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A Chebyshev Minimax Technique Oriented to
Aerospace Trajectory Optimization Problems

WILLIAM F. POWERS*
The University of Michigan, Ann Arbor, Mich.

This paper describes a method based upon the classical calculus of variations for solving directly Chebyshev
minimax problems which arise in trajectory optimization. The close relationship between minimax problems and
problems with state variable inequality constraints is used to gain insight into the minimax problem, and to define
an order for minimax functions. The method is applicable to 1) afl problems in which the first time derivative of
the minimax function does not contain control variables explicitly, and 2) all problems with a "flat" maximum
(including problems in which the first time derivative of the minimax function contains control variables). The theory
is applied to both a simple example and a formulation of the optimal re-entry heating problem whose performance
index consists of a minimax term for maximum heating rate, a terminal function for maximum crossrange, and a
path integral for minimum total heating. Several shooting and gradient-type numerical algorithms are suggested
by the approach.

Introduction

A BOLZA problem with interior point conditions is defined
which allows the direct treatment of minimax problems.

Other approaches to the minimax problem exist which either are
concerned with problems that are mainly influenced by the con-
trol constraints1 or are approximate techniques which are either
overly restrictive2 or involve the definition of auxiliary perfor-
mance indices.3'4 The approach of this paper is oriented to pro-
blems that arise in trajectory optimization, in which case control
variable inequality constraints are not the main influence in the
problem (e.g., problems with few, if any, bounded control
subarcs). Although the approach is different than the analyses by
J. Warga in Refs. 5 and 6, the analogy with state-constrained pro-
blems noted by Warga is strongly evident here, also.

In Ref. 1 an extensive bibliography of the literature on minimax
problems is presented The literature refers to two different types
of problems as minimax problems, a) Problems in which two
controls are involved, with one of the controls attempting to
minimize the same performance index that the other control
is attempting to maximize (e.g., pursuit-evasion problems with
the pursuer attempting to minimize distance while the evader
is attempting to maximize distance.7 b) Problems in which the
minimum of the maximum value of a function defined on [t0, tf~\
is desired. This case is shown in Figs. 1 and 2, where F[x(t)] is to
be minimized. In Fig. 1, a unique maximum is the case, while
Fig. 2 shows the case in which F[x(t)] is nonunique (or possesses
a flat maximum).

Figures 1 and 2 indicate that a close relationship may exist be-
tween problems with state variable inequality constraints
(SVIC) and minimax problems of type b above. This is indeed
the case, and the remainder of the paper will be concerned with
the type b minimax problem, which C. D. Johnson1 calls the
"Chebyshev Minimax" (or C-minimax) problem.

In Ref. 8, Denham developed a method for treating problems
with intermediate point constraints (e.g., staging) and state
variable inequality constraints by forming the first variation of
an augmented functional which includes these effects. A more
complete discussion of this approach is given in Chap. 3 of Ref. 7.
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Fig. 1 Minimax with a unique maximum.

The same procedure can be applied to the minimax problem.
As will be shown, the case of Fig. 1 has necessary conditions which
are similar to those of an SVIC problem in which the constraint
is active at a single point only. The case of Fig. 2, moreover, has
necessary conditions which are similar to those of an SVIC pro-
blem in which the constraint is active over a nonzero time interval.

To gain insight into the approach, let us first consider the
somewhat restricted case in which the optimal trajectory-
control pair {x*(t\ u*(t)} is of continuity class C2[t0, tf~\. As-
suming a normal problem, consider a one-parameter family of
nearby trajectories and controls defined by x(t,e\ u(t, e\ with
x*(t) = x(t,0), u*(t) = w(t,0). Let i*e(t09tf) be a point on x*(t)
at which the maximum of F[x(t)] occurs. Then, it is necessary
that

F*\* = ^**('~*)]/l>~*, **('*), «*(?)] = 0 (1)
% ^ 0 (2)

Note that, by the definition of the point i(s\ on every admissible
trajectory in a sufficiently small neighborhood of x*(t)

F{i(8lx[i(s),sluli(s)9s-]} = Q (3)
Equation (3) is the equation which defines the time t(s) on each
trajectory. Of course, this condition does not uniquely define
i(s) since it holds also at relative minima and other relative
maxima of F[x(t)]. However, in the numerical implementation
of the necessary conditions, this difficulty may be easily avoided
by monitoring the value of F[x(t)].

