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In this paper we consider an analytic averaging technique for 
integration of discontinuous nonlinear functions. Functions 
with both displacement and slope discontinuities are treated. 
The analytic averaging method is shown to provide much better 
accuracy than conventional integration algorithms. This is 
especially true when fixed integration step sizes are used, as in 
real-time simulation. A simple but practical example of a bang- 
bang control systems is used to verify the superior performance 
of the analytic averaging method. It is also shown how 
averaging formulas for unit step and unit ramp nonlinear 
functions can by superposition be used to construct analytic 
averaging formulas for any nonlinear function which has 
displacement and slope discontinuities. A modified form of 
Euler integration is shown to be especially compatible with the 
analytic averaging method. 

In real-time simulation of dynamic systems the time 
derivatives of state variables sometimes have discontinuities. 
For example, this is clearly the case when simulating a 
spacecraft attitude control system which uses on-off reaction 
control thrusters. It is also true in the simulation of continuous 
controllers with effort limiting, controllers with dead-zone, etc. 
In general the discontinuities occur at times which are 
asynchronous with respect to integration step times. Because of 
this the use of conventional integration methods can result in 
substantial dynamic errors. Methods have been proposed using 
variable integration step size to improve the accuracy when 
discontinuities are present(1.2.3). However, in real-time simula- 
tion the integration step size must be fixed and the errors 
introduced by discontinuous derivatives can become very 
serious unless the step size is made inordinately small. A 
technique compatible with real time simulation which utilizes an 
intermediate step to the discontinuity has been described and 
shown to exhibit high accuracy(4). However, this method can 
require considerable computation time when many discontinuous 
functions are present in a simulation. 

A less accurate but faster method for handling 
discontinuous nonlinear functions in fixed step integrations has 
also been' described(5). The method, which uses an analytic 
averaging technique, is introduced in the next section. A general 
formula for the analytic averaging function for any nonlinearity 
consisting of straight line segments and displacement 
discontinuities is developed in Section 3 from averaging 
formulas for unit step and unit ramp nonlinear functions. 
Section 4 reviews some interpolation and extrapolation methods 

which are useful in applying the analytic averaging method. 
Finally, in Section 5 we present a simple but practical example 
of a bang-bang control system with hysterisis to demonstrate the 
superior performance of the analytic averaging technique. 
Example solutions are shown for AB-2 integration as well as a 
modified form of Euler integration which turns out to be 
especially compatible with the analytic averaging method. 

2.Derivation of the Analvtic Averaging Function 

Assume that a dynamic system contains a scalar state 
equation given by 

where f (x )  is a nonlinear function which can include discontinu- 
ities in displacement or slope. Let h be the numerical integration 
step. Then the ideal numerical integration formula is given by 

Here y,  represents y(nh)  and x is a function of time. We next 
assume over the interval of integration that the time derivative of 
x, dx/dt, is a constant which can be approximated by the 
following central difference: 

dx X n + l - X n  - - - - -  
dt h 

- constant 

Then Eq. (2) can be rewritten as 

where 

With Eq. (5) we have converted the integral of f (x)  with respect 
to t in Eq. (2) to an integral of f (x )  with respect to x in Eq. (5). 
In fact fa,, represents simply the average value of f (x )  over the 
interval of integration. For any specified f ( x )  the integral is a 
function of xn+l and x,. It can be precomputed analytically 
when f (x )  is an analytic function of x.  For example, if f ( x )  = x ,  
a linear function, the f,,, function is given by 
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In this case we see that Eq. (4) represents trapezoidal 
integration. However, when f(x) is a nonlinear function of x, 
Eqs. (4) and (5) will produce a result which is more accurate 
than trapezoidal integration. 

It should be noted that fa,, as given by Eq. (5) is 
undefined for x,+l = x,. In this case it is clear that fa,, should 
be equal to f,, the value of f(x) for x = x,. If it is possible for 
x,+l to be equal to x, in a simulation, it may be necessary to add 
an "if" statement in the program in order to set fa,, = f, when 
Xn+l - Xn = 0. 

