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Abstract 

The problem of structural optimization in the 
presence of centrifugal and Coriolis effects was 
studied for a rotating blade and for a rotating 
beam. A finite element formulation was used and 
optimization was performed by applying nonlinear 
inverse perturbation. Centrifugal forces were 
modeled by the use of differential stiffness in a 
small displacement approximation, and Coriolis 
effects were obtained by employing Coriolis finite 
element matrices. The nonlinear inverse 
perturbation scheme was then modified to account 
for the mild geometric nonlinearities posed by 
differential stiffness and was also modified to 
incorporate the complex phase changes resulting 
from Coriolis effects. Finally, the method was 
applied to small and large changes in the 
fundamental (bending) frequency of two rotating 
systems. Satisfactory results were obtained. 

Nomenclature 

Element Planform Area 

Element Coriolis matrix 

Desired value (super- or subscript) 

Elemental subscript 

General system matrix 

System stiffness matrix 

Infinitesimal displacement stiffness 

matrix 

Cubic expansion element stiffness 

System mass matrix 

Generalized Mass for ith mode 

Element mass 

* 
Assisstant Professor, Aerospace Engineering 
Member AIAA 

**Professor, Aerospace Engineering 
Member AIAA 

Predictor, corrector (super- or 
subscript) 

First derivative, shape function matrix 

Displacement vector 

Radial distance to element centroid 

element thickness 

Element change property 

Perturbation operator 

Matrix of eigenvectors 

Real eigenvector 

Complex eigenvector 

Imaginary eigenvector 

Eigenfrequency 

Diagonal matrix of eigenfrequencies 

Rotational speed (hz) 

Percent desired frequency change 

Percent weight change 

Time derivitive 

Introduction 

The techniques of structural optimization can 
be applied to the original design of a component or 
can be used to perform structural redesign. Some 
structures, because of their application, are 
subject to body forces in addition to the loadings 
caused by boundary forces. Rotating bodies 
experience centrifugal and Coriolis effects. In 
the rotating frame, the centrifugal effects may be 
viewed as a reversed-effective pseudo-force. If the 
rotational speed is small enough, these forces can 
be neglected. In high-speed applications, however, 
the body forces must be taken into account. 

Centrifugal force in particular can result in 
stiffening. The rotating blades in a high-speed 
compressor and turbine are subject to these body 
forces. With the advent of higher-speed blading, 
it is necessary to include thiseffect in design. 
This introduces a nonlinearity in the finite 
element analysis and optimizatiop scheme. 
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Coriolis force is another body "force" that a 
rotating body may experience when viewed in a 
rotating coordinate system. This force, also known 
as gyroscopic force, couples motion in one plane 
with motion in another plane. Gyroscopic effects 
are velocity dependent; that is, the greater the 
velocity in one plane, the greater the effect will 
be in the other plane. In systems which permit 
large amounts of out-of-plane motion, such as in 
pretwisted blades, the Coriolis forces will become 
great at high speeds, and thus will affect optimal 
redesign. 

Literature Survey 

If a baseline structure exists but it is 
found that the response of the structure is 
unacceptable and modification is necessary, 
perturbation techniques may be employed to obtain 
the desired values. Stetson' introduced small 
changes in mass and in stiffness moduli of a 
structure. He used a first order perturbation 
method that obtained the mode shapes for the 
perturbed structure. He introduced the concept of 
"admixture coefficients" that expressed the mode 
shapes of the perturbed structure in terms of 
combinations of the baseline mode shapes. Stetson 
and ~arrison~ expanded this technique to encompass 
a finite element structural formulation and applied 
it to several problems. Sandstrom and Anderson3 
related Stetson's admixture coefficients to 

physical changes in the finite element model. Kim 
et a14 obtained a complete nonlinear inverse 
perturbation technique using the equations of 
dynamic equilibrium. A SUMT penalty function 
method was used where objective function was 
minimum weight and the penalty term involved a 
normalized set of residual force vectors. 