FOc(W

Fig. 2 Minimax with a nonunique maximum (or flat).
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With respect to the continuity assumption on the control
vector we shall show that there exist two basic cases: 1) If either
F does not depend explicitly upon u or F contains u explicitly
with the maximum of F occuring on a flat (i.e., Fig. 2), then the
results may be applied without modification to problems in
which the class of admissible controls is piecewise continuous.
2) If F contains u explicitly and the maximum of F is unique (i.e.,
Fig. 1), then the method (with a suitable modification) is appli-
cable only to problems in which u*(t) is continuous in a neigh-
borhood of t. (The reason for this is that if u(i) is undefined, then
F need not be zero at t. In any case, F(i~) ^ 0 and F(t+) ^ 0.) In
the following sections the reasons for these continuity assump-
tions will become apparent.

Finally, in Refs. 1-4, problems of the following form are con-
sidered.
Minimize: J = max F[x(t)]

t£[t0,t ]

constraints
(4)

Subject to:
Note that this class of problems does not include problems in
which end-point and path functions are also desirable in the
performance index. Since the physical problems which motivated
this analysis must include such terms, the following problem will
be considered in this paper.
Minimize:

+ 0(t/,x/) + P
J tc

(5)J =
Subject to:

x = f(t, x, w), x(t0) = x0 (n-vec) (6)
n(tf, xf) = 0 (p-vec) (7)

us U (w,m-vec) (8)
where K is a specified nonnegative constant and te(t0, tf) is the
time (or first time) at which F[x(£)] achieves its maximum value
on [t0, */]• Note that the classical Bolza problem is defined by
K — 0, and the pure minimax problem is defined when K = 1,
0 = 0, and L = 0.

Necessary Conditions for Minimax Problems
with a Unique Maximum

In this section we shall consider minimax problems which
possess optimal solutions of the type shown in Fig. 1, i.e., the
maximum of F[x(t)] is attained at only one point on [t0, t/\, say
ts(f0, tf). To treat the problem within the framework of the
classical calculus of variations, we must assume for now that F
does not depend upon u explicitly, i.e.,

dF/dt = Fj[x]/[t, x, 11] = F[t, x] (9)
Then, F[t, x(r)] is a continuous function since x(t) is continuous,
and F[t, x(ij] = 0 may be adjoined to the functional J in Eq. (5)
with a constant multiplier ju. That is, the minimax problem is
defined by Eqs. (5-8) and the intermediate point constraint

F[t,x(t)] = 0 (10)
It is shown in Appendix A that the first-order necessary con-

ditions for the minimax problem defined by Eqs. (5-8,10) consist
of the usual Euler-Lagrange and transversality conditions (at tf)
along with the following "jump conditions" at t

A(t+) = A('r) - (KFX + iiFx)-t (11)
H(i+) = H(i-) + iiF^t) (12)

As noted previously, these conditions are similar to Eqs. (3.13.4)
and (3.13.5) of Ref. 7, which are true at the entry point of the
bounded subarc (or touch point) in an SVIC problem.

Now consider the case when components of u appear expli-
citly in F. The main difficulty with this case is that control
variables are not required to be continuous; at most, they are
usually only required to be piecewise continuous. With regard
to the first variation and the associated requirement that

s]} = Q (13)

the terms Fr, Fx, and Fu may not be defined at t if u(t ) ̂  u(i+\
which is an admissible case if the class of controls is assumed to
be the set of piecewise continuous functions on [t0, tf~\. Thus,
to treat this case, some of the control variables have to be assumed
continuous in a neighborhood of t, and this is equivalent to
treating them as state variables with their derivatives as new
control variables. Note that only the control variables which
appear explicitly in Eq. (13) need to be treated in this manner,
and these controls only need to be assumed continuous in a
neighborhood of t; that is, they may be piecewise continuous
on other portions of the trajectory.

With respect to the analogy with SVIC problems, an SVIC
S(t, x) ̂  0 is said to be of order p if S(p) = dpS/dtp is the derivative
of 5(t, x) which first contains the control explicitly in the case of
a scalar control Thus, an order can be associated with the
function F[x(t)] as follows

Definition: Let ut be a scalar control. The minimax function
F[x(t)] is said to be of order p with respect to the control ut if
dpF/dtp is the derivative of F which first contains ut explicitly.

