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The implications of spanwise flexibility on flapping wing aerodynamics are investigated 
numerically for a rectangular wing in pure heave. A computational framework for fluid-
structural interactions has been developed based on a direct coupling procedure between (i) 
a pressure-based finite-volume fluid flow solver based on the Navier-Stokes equations, and 
(ii) a quasi-3D finite element structural dynamics solver based on a geometrically nonlinear 
composite beam-like and linear plate-like formulations. The computational results are first 
correlated with available experimental data. It is shown that two key factors associated with 
spanwise wing deformation affect thrust generation, namely, in-phase motion between the 
wing tip and root, and the increased effective angle of attack of the deformed wing. If the 
wing motions resulting from both prescribed motion and deformation are correlated, the 
increased effective angle of attack at the tip could enhance the aerodynamic performance. If 
the flexibility is too high, then the wing tip and root could move in inconsistent directions, 
resulting in deteriorated aerodynamic performance.  

Nomenclature 
AR = aspect ratio = b2/S 
b = wing span 
c = mean chord length (reference length) 
CL = lift coefficient 2(0.5 )v f refF U Sρ=  
CT = thrust coefficient 2(0.5 )h f refF U Sρ=  
Cp = pressure coefficient 2(0.5 )f refp Uρ=  

D = flat plate bending stiffness 3 212(1 )wEh v= −  
E = Young’s modulus of structure 
f = plunging or flapping frequency 
Fh = horizontal component of resultant aerodynamic force 
Fv = vertical component of resultant aerodynamic force 
ha = flapping amplitude (e.g. amplitude of prescribed plunge motion) 
htip = plunging or flapping amplitude at wing tip 
hroot = plunging or flapping amplitude at wing root 
hw = thickness of flat plate 
IB = plunging or flapping moment of inertia 
k = reduced frequency (2 )refc Uω=  
p = static pressure 
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p  = non-dimensional positional component of fluid 
Re = Reynolds number  

f ref fU cρ μ=  
s = semi-span =b/2 
St = Strouhal number ( )a refh Uω π=  
t = time  
T = plunging or flapping period  
ui = ith velocity component of fluid 

iu  = ith non-dimensional velocity component of fluid 
Uref = reference velocity (e.g. freestream velocity) 
 x, y, z = global Cartesian coordinate system 
xi = ith positional component of fluid 

ix  = ith non-dimensional positional component of fluid 

αe = effective angle of attack of a wing at the wing tip 1 1tan tip

ref

dh
U dt

−
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

μf = dynamic viscosity of fluid 
ν = Poisson ratio of structure 
Π1 = ratio of elastic and aerodynamic loadings 2 3( )f refD U cρ=  

Π2 = ratio of inertia and aerodynamic generalized forces 5( )B fI cρ=  

Π3 = ratio of the first bending mode to frequency of plunging or flapping of a wing 
Bω ω=  

Π4 = ratio of the second bending mode to frequency of plunging or flapping of a wing 
Tω ω=  

ρf = density of fluid 
ρs = density of structure 
ω = circular frequency of flapping 
ωΒ = linear natural frequency of bending of a flapping wing 
ωΤ = linear natural frequency of torsion of a flapping wing 
Ωz = magnitude of spanwise (z) vorticity 
 

I. Introduction 
ICRO air vehicles (MAVs) are advancing our capabilities in the areas of environmental monitoring and 
homeland security1. MAVs have a maximum dimension on the order of 15 cm and nominal flight speeds of 