One major problem of the nonlinear inverse 
perturbation method is that for a large problem, 
the number of calculations required become 
excessive. For that reason, Kim and Anderson5 used 
generalized dynamic reduction to transform the 
problem into a small sized subspace. Hoff et a16 
overcame the difficulties in applying the 
nonlinear inverse perturbation method by using an 
incremental predictor-corrector technique. In the 
predictor phase, element changes necessary to 
enforce the desired mode shape and frequency 
changes are obtained through a first order solution 
of the dynamic equations. In the corrector, 
approximate eigenvectors are obtained for the 
objective system, which are then used to correct 
the elemental changes. 

Queau and ~ r o m ~ e t t e ~  applied changes in 
inertia properties during the redesign process to 
determine changes in centrifugal stiffening 
affecting optimization. Their method also involved 
linear design sensitivites. It also did not 
update the eigenvectors during the optimization 
process, requiring a large number of calculations. 
Only beam elements were used, and their procedure 
cannot be used on a general class of problems, 
particularly plate-like bodies. 

Theoretical Formulation 

Eauation of Motion 

The equation of motion for an unforced 
conservative system including Coriolis but no 
damping may be written as: 

To describe a rotating system in the presence of 
centrifugal effects, the tota1,stiffness matrix 
[KTOT] may be expressed by: 

[KD] is the differential stiffness matrix for 
the assembled system, often called geometric 
stiffness or initial stress matrix, and models the 
mild structural nonlinearity due to applied loads. 
Centrifugal effects may be considered just such an 
applied load, and the element differential 
stiffness matrix, may be expressed by:' 

where [s] is the matrix of applied stresses such 
that: 

The matrix [B] represents the assembled, 
skew-symmetric, system Coriolis matrix. The 
derivation of the element Coriolis matrix is fully 
described by ~ans'. 

Eigenvalue Problem for Conservative Coriolis 
Systems 

Equation (1) represents the problem in free 
vibration of a conservative Coriolis system. The 
solution to this equation is of the form: 

where p is a constant complex scalar and (q) is a 
constant complex vector. Equation (6) is 
introduced into Equation (1) and the following 
characteristic equation is obtained: 

This equation gives a polynomial of degree 2n in p. 
Due to the symmetry of the mass and stiffness 
matrices and the skew symmetry of the Coriolis 
matrix, all of the odd powers of p are absent from 
the characteristic equation. The eigenvalues will 
consist of n pure imaginary conjugate palrs, pr - 
fiw , where r - 1,2, . . .  n. The eigenvectors will 

r 
also occur in complex conjugate pairs, (q)= = l y )=  

t i(z)=, ( q ) =  = (y)= - i(zIr, where (yIr is the 

real part and i(z) is the imaginary part of the 
r 

eigenvector (q), This implies that the amplitude 

ratios will not, in general, be real. Therefore, 
the components of an eigenvector pair for a given 



eigenvalue pair will oscillate at the same 
frequency but not in phase. 

Perturbation Methods Including Differential 
Stiffness 

We first wish to determine the influence of 
element thickness upon the differential stiffness 
matrix of beam and plate elements. Let n be the 
rotational frequency of a structure about an axis 
perpendicular to its rotation. The centrifugal 
force F applied to an element of the structure with 
centroid at a radial distance ro from the axis of 

rotation, and mass m. is given by: 

This illustrates that the centrifugal force is 
linearly dependent on thickness. In Equation ( 4 ) ,  
the differential stiffness matrix is linearly 
dependent on the centrifugal force, though the 
constant of proportionality may be dependent on 
geometry. Therefore, we can say: 

This implies thac a change in thickness will effect 
the element differential stiffness matrix linearly. 