With this definition it follows that a minimax function of order
greater than one requires no modification of the control variable,
and the analysis of appendix A is applicable immediately. An
interesting possibility is that a large class of minimax functions
of odd order greater than one may possess only unique relative
maxima (as opposed to flats) since a corresponding property is
true for odd ordered SVIC problems.9

Application to Re-Entry Heating Problems

To fix the ideas of the previous section and Appendix A, the
results will be interpreted in terms of a re-entry heating problem.
Consider a re-entry problem in which three major effects are to
be included in the performance index: a) high cross range, b) low
insulation weight, which is a function of total heating (an integral
effect); and c) low skin weight, which is a function of the maximum
heating rate that occurs during entry (an intermediate point
effect).

One way of treating this problem is to include the effects of
items a and b in the performance index and impose an inequality
constraint on heating rate. If it is desirable to avoid the inequality
constraint, the problem could be treated in an approximate
manner by adjoining

,r
Jt0

q(x, u)2 dt, (Pi > 0, penalty coefficient) (14)

to the performance index (in addition to the cross-range and
total heating terms). This would tend to "flatten out" q and
distribute the peak heating, while the total heating term would
guard against too large of a trade of maximum heating rate for
total heating.

An alternative to these methods is to attack the problem
directly as a minimax problem as described in the previous
section. Assuming that

q = Cqp(ry<*V3 (15)
where Cq is a constant heat rate coefficient, we wish to minimize
the following performance index

J = (16)

where for this section the optimal solution is assumed to possess
a unique maximum heating rate. The equations of motion are:

r = Fsin y ; 9 = V cos y cos \j//r cos $
$ = Fcos y sin tfr/r ; V = -(k sin y/r2) - D(h, K <x)/m (17)
y = — k cos y/r2F + Fcos y/r + [L(h, V, a)/mF] cos u1

\j/ — — Fcos y cos \ji sin <j>/r cos </> — [L(h, K a)/wF] sin t^/cos y
a = u2

Here the angle of attack a is treated as a state variable or a
constant; that is, if a is treated as a control, then the heating rate
is a first-order minimax term with respect to a because Fde-
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pends explicitly upon a. The only requirement is that a be con-
tinuous in a neighborhood of t; if desired, the a equation could
be dropped and a = u2, with the continuity restriction in the
neighborhood of t only. (In this case, du2(t) would be treated as
an independent state variation in the development of the asso-
ciated necessary conditions.)

With regard to the bank angle u± heating rate is a second-order
minimax term since neither Fnor r contain u^ explicitly. Thus,
with bank angle and angle-of-attack rate as the control variables,
the analysis of the previous section is applicable. The varia-
tional Hamiltonian for the problem i^

H = PC

(19)
where r = fl9 . . . , a = /7. The minimax function is

F = Cqp(r)i/2V3

and
t = ̂ Cqp(r)-ll2(dp/dr)(Vsmy)V3 + 3Cqp(r)1/2V2

l-k sin y/r2 - D(h, V, a)/m] (20)
As will be shown, this problem can be attacked with a gradient-
type method without introducing any new variables (i.e., the
multiplier /x) if it is so desired.

Let u(0)(t) be an initial control estimate. Integrate the equations
of motion forward to some cutoff condition and monitor the
value of q(h(0\ F(0)). Logic can be developed to save three con-
secutive sate vectors, the second of which achieves the maximum
sampled data value of q on the x(0)-trajectory. (This can be ac-
complished with storage reserved for four state vectors during
the forward integration.) Denote these states by x(0)(t1X x(0)(t2),
and x(0)(t?).

Assuming that the terminal conditions are adjoined to the
performance index by penalty functions, the adjoint variables
are defined at $» by

X°\tf) = dJ/dxf\(0)

Integrate the adjoint equations backwards until t = t3. Deter-
mine by any means the point t(0) & ( t l 9 13) at which the maximum
q(0\t) occurs and integrate (or interpolate) to this point, which
will be denoted as t+

: We now wish to choose a ^(t~) which
causes the dx(t) and dt terms to vanish in the expression for_<5J.
[Note that we have the values of A(r+) (by integration), u(t~\
and w(r+).] Since we will insure that F(i(J}) = 0 on each iterate,
this can be accomplished by satisfying Eqs. (A 17) and (A 18) of
Appendix A. Since F does not depend upon t explicitly, these
equations become
lKFT

x(i) - ff(i~ ) + F(t+)] dx(i) + [H(r ) - H(t+)] dt = 0
(21)