Figure 1 illustrates some typical discontinuous nonlinear 
control functions. We now proceed to derive the fa,, formulas 
for these functions. 

a. Bang-bang control b. Ban ban control 
witf-deaf zone 

c. Linear control with d. Linear control with 
effort limiting dead zone 

Figure 1. Typical controller nonlinearities. 

Consider first the bang-bang switch function shown in 
Figure la. The function can be represented analytically by the 
formula f(x) = xllrl. From Eq. (5) it follows that 

Note that if both x,+l andx, are positive, fa,, = +l .  When both 
x,+l and f, are negative, fa,, = -1. When x,+l and x, have 
opposite polarity, fa, will be somewhere between +1 and -1 and 
will represent the average value of the switch function over the 
interval x,, xn+ 1. 

Next consider the linear function with limiting, as shown 
in Figure lc .  Here the function can be represented analytically 
by f(x) = ( l x + x ~ I  - Ix-x~1)/2. From Eq. (5) we obtain the 
following formula for f,,,: 

Consider next the derivation of the fa,, function for 
bang-bang control with dead zone, as illustrated in Figure lb .  
Figure 2a shows how this control function can be represented as 
the superposition of the two bang-bang switch functions with 
inputs biased by -xd and xd, respectively. It follows from Eq. 
(7) for the individual fa,, functions that the overall fa,, function 
in this case is given by 

Similarly, the linear function with dead zone illustrated in Figure 
Id can be represented as the superposition of a linear function 
and an effort-limited linear function, as shown in Figure 2b. 
From Eq. (8) the following fa,, function is obtained: 

- 'n 
fave - 2 

Here fLIM(xn+l, Xn) is the fa,, function given earlier in Eq. (8) 
for effort-limited linear control. 

a. Synthesis of bang-bang b. Synthesis of linear control 
control with dead zone with dead zone 

Figure 2. Synthesis of discontinuous control functions. 

3. General Synthesis of Analytic Averaeine Functions 

From the example in Figure 2a it is evident that symmetric 
nonlinear functions in general with displacement discontinuities 
can be synthesized by a superposition of bang-bang switch 
functions, each with a respective weighting constant and input 
bias. Also, from the example in Figure 2b it is apparent that 
symmetric nonlinear functions with slope discontinuities can in 



general be synthesized by a superposition of linear functions 
with limiting, each with a respective weighting constant and 
input limit bias. Symmetric nonlinear functions consisting of 
both straight-line segments and displacement jumps can be 
synthesized by a superposition of both linear functions with 
limiting and bang-bang switch functions. In all cases the 
corresponding fa,, function can be written in terms of the fa,, 

functions given by Eqs. (7) and (8). 

We next consider asymmetric nonlinear functions with 
displacement discontinuities. These can in general be 
synthesized by a superposition of step functions. The individual 
unit step function d ( x )  in Figure 3a can be represented 
analytically by the formula d(x)  = ( l+x/k1) /2.  From Eq. ( 5 )  the 
corresponding fa,, function, which we denote as D(x,+ l ,  x,), is 
given by 

Figure 3. Unit step and ramp functions. 

Any staircase-type discontinuous function can be represented as 
the sum of biased step functions. Thus we can write 

It follows from Eq. ( 1  1) that the corresponding fa,, function can 
be computed from the formula 

Any asymmetric nonlinear function consisting of straight-line 
segments can be synthesized by a superposition of ramp 
functions. The individual unit ramp function v ( x )  in Figure 3b 
can be represented by the formula v ( x )  = (x+lxl)/2. From Eq. 
( 5 )  the corresponding fave function V(x,+l, x,) is given by 

The general segmented function can be written as 

Eqs. ( 1  1 )  through ( 1 6 )  can be built into a computer subroutine 
which will automatically calculate the f a V e ( x , + l ~ , )  function 
given the data points defining any nonlinear function f ( x )  that 
consists of linear segments plus displacement discontinuities. 