10 
Stetson and Palma related baseline and 

objective systems through perturbations of the 
baseline system quantities. The stiffness and mass 
matrices are perturbed by: 

[k' ] - [k] + [Ak] (10) 

and 
[m'l - [ml + [Am1 (11) 

These perturbations will cause perturbations in the 
dynamic response. The perturbations in the 
eigenvalue and eigenvector matrices are given by: 

The structural changes described in Equations 
(10) and (11) can be decomposed into p element 
change properties where a group of elements may be 
allowed to change. Thus 

P 

[Am1 -1 [Amel (15) 
e- 1 

Furthermore, each element change cax be expressed 
as a fractional change a from the baseline system. 

e 

The change a may represent a change in element 
a 

thickness. In general, a can be expressed by: 
8 

[Amel - [mela, (16) 

For plates, the bending component of the 
stiffness matrix, owever,varies as the cube of the 
plate thickness. Therefore, Equation (16) is 
replaced by: 

[Akel = [ke lae + [ke lae 
memb diff 

+ [ke 1 (3ae + 3a + a,3) 
bend 

where [k ] contains the membrane components, 
memb 

[ke ] contains the differential stiffness 
diff 

components, and [ke ] contains the bending 
bend 

components of [k 1. 
e 

Equation (18) also holds for beams, with the 
exception that the element stiffness matrix 
containing only extensional properties, [ke 1 ,  

e x t  

replaces [k 1 .  
memb 

Steston developed a matrix eigenvalue and 
eigenvector redesign method using perturbation. 
The generalized form without Coriolis terms is 
given by: 

For the case of non-repeated eigenvalues, 
11 

Sandstrom and Anderson obtained the following 
expression, nonlinear in the element change 
property a , for the physical mode shape change for 

e 

the kth degree of freedom: 

Similarly, using the relationship for the 
change in the element mass matrix, Equation (17). 
and the nonlinear relationship for the change in 
the element stiffness matrix, Equation (la), 
results in the following expression, nonlinear in 
the element change property a , that describes the 

e 

change in the natural frequency to the ith mode: 

memb diff 



In applying the method described above in 
finite element analysis, practical considerations 
make it necessary to divide the quadrilateral 
elements in the finite element model into two 
elements: one with only membrane stiffness and one 
with only out-of-plane (flexural) stiffness. These 
elements are then superimposed. This permits 
multiplication of the stiffness terms representing 
membrane properties by a linear element change 
factor while the stiffness terms containing the 
flexural properties can be altered by a nonlinear 
change factor. 

Perturbations of the Svstem Including Coriolis 
Effects 

When the original system is modified in the 
optimization process, it can be said to be 
perturbed. The perturbed system must also obey the 
equations of equilibrium. Let the perturbed system 
be distinguished from the original by primes. 
Therefore, the equations of motion for the 
perturbed system in free vibrations including 
Coriolis effects may be written as: 

A solution is now assumed: 

This results in the following equation for the 
perturbed system: 

The perturbed system can be related to the 
original, unprimed system by: 

[H' I - [HI + [AH1 (25) 

The global changes in mass and stiffness in terms 
of element change properties have been defined 
previously. Similarly, the global change in the 
Coriolis matrix is given by: 

where c are small and c - 0. This results in 
i i i i 

the following expression for the change in natural 
frequency in. scalar form: 

= 1 I $ i - -  IB1 ($li(Awj- Awi))ci 

(i+j ) 

Applying the definitions for the changes in 
the structural matrices to the above equation and 
setting i=j, one obtains the following expression 
for the frequency change for the ith mode due to 
application of the element changes a : 

e 

where 

However, it must be remembered that the 
eigenvector itself is a complex quantity with both 
amplitude and phase components. Let us express the 
complex eigenvector for the ith mode ($1 as: 

Therefore, Equation (30) becomes two equations; one 
that equates real parts and another one that 
equates imaginary parts. These are, respectively, 

and 

[Abel - [belae (27) 

The last equation is justified because, as we have 
seen, the Coriolis matrix is linearly dependent on 
element mass. The element mass is itself linearly 
dependent on changes in thickness; the element 
change parameter. 

Equations ( 2 6 ) ,  (27), and the relationsips for 
mass and stiffness perturbations are applied to 
(24). Terms in A of order 2 or higher are 
eliminated as are the baseline equilibrium terms. 
The equations are expanded for all modes and an 
expression for the change in the eigenvalue in 
terms of admixture coefficients, c is obtained, 

ij , 
such that: 

and 



[MI ( E ) , A ( ~ : )  - ((4); [ B l  (6I i  ( 3 4 )  

; [ B l  ( E l  i)Aai 

Note that for the case of no Coriolis terms 
and purely real eigenvectors, Equation (33) 
degenerates to Equation (21) and Equation (34) 
becomes identically satisfied. 