FT
x(i)dx(i) = 0 (22)

In terms of problem variables, Eq. (22) is the differential form
which results by taking the differential of Eq. (20). The resultant
expression is the following form

B2dr + B3dV+B4dai = Q (23)
Assuming y ̂  ± it/2, dy may be determined as a function of the
remaining differentials, say,

dy = AI dr + A2 dV + A3 da (24)
where the At are well-defined functions of the state variables at t.
Upon substitution of Eq. (24) into Eq. (21), in terms of problem
variables, the following differential form is obtained:

AA^t) dr +
! dr + A2 dV+ A3da)
(i+)-] dt = 0 (25)

where
(* = 1, • • - , 7) (26)

Since Eq. (24) has been employed to eliminate the dependence
among the differentials at t, Eq. (25) is a differential form in
independent differentials and, thus, the coefficients must vanish.
We obtain immediately that A2, A3, and A6 are continuous at
t\ that is,

^(O = ̂ +) (i = 2,3,6) (27)
Upon solution of the remaining four equations defined by the
vanishing coefficients, we obtain

V(t)Q2 - y(

- y(t~

A4(r ) =

where

= {(Vsm

(28)
(29)
(30)
(31)

(32)
(33)
(34)

The variables ^i(t~) are now well defined and the numerical
integration may proceed to t = t0. The gradient is then deter-
mined and a gradient step can be defined. The same procedure
holds for the other iterates, and the scheme can be used with
a conjugate gradient method as well as the classical gradient
method. Also, again noting the analogy with SVIC problems, the
computational method discussed in Ref. 10 also applies to this
problem since both problems have basically the same type of
necessary conditions. If a shooting method is desired, cases 1, 2, 3,
of Appendix A may be employed.

62 ^ (3XC,p1/2F2)F

Necessary Conditions for Minimax Problems with a
Flat Maximum

This section discusses the development of necessary conditions
for the minimax problem defined by the performance index of
Eq. (5) when the optimal trajectory possesses a "flat" with
respect to the minimax function F[x(t)] (see Fig. 2). Let x*(t),
t & [t0, t/\, be a trajectory which minimizes J of Eq. (5), and
suppose

(t!)] (35)max F[x*(t)] =
te[t0, tf]

t2l t2

that is, the maximum value of F occurs at every point on a non-
zero interval.

Since F[x*(t)] = F[x*(^)] on [tr,t2], all time derivatives of
F[x*(t)] vanish on (tl912). Again in analogy with the SVIC pro-
blem, suppose u is a scalar control and let F[x(r)] be a pth order
minimax function with respect to u. The vector control case will
be discussed later. Then, since x(t) is continuous at tl9 it follows
that

and the control which keeps F constant on[tl912] may be deter-
mined from

F(p)[t9 x, u] = 0 [on (^, t2J] (38)
To determine the necessary conditions for this problem, first

suppose p > 1. Equation (37) represents intermediate point
constraints, and Eq. (38) is used to determine u(t9 x) on (tl9t2).
Thus, the following augmented functional is defined below.
Minimize:
J = t/5 Xf)

f'1 P*
\ [H - Fx\ dt+\ [H- Fx

Jt0 Jti

\\H-Fxk

dt

Fx\dt (39)

Subject to:
H = L(t, x, ii) + lTf(t, x, u\ x = /(t, x, u) (40)

x(t0) = x09n(tf9xf)=0 (41)
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= 0 (42)

tj (43)
where v is a p — 1 vector of constant Lagrange multipliers and K
is a specified positive constant. As shown in Appendix B, the
following jump conditions at t = t± are necessary conditions for
a minimum:

4tf ) = ACD - IKFX + (vTN)x-]ti (44)
H(tt) = H(t;) + vTNtl (45)

Also, for the case of a scalar control variable the Euler-Lagrange
equations are

-Hx,
(46)

(-Hx-gx, te(tl9t2)
where gx is obtained from the following function

F(p\t, x, w) = 0 => u = 0(f, x) (47)
For the problem of multiple control variables, the only change

in the necessary conditions is in Eq. (46) and the equations for the
controls on (t l9 t2). For example, suppose two control variables,
ttx and M2, are present. Without loss of generality, F(p} will take
one of the following forms