approximately 10 m/s, operating in a low Reynolds number (Re) regime (105 or lower). The rise and growth of 
MAVs have been stimulated by the long history of natural flight studies. Good reviews of the state-of-the-art in this 
subject are given in Refs. [2] and [3]. High-speed photography and stroboscopy indicate that most biological flyers 
undergo natural deformation in flight4, 5. Birds, bats, and insects exploit the coupling between flexible wings and 
aerodynamic forces such that the wing deformations improve aerodynamic performance6. Therefore, it is highly 
likely that, the interaction between unsteady aerodynamics and structural flexibility will be of considerable 
importance for MAV development1. 
 Much of the aeroelasticity efforts thus far have focused on fixed wing membrane-based MAVs7-11. Shyy et al.7 
and Lian and Shyy8 have successfully investigated fixed membrane wing aerodynamics with free stream based on 
both computation and experiment. Stanford et al.9 developed a direct comparison of wing displacements, strains, and 
aerodynamic loads obtained via a novel experimental setup with those obtained numerically. In their work, they 
considered both pre- and post-stall angles of attack and the computed flow structures revealed several key 
aeroelastic effects: decreased tip vortex strength, pressure spikes and flow deceleration at the tangent discontinuity 
of the inflated membrane boundary, and an adaptive shift of pressure distribution in response to aerodynamic 
loading.  
 As to the studies of aeroelasticity of flexible flapping wing, Smith12 first investigated numerically the effects of 
flexibility on the aerodynamics of single flapping moth wing by modeling it as a linear elastic structure for a Re of 
the order of 103 and reduced frequencies of the order of 0.2 and higher. In the structural modeling, the veins of the 
wings were treated as tubular beams of varying thickness, and the wing surfaces were modeled as quadrilateral (or 
triangular) membranes that are also of varying thickness with orthotropic properties using finite elements. For the 
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fluid dynamics model, an unsteady panel method was used with laminar flow assumption. Both the structural and 
the fluid equations were simultaneously solved to obtain the coupled flapping wing response. Frampton et al.6 have 
studied a method of wing construction that results in an optimal relationship between flapping wing bending and 
twisting such that optimal thrust forces are generated. The thrust production of flexible flapping wings was tested in 
an experimental rig. The results from this study indicated that the phase between bending motion and torsional 
motion is critical for the production of thrust. It was noted that a wing with bending and torsional motion in phase 
creates the largest thrust whereas a wing with the torsional motion lagging the bending motion by 90 degrees results 
in the best efficiency. Hamamoto et al.13 have investigated a deformable single wing of a dragonfly in hovering 
flight using arbitrary Lagrangina-Eulerian-based finite element method and examined the advantages and 
disadvantages of flexibility. They found that the flexible wing with nearly the same average energy consumption 
generated almost the same amount of lift force as the rigid wing with modified flapping motion. In this case, the 
motion of the tip of the flexible wing provided equivalent lift as the motion of the root of the rigid wing. However, 
the rigid wing required 19% more peak torque and 34% more peak power, indicating the usefulness of wing 
flexibility. Singh14 developed a computational aeroelastic framework to support development of hover-capable, bio-
inspired flapping wing vehicles. A finite element-based structural analysis of the wing was used along with an 
unsteady aerodynamic analysis based on indicial functions. The results suggested that at high flapping frequencies 
(~ 12 Hz), the light-weight and highly flexible insect-like wings used in the study (Re: 103-105) exhibited significant 
aeroelastic effects. Wills et al.15 have presented a computational framework to design and analyze flapping MAV 
flight. A series of different geometric and physical fidelity level representations of solution methodologies was 
described in the work. Liani et al.16 have  investigated the aeroelastic effect on the aerodynamic forces produced by 
a flexible flapping wing at different frequencies especially near its resonance using coupling a two-dimensional 
unsteady panel method with Lagrange's equations of motion for a two degree-of-freedom (DOF) spring-mass wing 
section system. The results suggested that aerodynamic forces damp out elastic oscillations near the flutter 
boundaries which are a beneficial effect because it would allow the wing to vibrate close to the resonance frequency 
even if the structural damping is not considered.  
 The afore-described studies provide general insights into flexible wing aerodynamics. However, detailed 
analyses of the impact wing flexibility (both spanwise and chordwise) on flapping wing aerodynamics have not been 
presented enough in existing literature. Heathcote and Gursul17 experimentally investigated the effect of chordwise 
flexibility of an airfoil in pure heave at low Reynolds numbers (Re: 103-104). The wake structures they visualized 
show a correspondingly stronger jet vortex pattern than that of rigid wing case and hence chordwise flexibility is 
found to bear efficiency benefits. Tang et al.18 conducted numerical investigations based on the experimental models 
of Heathcote and Gursul17. They pointed out that the effect of the deformation (passive pitching) is similar to the 
rigid body motion (rigid pitching), meaning that the detailed shape of the airfoil is secondary to the equivalent angle 
of attack. On the other hand, Liu and Bose19 investigated the effect of spanwise flexibility on the flukes of an 
immature fin whale using inviscid computations. They showed that phase of the flexing motion relative to the heave 
played a key role in determining thrust and efficiency characteristics of the fin. In particular, the in-phase motion of 
the wing tip was found to be beneficial in terms of increase in efficiency and the thrust. Recently, Heathcote et al.20 
experimentally investigated the effects of spanwise stiffness on thrust generation of rectangular wings undergoing a 
pure plunging motion under various free stream velocities (at Re: 104) in a water tunnel. Their direct force 
measurements suggested that the thrust/input-power ratio was found to be greater for flexible airfoils than for the 
rigid one. They also showed that at high plunging frequencies, the less flexible airfoil generates the largest thrust, 
while the more flexible airfoil generates the most thrust at low frequencies. They also observed that for Strouhal 
numbers greater than 0.2, a degree of spanwise flexibility was found to be beneficial. More recently, Chimakurthi et 
al.21 performed numerical simulations following the experiment models of Heathcote et al. 20. They suggested that 
spanwise flexibility could be more beneficial than a rigid wing for thrust generation. In addition, Zhu22 investigated 
the effects of chord- and span-wise flexibility of flapping wing for a Re of 2.0x 104 based on a combination of 
boundary-element method and a two-dimensional nonlinear thin-plate model. His results suggested that when the 
wing is immersed in air, the chordwise flexibility reduces both the thrust and the propulsion efficiency and the 
spanwise flexibility (through equivalent plunge and pitch flexibility) increases the thrust without efficiency 
reduction within a small range of structural parameters. While when the wing is immersed in water, the chordwise 
flexibility increased the efficiency and the spanwise flexibility reduced both the thrust and the efficiency.  All the 
studies discussed thus far have described the effect of wing stiffness on flapping wing aerodynamics. However, few 
studies have investigated parametric variations to understand the impact of flexibility on aerodynamics, particularly 
regarding scaling laws.  
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 From the viewpoint of fluid and structural dynamics, there are different dimensionless parameters that are of 
relevance to flapping wing aerodynamics. Consider: c, chord length; ω, circular frequency of flapping (rad); ha, 
flapping amplitude; Uref, reference velocity; ν kinematic viscosity; ρf, fluid density; D, plate stiffness (directly 
proportional to material Young’s modulus and the cube of the wing thickness); IB, (flapping) moment of inertia; ωB 