To determine the eigenvector change in the 
Coriolis system, the admixture coefficients c 

i 1 

previously defined in Equation (28) can be used. 
From these admixture coefficents, the eigenvectors 
of the perturbed system can be obtained: 

x 1'1; IE~II+I,Q. + i ~ ~ 1 + 1 :  ~ ~ e ~ l + ~ L a ,  - u:l+l: ~ m e ~ ~ + ~ l a a  1 ] ] 
( f o r  j + i) (35) 

Optimal Redesim Methodology 

The predictor-corrector method for optimal 
redesign is developed by first defining the element 
change property a by: 

e 

The first design change seeks a 10% increase in the 
fundamental flexural modal frequency. In the 
predictor step, we will assume that the element 
change a is small; therefore, the quantity (1+ 

a,)' - 1 may be approximated by 3a . This results 

in a 3.11% error, but is done so as to facilitate 
solving for a , which we shall see will be the 

e 

unknown in the inverse perturbation scheme. 

The predictor relates the change in the 
element change properties to a prescribed change in 
the desired eigenfrequency. In this way the 
equation predicts what the system configuration 
should be for a given amount of frequency change. 
In the absence of Coriolis effects, Equation (21) 
serves as the predictor equation. For the complex 
case involving Coriolis effects, Equations (33) and 
(34) act as the predictor equations. Note that in 
that case there are two predictor equations. 

For a single element case, the predictor can 
be solved as one equation with one unknown. For 
multiple elements, the excess unknown element 
change properties can be found by optimizing some 
function, such as minimum weight or minimum 
structural change. The predictor then becomes an 
equality constraint in the optimization scheme. In 
the Coriolis problem, there are two equality 
constraints. Therefore, it is seen that the 
problem becomes one of parametric optimization, 
with thickness as the parameter to be optimizaed. 

In the examples below, the augmented Lagrange 
multiplier method is used to solve the problem in 
optimization using the Automated Design Synthesis 

12 (ADS) program. In addition to the equality 
constraint or constraints provided by the predictor 
equations, inequality constraints are also 
formulated. The first inequality constraint 
requires a to be greater than -0.5. This ensures 

e 

that the element thickness will always be positive 
during the redesign process and in no case will an 
element be reduced by more than 50%. This makes 
certain that unwanted secondary effects, such as 
static failure due to the "applied" centrifugal 
load will not occur. The second inequality 
constraint forces the a to be less than 1E5. This 

e 

supplies an upper bound to the search procedure. 
The function to be minimized in the first example 
is the design change: 

Alternatively, the function to be minimized 
could be minimum weight. For a system of uniform 
density, this function is given by: 

The element change properties determined from 
Equations (37) or (38) are used to recompute the 
cross sectional area and moments of intertia for 
each element. A reanalysis is then accomplished to 
determine the eigenvalues and eigenvectors. The 
perturbed eigenvectors are necessary to perform the 
corrector. 

The corrector examinespthe potential energy 
imbalance between the system output from the 
predictor and the desired system and corrects the 
imbalance through additional element changes. This 
enforces the natural frequency constraint on the 
ith mode. The following equation represents that 
energy balance for the example with no Coriolis 
effects and is used as the corrector equation: 

If Coriolis effects are included, then two 
equations, representing the energy balance 
equation, the first equating real parts and the 
second equating imaginary parts, are used for the 
corrector: 



and 

- 

Notice that when the Coriolis effects are absent, 
the above equations degenerate to those used 
previously. 

The perturbed eigenvectors may be obtained in 
one of two ways. The first method, mentioned 
above, is to simply run the predictor system. This 
yields the full, nonlinearly-perturbed matrix of 
eigenvectors and the desired mode can be easily 
partioned out. The second procedure involves the 
applications of Equation (20) in the absence of 
Coriolis effects or Equation (35) if Coriolis 
effects are present. These equations are linear 
approximations of the perturbations in the 
eigenvectors. However, using the results of 
reanalysis, one obtains the full, nonlinear changes 
in the eigenvector. 