F(p\t,x,ul9u2) (48)
or

F(p\t,x,Ul) [orF(p)(t,x,w2)] (49)
The only term which is affected by the additional control variable
in the first variation [Eq. (B2)] is

f'2I-J«i
HT

udu~\ dt
F(P)=O

(50)

In the case of Eq. (48), one of the control variable variations may
be determined as a function of variations in the state and the
other control variable, for example,

6u2 = Adu, + BTSx (51)
which is then substituted into Eq. (50); that is,

[_(HX + A + HU2B)Tdx + (HU1 + HU2A)dUl] dt (52)

Now, dx and du^ may be treated as independent variations, and
on(t l 5r2)

j _ _TT _ jj g (53}

In the case of interior controls on the subarc (tl5 r2), the following
equations are used to solve for ul9 u2:

HU1 + AHU2 = 0
; „,,«,] =0

In the case of Eq. (49), F(p) depends explicitly upon only one of
the two controls, say ut. Then, du± is a function of dx whereas
6u2 is "free" (subject to normality considerations). Thus,

3Ul = CTSx (56)
and the equation corresponding to Eq. (52) above is

rj.i [_(HX + A + HulCfdx dt (57)

which can be used to form equations analogous to Eqs. (53-55).
Similar results may be developed for higher dimensional control
vectors.

Finally, consider the p = 1 case and assume u is a scalar.
The generalization to the vector control case is similar to the
extension given above for the p > 1 case. With a flat, nonunique
maximum instead of a unique maximum, no problem is encoun-
tered with the p = 1 case; that is, one need not require continuity
of some or all control variables at t1? because F is not required to
be continuous at t± for the determination of the first variation.

Thus, the only difference between the p = 1 and p > 1 cases for
a flat nonunique maximum is that the p = 1 case does not have
any intermediate point constraints at tx (and thus no Lagrange
multipliers, vt).

A Simple Example
The necessary conditions of the previous section will be applied

to a simple example first discussed by Barry.4

Minimize : J = max x2(t) (58)

Subject to: x1 = x2, x^O) = -4, x2(0) = 0
x2 = u, xx(5) = 0, x2(5) = 0; \u\ $ 1 (59)

Because of the tight boundary condition constraints, one can
determine the solution by inspection. The optimal control is

(+1 *a[0,l)
u*(t)=< 0 *8(1,4) (60)

l-l t e ( 4 9 5 ] .
and the minimax value of x2(t) is achieved at each fe[l,4] with
x2(t) = 1, te [1, 4], i.e., the maximum is a flat maximum. Thus, the
necessary conditions of the previous section are applicable.

In analogy with the SVIC problem,7 consider the three regions:
Region I = {^£[0,^)}, Region II = {te(tl9t2)}9 Region III =
{te(t2, 5]}. For this problem

H = ̂ x2 + k2u (61)
F = x2 = w = > w = 0 (onflat) (62)

The Euler-Lagrange equations are the same in each region be-
cause u = 0 in Region n (in general, the multiplier-equations
may be different in a region where F(p) = 0)

A!=O, A 2 = -x2 (63)
The multipliers and Hamiltonian in the neighborhood of t± are
defined by Eqs. (44-45) (where N is a zero-dimension vector for
this problem since F[x] = x2 is a first-order (p = 1) minimax
function)

H(tf) = H(tr) (65)
The multipliers and Hamiltonian are continuous elsewhere by
the Weierstrass-Erdmann corner conditions.

Equations (59) and (63) may be integrated easily in each of the
regions, and after applying Eqs. (64), a system of four equations
[Xi(5) = 0, x2(5) = 0, H(tf ) = H(rrX H(tJ) = H(t2J] is used to
solve for the four unknowns [/^(O), /12(0), tl9 12)~\. The multiplier
solutions are

= ^0 =-1/3
(66)

-(l- 0/3-1 t£(l,5]
The method gives the correct solution, and the multiplier vector
is the same as Barry's, which is obtained as the limit of a sequence
of approximate problems.

Conclusions
A method for attacking directly minimax problems which arise

in trajectory optimization has been developed. Problems of
interest which can be treated by this technique are, among others,
a) determination of the minimum peak heating rate in re-entry,
b) determination of the minimum peak deceleration in re-entry,
and c) determination of the minimum peak bending moment or
dynamic pressure in ascent. The method is developed in such a
way that other quantities can be included in the performance
index (e.g., total heating and cross range in items a and b, and
payload weight in item c). The analysis indicates a close relation-
ship between minimax problems and problems with state
variable inequality constraints, and this fact is used to define
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numerous numerical algorithms for the iterative solution of
minimax problems.