and ωT being wing linear natural frequencies of bending and torsion respectively. The relevant dimensionless 
parameters are listed in Table 123. Assuming that the geometric similarity is maintained, the scaling laws for forward 
and hovering flight conditions are summarized in the same table. One can readily conclude that the hovering 
Reynolds number and the cruising Reynolds number are very close to each other because the characteristic velocity 
for hovering is Uref = ωha. For hovering, the reduced frequency becomes k=c/(2ha), which is simply related to the 
normalized stroke amplitude. Furthermore, if the forward flight velocity is used as the velocity scale, then the 
resulting non-dimensional form of the momentum equation explicitly contains Reynolds number and Strouhal 
number. On the other hand, if the flapping wing velocity is chosen as the velocity scale, then the momentum 
equation will explicitly contain Reynolds number and reduced frequency1. As shown in Table 1, the scaling laws 
make the construction of aeroelastic models and testing complicated. For the calculation of the plate stiffness in Π1, 
Young’s modulus information along the span was considered. Also, it may be noted that, in the calculation of the 
dimensionless parameters Π2, Π3, and  Π4, the wing was assumed to be a beam with a rectangular cross-section 
whose length is equal to the mean chord and breadth to the mean thickness of the wing.  These parametric and 
scaling laws have been introduced in fixed and rotary wing studies and the results suggested that they are very 
important and useful to model and analyze the aeroelastic problems24, 25.  
 This paper is part of an ongoing study in the computational aeroelasticity of flapping wings. Previously, a 
computational aeroelasticity framework involving a Navier-Stokes solver and two different structural solvers of 
variable fidelity was introduced21. Validation studies with experiment were presented on a model example problem 
corresponding to a NACA0012 wing of aspect ratio 3 in pure heave motion at a Re of 3×104. In an attempt to 
continue the validation of the aeroelasticity framework and to obtain some more fundamental understanding of the 
impact of spanwise flexibility on flapping wing aerodynamics, several variations of spanwise flexibility of wing 
configurations were chosen. Further, keeping the bigger goal of simulating computational models of natural flyers 
with complex flapping kinematics26 in mind, it was considered necessary to first understand the inertial/aeroelastic 
response of a wing prescribed with simplified motions. The main objectives of this paper are to: a) present studies 
on model a wing configuration (a flexible rectangular wing) prescribed with simplified kinematics (e.g. pure 
plunge); b) discuss the interplay between fluid and structural dynamics with reference to key parameters; and c) to 
examine the impact of spanwise flexibility on flapping wing aerodynamics and its sensitivity to phase lag between 
the prescribed motion and the dynamic response. 

