruster also affectthe frequency
range characteristic of differentinstabilities. For the
instabilities below, the general operating conditions
are as follows [5]: diameter of acceleration channel
(~10cm), discharge voltage (Us~200V), mass flow



rate (dm/dt = 3 g/s of Xe), and, discharge current (I4
=3-32 A). .

Oscillations between 1 and 20 kHz are sensitive
to the circuitry of the thruster and are relatively non
existent under nominal operating conditions.
Between 20 and 60 kHz a type of low frequency
azimuthal propagating wave is present [5,6]. These
are excited predominantly near the exit plane of the
thruster in the vicinity of negative gradient of the
mostly radial magnetic field (dBr/dz < 0, where dz is
along the axial direction). The strength of these
waves is dependent on the operation region (I-V
curve). For instance, these waves are dominant at low
discharge voltage U; and diminish in the current
saturation region.

Between 20 and 100 kHz exist axially
propagating waves which are bounded by the ion
collision frequency (~20 kHz) and the electron
collision frequency (~200 kHz). Contained in this
region is the ionization frequency (~35 kHz).
Oscillations between 70 and 500 kHz also known as
"transit-time" oscillations are turbulent [7]. The
frequency is related to ion velocity v, and the length
of the acceleration channel L, by f = v¢/L. Finally
there exist a host of high frequency oscillations where
f> 0.5 MHz. These tend to dominate during nominal
operation of the thruster. One type of high frequency
oscillation is mostly azimuthal and was the first to be
predicted theoretically [8]. Besides this type other
high frequency oscillations have not been well
studied.

3«Experimental Set-Up

A 17 GHz microwave measurement system [1]
has been used to measure the spectral power
distribution through the Xenon plasma exhaust of
two Hall Thrusters. These were the model D-55
anode layer thruster developed by TsNIIMASH, which
was on loan from the Jet Propulsion Laboratory, and
the UM 5 kW Hall thruster designed at the University
of Michigan. The D-55 was operated at 300 V and 4.5
A (1.35 kW). The UM thruster was operated at 500
V and 10.3 A (5 kW).

Figure 2 shows a schematic of the experimental
setup.  This system consisted of a computer
controlled network analyzer, a spectrum analyzer
connected to a microwave up-down frequency
conversion circuit, two lens corrected horn antennas
with a beamwidth of about 7 to 8 degrees, and a
computerized positioning table. The network analyzer
was used as the- signal source. The experimental
measurements were all performed at the
Plasmadynamics and Electric Propulsion Laboratory

;. (PEPL) of the University of Michigan in its 6 m by
"9 m stainless steel vacuum chamber. The pressure
during testing was about 5%107* Torr.

All components except the spectrum analyzer,
and computers were placed in the vacuum chamber.

The assembled microwave system mounted onto a
positioning table which was able to move up to .9 m
axially from the thruster plane and up to 1.5 m
radially allowing for measurements at several axial
and radial positions within the thruster plume.

The two thrusters used in this experiment were a
model D-55 anode layer thruster developed by
TsNIIMASH, which was on loan from the Jet
Propulsion Laboratory, and the UM thruster a 5 kW
Hall thruster designed at the University of Michigan.
The D-55 was operated at 300 V and 4.5 A (1.35
kW). The UM thruster was operated at 500 V and
10.3 A (5 kW). Both used Xenon as its primary
propellant.

Data Acquisition System

Conversion

Circuit Plume

Electric
Thruster

Radial

\\
SN Positioning
LN System

Figure 2 — Diagram of experimental setup inside
of vacuum chamber used to measure spectrum of
D-55 and UM thrusters.

4<Experimental Results

The following figures show the measured spectral
power distributions for a signal propagated through
the plume of a D-55 thruster and the UM thruster at
several axial positions. The transmitted signal is
denoted by the solid curve and the background (no
plasma present) as dashed curves. The notation
(r,2)=(0,4.75) [in] means that r=0 and z=4.75 inches
are the radial (off-axis) and axial positions,
respectively, of the measurements.

As seen in Figure 3, at 4.75 inches from the exit
plane of the D-55 thruster, the signal is modulated by
a broad spectrum peaked at 100 kHz. At 10 inches and
beyond second order harmonics at 200 kHz are clearly
visible. At 40 inches the signal response to the
plasma plume approaches the background.

As seen in Figure 4, at 10 inches from the UM
thruster there are clear harmonics at 12 kHz that are
narrower and stronger than in the D-55. No new
sidebands are present further out from the exit plane,
and at 31 inches from the exit plane the signal
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Figure 3 — Measured spectrum of a D-55 thruster
at 4.75, 10, 20, 30, and 40 inches from the exit
plane.

It should be noted that the background contains
spurious signal most prominently at 100 kHz
intervals. These are due to the local oscillator in the
up-down frequency conversion circuit. We argue the
fact that the spurious signals correspond to the
harmonics in the D-55 plasma plume is coincidental
and these do not significantly contribute to the signal
for the following reasons. First, the modulation of
the signal is caused by a much broader amray of
instabilities in the plasma centered at 100 kHz
intervals. Second, close to the exit plane of the
thruster the spurious signal at 200 kHz does not
contribute to the spectrum of the signal close to the
exit plane of the D-55. Lastly, in the UM thruster
there were no observed effects due to the plasma at

harmonics of 100 kHz.
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Figure 4 — Spectrum measurement for the UM
Thruster at 10, 15, and 31 inches from the exit
plane

SeAlternate Model and Results

Alternate Model

Electromagnetic signals are known to interact
"with a plasma by altering the phase, amplitude,
direction, and power spectral density of a transmitted
signal as described in the equation below.