4. Methods for determining x,+l 

It is clear from Eq. (5) that fa,, will be a function of xn+l 
and x,. When fa,, is computed during the nth integration frame, 
x,+l may not be available. In this case it will be necessary to 
estimate x,+ l  In this section we consider several methods for 
making this estimate and the associated accuracy of the estimate. 
In the following sections specific examples will be used to 
illustrate several of the methods. 

If x,  is a state variable or a known function of state 
variables, it may be possible to perform the state variable 
integrations during the nth frame prior to computing the fave 
function. In this case x,+l will represent the most accurate 
estimate possible that is consistant with the algorithm being used 
for numerical integration. If it is not possible to obtain xn+l in 
this fashion, then it must be estimated using some type of 
extrapolation algorithm. 

Again, if x, is a state variable, the time derivative jr, will be 
available for the estimate of x,+l. If, alternatively, x, is an 
analytic function of state variables, then x, can be calculated, 
although for complex functions the calculation may not be 
trivial. In any event let us assume that x, is available or can be 
computed. Then a first-order power series extrapolation formula 
for x,+l is the following: 

From the Taylor series representation for x,+l in terms of x, it is 
easily seen that the error in x,+l is approximately -xnh2/2. It is 
apparent that the extrapolation formula of Eq. ( 1 7 )  is identical 
with the Euler integration formula. 

A second method for estimating xn+l uses linear extrapola- 
tion based on x, and xn-1. Here the formula is 

In this case the error in x,+l is approximately -i,,h2, i.e., twice 
the error associated with the estimate of Eq. (17) .  

A second-order extrapolation method for x,+l is based on 
x,, x,+l and x,. Here the formula is given by 

Here the error in x,+l is approximately -x, h313. 

Other higher order extrapolation algorithms can of course be 
considered(@. Because of the asumption that drldt is constant in 
the derivation of the fa,, foumula, however, it is doubtful if 
much would be gained in going to more accurate extrapolation 
methods. 

Thus the corresponding fave function is computed from the 
formula 



5. Bnng-bang Control system Example 

In this section we consider an example simulation of a 
dynamic system with discontinuities. Figure 4 shows a block 
diagram of the system, which consists of a pure inertia plant 
driven by a "bang-bang" controller with hysterisis. Proportional 
plus rate control is mechanized with the lead-lag filter shown in 
the figure. If the controller were also to include deadzone, the 
system would be representative of a typical spacecraft single- 
axis attitude control system. 

I Bang-bang I 

Example parameters: 

C e =  1 ,  T = .2 

uLIM = 1, e ~ =  .05 
t 

-+ --, - U  LIM 

Figure 4. Bang-bang control system with hysterisis 

For the parameters shown in the figure the time response of 
the control system for zero input ( r  = 0) and two different initial 
conditions, c(O), is shown in Figure 5. The other two states are 
initially zero. Note that the response approaches a limit cycle in 
each case. This is of course typical for any bang-bang control 
system. 

Output, " c \ 

-. 2 
0 1 2 3 4 5 

Time i n  seconds 

Figure 5. Transient response of control system for two different 
ini tial conditions. 

The control system is described by the following state 
equations: 

We consider first the simulation of the system using the second- 
order Adams-Bashforth (AB-2) predictor algorithm, which is 
probably the most popular real-time integration method. This 
results in the following difference equations when the standard 
method for nonlinear function evaluation is employed: 

h 
xn+l = x n +  Z(3fxn-fxn.J .  fx, = rn -c , -xn  

Here we have introduced a discrete state variable S, = + 1 in 
order to mechanize the hysterisis bias eH, where the polarity of 
the bias depends on the previous switch state, Sn-1. 