The method is applicable to 1) all problems in which the first
time derivative of the minimax function does not contain control
variables explicitly, and 2) all problems with a "flat" maximum
(including problems in which the first time derivative of the mini-
max function contains control variables). It should be noted that
a numerically oriented formal procedure is used to derive the
necessary conditions, and in this procedure the form of the so-
lution must be assumed beforehand (e.g., peak or flat maximum).
If the true optimal is not of the form assumed, then, in analogy
with the results obtained in Ref. 9 (Sec. 8) for SVIC problems, the
multipliers employed in the augmented functionals (A3) and/or
(Bl) are not guaranteed by a multiplier rule and false minima
may result. However, since there are only two possibilities for
the extremal in the minimax problem, this fact should not cause
undue anxiety.

Appendix A: Necessary Conditions for a
Unique Maximum

Consider the case when F does not contain u explicitly; that is,
(d/dt)Flxi)-]=Fli,x(i)-] (Al)

At i (s) it is necessary that
F[f(£),x(r(£),£)] = 0 (A2)

and this condition can be considered as an intermediate boundary
condition. Thus, we consider the following problem.
Minimize:
J = KF[_x(t}\

TJt0
[H - Fx] dt + [H - (A3)

Subject to:
H = L(t, x, u) + Ar/(t, x, w), x = /(t, x, u) (A4)

x(t0) = x0, n(tf, xf) = 0 (A5)
F[r, x(t)] = 0 (A6)

Let x*(t) be a relative minimum for J and suppose there do not
exist any corners on the subarcs (r0, i) and (t, tf). The first vari-
ation of J is then
6J = KFT

x(t)dx(t) + i*Ftf)dt + ^PT
x(t)dx(t)

-[H- Fx>- rfr + p [(H,- + l)T<5x + H^w] A
Jto

+ r t(H, + A)r^x + H]>] dr (A7)

On each subarc the usual Euler-Lagrange equations hold, and
the only new terms result from the variations at t. Noting that
from Ref. 7

dx(i) = Sx(r) + x(r)di = Sx(i+) + x(t+) dt (A8)
the terms outside of the integral in Eq. (AT) must vanish, and thus,
KFT

x(i)dx(i) + i*Fff)dt + »FT
x(i)dx(i)

x(t-)dl-] + AT(t+) ldx(i) - x(t+)dt-]
)x(t~ )] dt - lH(i+) - lT(i+)x(i+n = 0 (A9)

Collecting coefficients of the independent differentials dx(t)
and dt
l(KFT

x + »PT
x)-t - F(i- ) + F(f +)] dx(i)

- F(r )x(r ) - H(i+) + ^T(t+)x(t+)-] di = 0 (A 10)
Then, the jump conditions at i are

l(i+) = A(r) - (KFX + jiFJr (All)
H(i+) = H(r) + iiFtf) (A12)

Let us now consider how one might use these equations in a
shooting method to demonstrate that we have the proper number

of equations for the unknows. We shall consider three possible
implementations of a shooting method.

Casel

Guess tt£\ ;<_0), )U(0), rf (n + 3 unknowns). Integrate to r(0)

and evaluate F(i(0)). Jump the multipliers as defined in Eq. (All).
Determine u(i+) from Hu\i,x(t\k(t+\u(t+)~\ = 0 and then
determine x(i+) = /[t,x(0,w(t+)]. Evaluate the terms in Eq.
(A12) and record the residual Integrate to tf. from i+ with A(i+\
and evaluate M[tf, xf,lf] (the terminal and transversaliry con-
ditions). The new values of /L0> i, p are determined by the residuals
in

(1)
(1) (A13)

Thus, we have n + 3 equations to determine the n + 3 unknowns.