The finite elements are each divided into two 
subelements; one with membrane properties only and 
another superimposed element with only bending 
properties. This particular finite element model 
has approximately 1000 degrees of freedom. The 
elements are grouped (linked) into twelve regions 
(Figure 2). During the analysis, the thickness of 
the regions will change, but the elements within 
each region will maintain a common thickness. 
(Each superimposed membrane and bending element 
will also keep a common thickness.) Regions 1 
through 3 have thickness 1.734 mm, Regions 4  
through 6 have thickness 2.312 mm, Regions 7  
through 9 have thickness 3.005 mm, and regions 10 
through 12 have thickness 3 . 4 6 7  mm. This 
represents an airfoil that is 5% thick at the tip 
and 10% thick at the root 

Rotating Com~ressor Blade 

The first example problem is a curved rotating 
blade, of which the finite element model is shown 
in Figure 1. The blade is made of Inconel 718 
steel, has a radius of 254.0 mm, and rotates at a 
speed of 200 hz. It has an angle of attack of 30 
degrees and is modeled after a NACA 64 airfoil. 
This is a blade typically found in a jet engine 
high-pressure compressor. 

Figure 1. Rotating Blade 

pp- 

Figure 2. Blade Regions 

For the nonrotating system, the fundamental 
frequency is 7.665633 rad/sed. For the rotating 
system including centrifugal effects, the 
fundamental frequency is 8.3802E3 rad/sec. This 
implies a 9.32% increase in fundamental frequency 
due to the centrifugal effect of rotation. Figure 
3 shows the first mode shape for the rotating 
blade, including centrifugal effects. 

Figure 3. Mode Shape 1, Blade 
Rotational Effects Included 

The problem of the rotating blade was analyzed 
for several cases and using several different 
methods to account for nonlinearities. In cases 1 
and 2, a 10% increase in the fundamental 
eigenfrequency was desired, with the objective 
function for case 1 being minimum change and the 
objective function for case 2 being minimum weight. 
Centrifugal effects were included in both the 
structural analysis and the optimization, but 
Coriolis effects were neglected. Results of both 
predictor and corrector are shown in Table 1. Tthe 
predictor results can be considered to be results 
from a linear, one-step analysis since the effect 
of redesign on the eigenvectors does not enter into 
the predictor procedure. Improvements from the 
predictor to corrector step show the benefit of the 
use of nonlinear optimization techniques. 



In Table 1, the first column denotes the 
objective functions used in the predictor and the 
corrector, respectively. The symbol C/C denotes 
minimum change in both steps. If W/W is indicated, 
minimum weight was used in both the predictor and 
corrector. The use of W/C which, symbolizes that 
mimimum weight was used in the predictor while 
minimum change was used in the corrector, indicates 
a hybrid approach which shall be described later. 

Figure 4 shows the final spanwise optimized 
thickness of the structure for Case 1. Figure 5 
shows the final optimized shape of the structure 
for Case 2. Notice that in the minimum change 
example, emphasis is given to adding material at 
the root. In the minimum weight-minimum weight 
example (Case 2 ) ,  all of the regions except for the 
root have been reduced to the lower limit on 
thickness. This is the pathological case in 
optimization where the system is driven to an 
extreme. When this is done in this example, 
undesirable side effects occure, such as mode 
switching. The first bending mode is no longer the 
fundamental frequency and the solution to the 
problem in optimization is no longer dependable. 
The frequency results shown for the corrector are 
for the bending mode; however, this frequency is 
technically no longer w . A way out of this 

quandary can be found by a close examination of the 
results of the predictor. This step obtains 99% of 
the desired frequency change and also a weight 
reduction of 14%. Therefore, this solution is 
close to the frequency constraint, and only a small 
change is necessary to satisfy it. This implies 
that a hybrid approach involving a predictor step 
with a minimum weight objective function and a 
corrector with a minimum change objective function 
could work. 

The results of this hybrid approach are shown 
in Case 3 and Figure 6. In this example, material 
is added at the root but proportionally less than 
in the minimum change-minimum change situation. 
Emphasis is given to removing material from the 
outboard regions, with most material removed form 
the second set of elements from the end. Since 
minimum weight is the objective of the predictor, 
it is not suprising that more material is removed 
in Case 3 than in the Case 1 situation. 