Next we replace the conventional evaluation of the bang- 
bang control function U, with the fa,, function in accordance 
with Eq. (7). The formula for the switch variable S, given in 
Eq. (21) is still retained to preserve the evaluation of the 
hysterisis bias + ell. But the equations for un and ~ d , + ~  are 
replaced by 

In Eq. (22) we have denoted the fa,, function by ii,+l~2. This is 
because the average value of the bang-bang control over the 
interval from nh to (n+l)h is equivalent to an estimate of u 
halfway through the interval as it is used in the integration 
algorithm of Eq. (23). 

In Figure 6 the error in the simulated control system output 
c when using AB-2 integration for c(0) = 1 is plotted as a 
function of time. Two cases are shown. In one case AB-2 is 
used with the standard method of bang-bang function evalua- 
tion, as represented by the difference equations in (21). In the 
second case the function averaging method is used to represent 
and integrate the bang-bang control, as reflected by Eqs. (22) 
and (23). Use of the averaging method has clearly made a very 
significant improvement in the accuracy of the solution. It 
should be noted that in both cases the AB-2 algorithms were 
started so that there was no error for the initial 1 second portion 
of the solution, over which the controller output u is equal to -1. 
It is when u switches from -1 to +1 and when subsuquent 
switches in u occur that the error transients are generated. 

Eq. (23) can be viewed as a modified form of Euler 
integration wherein the half integer state variable derivative at 
n+1/2 instead of the derivative at the integer n is utilized in 
computing the n + l  state. This form of modified Euler 
integration can actually be used for many if not all integrations in 
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Figure 6. Error in control system output when using AB-2 
integration. 

a simulation. It has the advantage that the dynamic errors 
associated with the method are proportional to h2/24, compared 
with 5h2/12 for AB-2 i n t e g r a t i ~ n ( ~ ) .  For this reason and 
because of its compatibility with the function averaging method 
for handling discontinuities, we next consider the modified Euler 
method for all integrations in the simulation of our bang-bang 
control system. 

When applying modified Euler integration it is necessary to 
designate some of the state variables at half integer rather than 
integer time steps. For the control system example here we 
choose to represent the output position c at integer steps, with 
the output velocity cd and the filter state x represented at half- 
integer steps. When the standard method for nonlinear function 
evaluation is used, the modified Euler difference equations for 
simulating the control system state equations in (20) become the 
following: 

We note in Eq. (24) that modified Euler has been used to inte- 
grate ( r ,  - c, - x",)lz and thus obtain xn+lp  from ~ ~ - 1 1 2 .  Here 
the estimate& is obtained by averaging ~ , + ~ / 2  and x , . ~ ~ ~ ,  as 
shown in Eq. (25). In this case we are in effect using trape- 
zoidal integration for the state x. The resulting difference 
equation is solved explicitly for x,+ln, which leads to Eq. (24) 
with the coefficients A, and B,. The estimate x", is also used in 
Eq. (25) for the filter output y,, which in turn is used in Eq. 
(26) to compute the bang-bang switch output S, and hence the 
controller output u,. In Eq. (27) the velocity cd ,+ l , 2  is 
computed from cd,-l,z using u, with modified Euler integration, 
as is cn+l from c ,  using ~ d , , + ~ ~ .  

To employ the function averaging method with modified 
Euler integration we utilize the following equations for the 
calculation of ii,, the average value of u over the interval from 

where 

In Eq. (28) for ii, the formula is based on estimates j7,+l,2 and 
j jn-112 ,  as obtained in Eq.(29) from y ,  and y,-1 using first-order 
extrapolation and interpolation, respectively. To use modified 
Euler integration with function averaging for the bang-bang 
control, then, ii, is employed instead of u, in Eq. (27). 