E = E,[14 My, (1)] %
0
cos[kr = (W = M (Ot = Mgy (z)]

Equation 7 is the most general form of modulation
where My, Mg, and my,, correspond to the
modulation coefficients for amplitude, frequency, and
phase.

In order to model the spectral responses of the
plasmas that were observed, an electromagnetic signal
with only phase modulation was assumed.

E = Egycos(wt—Ag(t)) ®

where k is equal to the free space wavelength, ® is
the frequency of the signal, and ¢ is the phase
variation of the signal due to the plasma.

The total phase shift as function of time for a
signal passing through a plasma can be found from
the electron density of the plasma with the following
relation

Ag(t) = ¢vacuum - ¢plasma ®

s2 9
jne(x,y,t)ds ©

< st

2¢cn

We estimated the electron density as a function
space and time based on an azimuthal instability in
the thruster’s plume that was superimposed on the
thruster’s static (time-averaged) electron density
profile. We also assumed that the azimuthal
instability rotated around the center of the plume at a
certain constant angular velocity, ®. Figure 5 shows
a three dimensional view of the plasma and the
instability. We modeled the instability as a Gaussian
distribution with a width, ¢, height, m, and distance
from the center of the plume, d, as shown in Figure
6. The total electron density {without rotation taken
into account) can then be shown mathematically as

n(x,y) = n(x,y)X (1+ me =D +0=dDy (19
where n(x,y) is the static electron distribution at a
given axial position and 1s symmetric about the
origin of the plasma plume. For the purposes of our
model, we assume the static electron density aiso has
a Gaussian distribution with a ¢ equal to 7.5 cm and
a peak density of 10'' cm™,

With the assumption that the time scale of the
rotation of the instability is much longer than the
time scale of the signal propagating across the
plasma, a computer code was generated to solve
Equation 9. The instability was numerically rotated
around the center of the static plume distribution at a
frequency o, and at each time increment a plane wave
was sent through the plasma and Equation 9 was used
to calculate the phase shift of the propagated wave
giving ¢ as a function of time. Equation 8 could then
be used to give the spectrum of the signal by simply



taking its Fourier transform. A summary of these
results are given below.
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Figure 5 — 3-dimensional view of static electron
density and the azimuthal instability
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Figure 6 — 2-dimensional representation of the
azimuthal instability model where m 1is the
amplitude of the instability, ¢ is the width, and d
is the distance the instability is from the origin.

Comparison With Measurements

The two sets of figures below show the
comparison of the spectrum generated by Equations 5,
6, and 7 to that of the measured spectrum. In the D-
55 thruster two different spectrums were observed
depending of the axial positions while in the UM
thruster only one spectrum was observed. All
calculations were done slightly off-center of the
plasma plume due to the fact that calculations near
the center caused double harmonics to appear.

It was found that an oscillation with a rotational
frequency of 100 kHz, height (m) of .06, distance
from the center (d) of 3 cm. and a ¢ of 4.1 cm gave
sidebands very close in amplitude to those observed in
the measured spectrum at 10 inches from the exit
. plane of the D-55 thruster. The simulation results are
* compared with measurements in Figure 7a and b.

‘ We also generated a simulated spectrum with
sideband amplitudes close to those measured in the
near field, 4.75 inches, of the D-55 by changing the

parameters of the instability as shown in Figure 8a
and b. By setting the rotational frequency of the
azimuthal oscillation to 100 kHz, its height (m) to
.1, the distance from the origin to 3 c¢m, and ¢ to 10
cm it was possible to simulate sidebands very close
in amplitude to those observed in the measured
spectrum.
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Figure 7b — Theoretical spectrum for the far field
D-55 plasma plume

Based on these results, there is an indication that
an azimuthal instability in a D-55 thruster tends to
become more narrow and lower in amplitude
downstream of the thruster’s exit plane.

It was also possible to reproduce the sideband
levels for the UM thruster as shown in Figure 9a and
b. Setting the height of the instability to 0.3, the
width to 10 cm, the distance from center to 3 cm, and
the instabilities frequency of rotation to 12 kHz, we
were able to obtain a spectrum with sidebands very
close in amplitude to the measured spectrum. Unlike
the D-55, the UM spectrum stays relatively constant
down stream of the exit plane.
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6+Discussion and Summary

Based on the theoretical modeling of an
azimuthal instability by the methods described the
following trends can be inferred. As the width of the
instability increases the relative amplitudes of the
sidebands increases. As the height of the instability
increases, the amplitude of all the sidebands increases,
but the relative amplitudes of the sidebands remain
constant. And, finally, as the distance the azimuthal
instability is away from the center of the plume is
varied different sidebands become more or less
pronounced. Therefore, we believe, it is possible to
predict the shape and amplitude of a azimuthal
instability by- analyzing the relative and absolute
amplitudes of the sideband present in the forward
scattered spectrum of a plasma thruster.
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Figure 9a — Measured spectrum for the UM
Thruster plasma plume.
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Figure 9b - Calculated spectrum for the UM
Thruster plasma plume.

Some known limitations of this model are the
following. First, amplitude modulation due to beam
spreading is not taken into account. Second, the
antenna distribution needs to be taken into account
instead of assuming a single plane wave. Thirdly,
due to the symmetry of the electron density model
used, spectral calculations done close to the middle of
the plasma plume produce harmonics at double the
instability rotational frequency.

In the above, we have noted that experimental
measurements of frequency sidebands do not fully
agree with simulations using existing models. We
have proposed an alternative model that is based on
known oscillation instabilities. The simulated results
are more closely able to account for the observed
variations. ‘
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