Case 2
Guess ̂ 0), fi(0\ ^0) (n + 2 unknowns). Integrate until F[x<0)(t)]

= 0 and designate this point as t(0). Thus, on each iterate the
constraint F[x(i)'] =0 will be satisfied Performing the same
evaluations as in case 1, the n + 2 equations for the n + 2 un-
knowns are:

(1) - nPt(t) = 0 (A14)

Case 3

Since F[x(t)~\ = 0 is satisfied on each trajectory, one can eli-
minate the multiplier // if it is so desired In this case, only A0 and
tf would be involved in the iteration scheme. The necessary con-
ditions for this case result by considering the following problem.
Minimize:

J = KF[x(t)~\ + </>(*/, xf) + I \H - Fx] dt (A15)
Jto

Subject to :

(ij] = Ptdi + PT
X dx(t) = 0 (A16)

After forming the first variation and eliminating all terms except
those at i, we have:
lKFT

x(i) - Ar(r ) + Ar(t+)] dx(i) + [H(r ) - H(i+)-] dt = 0
(A17)

Ft(i) dt + FT
x(t) dx(i) = 0 (A18)

Suppose that t appears explicitly in F and that Ft ^ 0. (If this
is not the case, one could make a similar assumption about one
of the x/s; see the re-entry heating section). Then,

dt = -(F^FT
x)-tdx(t) (A19)

Upon substitution into Eq. (A17)
{KFKD - ff(i- ) + Ar(*+)-+ (FT *n lH(i+) - H(i~ )]}

dx(i) = 0 (A20)
The coefficients of dx(i) in Eq. (A20) represent n equations in the
n unknowns A(t~) if one is integrating backward or A(l+) if one
is integrating forward. Note that Eq. (A20) may not be linear in
the unknown A(i+ )since u (which occurs in H) may be a nonlinear
function of L Thus the utility of case 3 in a shooting technique
is problem dependent.

Appendix B: Necessary Conditions for a
Nonunique Maximum

Consider a p > 1 minimax problem with a nonunique maximum.
The only difference between the development of the necessary
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conditions for this class of minimax problems and SVIC pro-
blems is that KF[x(tJ] appears in the minimax problem (with
K specified and F[x(tJ] in general nonzero) while a product of
an unknown constant multiplier, say v l5 and a quantity which
is zero on the boundary, say S(t, x\ that is viS[tl9x(tl)']9 appears
in the SVIC problem. Thus, we should expect the necessary
conditions to be quite similar to the SVIC necessary conditions.

The functional to be minimized here is

J =

+
rt2

[H -
Jrf

t +

, xf)

[H -

f'T

Jto

dt

- ATx] dt

(Bl)

Let x*(t) be a relative minimum for J and suppose there do not
exist aiiy corners on the subarcs (t0, t,\ (tl9 t2), (t2, tf). Assume
that u is a scalar. The first variation of J is
SJ ^-KFJfJdxtoJ + ^Ntldt, + (vTN)T

Xldx(tl)

- [H - ATx]tl dt,
t!ft

Jto

•ffi f'/
+ [(H, + A + 0Jrax] dt + [(H, + Xfdx + #tt(5w] dtJtt Jt;

(B2)
where 0X is defined by

F<*>[t,x,u] = 0^ W = 0(t,x) (B3)
du = gT

xdx (B4)
The usual Euler-Lagrange equations hold on the subarcs
[t0, ti) and (t2, tf], while

A = -^-^[on^^t^only] (B5)
on the subarc on which F[x(t)] = const. The other equations of
interest result from the variations at ^ and t2, and noting that
dx(ti) = 3x(tn + x(tr) dt, = ^(tD + x(tt) dth a = i, 2)
the following differential form must vanish:

dx(t2)

+ H(t2)dt2-H(tJ)dt2 = 0 (B7)
After collecting like differentials, the coefficients must vanish and
the following necessary conditions result:

(B8)

H(tl) = H(t^) + vTNtl (B9)
, The Lagrange multipliers and Hamiltonian are continuous
everywhere else on the interval [t0, tf~\.

Again, to demonstrate that we have the proper number of
equations for the unknowns, let us consider a possible imple-
mentation or a shooting method for the p > 1 case.
Guess:

A0
0), 40), t<2

0), tf, v(0) [W + 3 + (p - 1) unknowns]
Integrate forward to 4°*, jump the multipliers at tl5 as defined by
Eq. (B8), and record the residuals of Eq. (B9) and Eq. (42). In-
tegrate from t(10) to t20) using the control which satiesfies Eq. (B3)
and the multiplier equation (B5). At t20) record the residuel in

tf(t+) - H(t~2) (BIO)
which should be continuous at t2. Proceed from t20) to fy0) and
record the residuals in the n + 1 terminal conditions. The
n + 3 + (p — 1) residuals may then be used to update the initial
parameter estimates.
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