In Figure 7 the error in simulated control system output c 
when using modified Euler integration for c(0) = 1 is plotted 
versus time. As before, two cases are shown, one without the 
averaging method and the second using the averaging method, 
as mechanized with Eqs. (28) and (29). Again we note the very 
substantial accuracy improvement when us in^ the function - 
averaging algorithm. 
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Figure 7. Error in control system output when using modified 
Euler integration. 
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Although the accuracies observed in Figure 6 for AB-2 
integration are comparable with those in Figure 7 for modified 
Euler integration, the modified Euler has some advantags over 
the AB-2 implementation. In particular, the AB-2 mechanization 
in Eq. (22) requires y ,+l  and therefore r n + l  for the n t h  
integration frame. If r is a real-time input, rn+l will not be 
available, although it could be estimated from r, and rn-1 by 
extrapolating ahead by h seconds. On the other hand, in the 
modified Euler mechanization in Eqs. (28) and (29) y,+l and 
hence rn+ l  is not required. Thus the simulation will be 
compatible with real-time inputs. It is true in this case that 
extrapolation in Eq. (29) is required in computing y",+112, but it 
is extrapolation over the interval h12 rather than h. This reduces 
the extrapolation error by a factor of four. We might also note 
that when the lead-lag filter has a second-order lag, i.e., a 
transfer operator given by ( l + C , ~ ) / ( l + m ) ~ ,  the modified Euler 
algorithm permits the calculation of yn+1/2 without the use of 
extrapolation. 

We have also noted earlier in this section that the modified 
Euler method in general has a dynamic accuracy which is an 
order of magnitude better than AB-2 (error coefficient 



proportional to h2/24 compared with 5h2112). In the bang-bang 
control system example used here the dynamic errors are 
dominated by the errors associated with the discontinuous 
control function. Indeed, this is why the function averaging 
method made such a dramatic improvement in the accuracy. 
Because of this, however, the poorer overall accuracy of AB-2 
is not so evident, especially when we note that AB-2 produces 
an exact result when simulating our pure inertia plant with a 
constant input. In more complex problems the authors have 
found that the modified Euler method enjoys a substantial 
accuracy advantage over A B - ~ ( ~ ) .  

Finally, there are fewer startup problems associated with 
modified Euler integration. In particular, the initial integration 
step for the half integer states x,+ln and ~ d , + ~ , ~  starting with xo 
and cdo is taken as h/2 rather than h. Normally AB-2 is started 
with Euler integration for the first step, which introduces a 
substantial error transient. To  obtain the accuracy shown in 
Figure 6 we were forced to compute startup deriva-tives at t = - 
h. In general this may be inconvenient. 

Previous studies of the function averaging technique 
described in this paper have also shown impressive accuracy 
improvement when the method is used in handling slope 
discontinuities, e.g., for effort-limited linear controllers, as well 
as the displacement discontinuities of bang-bang  controller^(^). 
These studies have demonstrated that the function averaging 
technique can be used successfully in conjunction with other 
integration methods such as AB-3, AB-4, RK-2 and RK-4. The 
previous studies have also shown that the errors resulting from 
both types of discontinuities are strongly dependent on the time 
at which the discontinuity occurs during the interval between nh 
and (n+l )h .  It follows that small changes in the initial 
conditions in the example considered here will make substantial 
changes in the size of the error transients, especially for the 
cases where the function averaging method is not used. Hence 
the results in Figures 6 and 7 should only be considered as 
typical, not all encompassing. 

6. Conclusions 

The use of an analytic averaging technique improves 
considerably the accuracy in simulating dynamic systems with 
discontinuous state-variable derivatives. The method is 
especially effective for fixed integration step sizes, such as are 
used in real-time simulation. The improved accuracy has been 
demonstrated in the simulation of a bang-bang control system 
with hysterisis for both AB-2 integration and a modified form of 
Euler integration. The analytic averaging formulas for applying 
the method to any nonlinear function consisting of linear 
segments and displacement discontinuities have been presented. 
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