Two other problems were studied; both involved 
large (30%) changes in the fundamental frequency. 
In Case 4, the 30% change is accomplished in one 
step. A second iteration is performed to obtain an 
improved solution (Case 5). In another situation, 
the 30% change is broken down into three 10% 
increments (Cases 6 through 8). In both of these 
examples, only a minimum change optimization 
function is used. Table 2 shows the results of the 
iterative procedure. The linear predictor step 
obtains the desired frequency change with less than 
24% accuracy, but at the end of the first 
iteration, the desired frequency change is 
accomplished to within less than 1%. The second 
iteration is done for completeness and gives the 
desired change in fundamental frequency to within 
1/100 of 1%. 

Figure 4. Optimally Redesigned Blade, Case 1 
Minimum Change 

Figure 5. Optimally Redesigned Blade, Case 2 
Minimum Weight 

Figure 6. Optimally Redesigned Blade, Case 3 
Hybrid 

In the optimization procedure, the optimizer 
itself is run iteratively, with the solution of the 
previous step becoming the starting point for the 
succeeding step (the initial starting point is the 
origin). In nonlinear mathematical programming, 
the approach is to minimize the objective function 
while driving the equality constraint function to 
zero. In no case were more than seven optimizer 
runs required. 

Rotatinc Beam Incor~orating Coriolis Effects 

The next example will consider the case of a 
rotating cantilever beam. The beam itself is 
aluminum 2024T-6 of length L equal to 251) mm, with 
moment of inertia I equal to 3.2552E4 mm , 
cross-sectional area A of 625 mm2, Young's modulus 
E of 73.77E3 MPa, Poisson's ratio u equal to 0.33, 
and density p of 2.774E-9 ~ ~ / m m ~ .  The beam rotates 
at a speed of 300 hz. 

In Table 3, each increment obtains the desired 
change in frequency for that increment. The final 
increment, which completes the 30% change, gives 
the desired change to within 9/100 of 1%. These 
two Tables show that excellent accuracy on the 
frequency goal is obtained, showing the feasibility 
of making large changes. 



For the nonrotating problem, the frequency 
for the first mode, which is a bending mode, is 
2.093729E3 rad/sec. When centrifugal effects are 
included in addition, the fundamental frequency is 
2.952001E3 rad/sec, an increase of 40.99%. When 
Coriolis effects are included in addition, the 
fundamental frequency drops slightly to 2.951942E3 
rad/sec. The inclusion of Coriolis forces in the 
rotating problem decreases the fundamental 
frequency by -2.00E-3% from the rotating problem 
that includes centrifugal but not Coriolis effects 

Table 4 summarizes the results from the 
optimal redesign of the rotating beam. The 
notation is the same as for the rotating blade. In 
Case 9, centrifugal effects are included in both 
the structural analysis and in the optimization. A 
minimum change objective was used. Case 10 was 
identical to Case 9; however, the h y b r i d  procedure 
was utilized (incorporating a minimum weigh t  
objectivefunction in the predictor and a minimum 
change objective function in the corrector). 
Coriolis effects were included in Case 11 in both 
the structural analysis and equations of 
constraint. Optimization was accomplished using a 
minimum change objective function. 

Table 1. Optimization Results for Blade, 10% Change 

Table 2. Optimization Results for Blade, 30% Change 

Iterative Procedure, Minimum Change 

Table 3. Optimization Results for Blade, 30% Change 

Incremental Procedure, Minimum Change 

Table 4. Optimization Results for Beam, 10% Change, Coriolis Effects Included 



Summarv of Results Conclusions 

The predictor-corrector method breaks the 
solution of the problem of nonlinear optimal 
redesign into two parts. The first part, the 
predictor, solves for the required structural 
changes for a given required change of frequency. 
In this step, the effect of structural changes on 
the mode shapes is not considered. Therefore, this 
part of the solution may be considered as a 
conventional linear structural analysis. In the 
corrector, the efect of the structural changes on 
the mode shapes is taken into account and the 
system is once again modified to obtain an improved 
solution. 

In all of the examples involving the rotating 
blade, the final result of the predictor-corrector 
approach obtains the desired frequency change to 
within one percent. In the minimum change cases, 
the linear predictor overshoots the solution by a 
few percent. The corrector changes the final 
solution so that the eigenfrequency is at the 
desired value. Even for large changes, the 
predictor-corrector method obtains the desired 
solution if suitable iteration or incrementing is 
done. 

For the rotating beam with a minimum weight 
objective function, the linear predictor 
undershoots the desired frequency goal by quite a 
bit, as much as 35%. The corrector obtains the 
desired frequency to within one percent. 

The rotating beam shows some other interesting 
results. In Case 9, the desired change is obtained 
within 4%. In case 10, there is a lot of 
undershoot by the predictor, but the corrector 
obtains the desired solution within 6%. When both 
centrifugal and Coriolis forces are included in 
Case 11, the best solution is found. The linear 
approach gives an answer to within 5% and the 
corrector improves this to within 1%. The method 
used in Case 11 represents the best theoretical 
formulation. The equations used represent the full 
nonlinear structural approach with both centrifugal 
and Coriolis effects. 

Comparison with Other Methods 

Queau and Trompette obtained minimum weight 
designs with constraints on frequency. Their 
method incorporated the centrifugal effects but not 
Coriolis. In the method implemented here, when 
minimum weight is employed, the second station from 
the free end has the minimum thickness and the end 
bulges out, though it remains less thick than the 
original design. This was also obtained by Queau 
and Trompette . 

Olhoff and parbery13 examined the 
optimizationof rotating beams with respect to 
frequency constraints. However, they employed 
lumped masses which tend to alter the optimized 
shape from the purely distributed mass approach . 
Their final shapes indicated tapering except near 
the region surrounding a lumped mass where bulging 
then occured. 

The predictor-corrector method for structural 
optimization using inverse perturbation was 
extended to incorporate centrifugal and Coriolis 
effects. Centrifugal forces were treated as a 
static stiffening preload and the Coriolis terms 
were formulated into a separate velocity-dependent 
matrix. With Coriolis effects excluded and a 
frequency constraint involving a ten percent 
increase in the fundamental eigenfrequency, the 
linear predictor obtained the required change 
within two percent for the blade or five percent 
for the beam. The nonlinear corrector obtained a 
final optimized system that met the frequency 
constraint within one percent. Thus the 
predictor-corrector method for nonlinear redesign 
obtained excellent agreement between the desired 
eigenvalue and the calculated eigenvalue. 

When Coriolis effects were included, both the 
magnitude and phase of the components of the 
fundamental eigenvector were required to obtain the 
equations of constraint. This complex eigenvalue 
analysis was adapted to the nonlinear inverse 
perturbation predictor-corrector approach. The 
method was applied to the problem of the rotating 
beam. Once again, the desired frequency change was 
obtained to within one percent. 

The problem of large frequency change (30%) 
was tried for the rotating blade incorporating 
centrifugal effects. Both an iterative and 
incremental solution were accomplished, and in each 
case the desired frequency was achieved almost 
exactly. Thus it is seen that the 
predictor-corrector method is extraordinarily 
stable, obtaining even large changes with excellent 
correlation between the desired change in the 
eigenvalue and the calculated change resulting from 
the redesign process. 

Use of a minimum weight objective function in 
both the predictor and corrector steps resulted in 
a pathological solution with all mass concentrated 
at one area. To correct this deficiency, a minimum 
change objective function was used in the corrector 
step. This hybrid approach combined the desired 
goal of minimum weight with the stability of the 
minimum change objective function. 

In summary, the predictor-corrector method for 
optimal redesign as extended in this work obtained 
the desired frequency changes with excellent 
accuracy. The methods used were applied to several 
test problems, one being a curved blade with nearly 
one thousand degrees of freedom. In each case, the 
desired frequency change was obtained to within a 
few percent. Therefore, the approach works and can 
be applied to frequency control problems in optimal 
redesign of rotating systems. 
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