Table 1. Dimensionless parameters and scaling dependency for flapping wing aerodynamics. 
Dimensionless Parameter 

 
Hovering (no-freestream) 
Based on flapping wing velocity

Forward Flight 
Based on cruising velocity 

 Length Frequency Length Frequency 
Reynolds number: Re= Urefc/v 2  f   Independent

Strouhal number: St=ωha/(πUref) independent independent  f  

Reduced frequency: k=ωc/(2Uref) independent independent  f  

Π1= 2 3( )fD U cρ  2−  2f −  independent independent 

Π2= 5( )B fI cρ  1−  independent 1−  independent 

Π3= Bω ω  1−  1f −  1−  1f −  

Π4= Tω ω  1−
 

1f −
 

1−
 

1f −
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II. Numerical Framework for High-Fidelity Flapping Wing Simulations 
In this section, a brief description of the fluid and structural dynamics approaches for the aeroelastic analysis of 

flapping wing is presented. From these, an aeroelastic framework is developed for the analysis of low Re flows and 
their interactions with flexible flapping wings.  

A. Computational Fluid Dynamics Modeling (STREAM) 
 The fluid solution is obtained from the unsteady, incompressible 3D Navier-Stokes (NS) equations and the 
continuity equation where fρ is the fluid density, ui is the velocity vector, t is the time, xi is the position vector, 

2

2
1( )

0

fi i
j i

f fj i j

i

i

u up
u u

t x x x

u

x

μ
ρ ρ

∂ ∂∂ ∂
+ = − +

∂ ∂ ∂ ∂

∂
=

∂

 (1) 

p is the pressure. If the reference velocity (Uref), the chord length (c) and the inverse plunging/pitching (1/f) 
frequency are used as the velocity, length, and time scales respectively, Reynolds and Strouhal numbers are defined 
as, 

f ref fRe U cρ μ=  and ω ( )a refSt h U= π . With these choices of the scaling parameters, the non-dimensional form 
of the NS equations is written as: 

2

2
1( ) ( ) i

j
j i j

i i
upSt u u u

t x x Re x
∂∂ ∂ ∂

+ = − +
∂ ∂ ∂ ∂

 (2) 

It should be noted that the relation between Strouhal number and the reduced frequency is St= 2hak/ (cπ). The 
numerical solution is obtained using a pressure-based algorithm, with an employment of combined Cartesian and 
contravariant velocity variables to facilitate strong conservation law formulations and consistent finite-volume 
treatment. The convection terms are discretized using a second-order upwind scheme, while the pressure and viscous 
terms with a second-order central difference scheme. For the time integration, an implicit Euler scheme is employed. 
A moving grid technique employing the master-slave concept8 is used to re-mesh the multi-block structured grid for 
fluid-structure interaction problems. The geometric conservation law (GCL) originally proposed by Thomas and 
Lombard27 was incorporated to compute the cell volumes in the moving boundary problem consistently and 
eliminate artificial mass sources. The specific implementation and implications of the GCL in the context of the 
present solution algorithm have been discussed by Shyy et al.28.  

B. Computational Structural Dynamics Modeling (UM/NLABS) 
The geometrically-nonlinear structural dynamic solution is based on an asymptotic approach to the equations 

governing the dynamics of a general 3D anisotropic slender solid29, 30. It is implemented in the University of 
Michigan’s Nonlinear Active Beam Solver (UM/NLABS) computer code. Assuming the presence of a small 
parameter (the inverse of the wing aspect ratio) allows for a multi-scale solution process, in which the problem is 
decomposed into separate cross-sectional (small-scale) and longitudinal (long-scale) analyses. The longitudinal 
problem solves for average measures of deformation of the reference line under given external excitations. The 
cross-sectional problem solves the local deformation for given values of the long-scale variables. Both problems are 
tightly coupled and together provide an efficient approximation to the displacement field in the original 3D domain. 
A flow diagram of the process is shown in Figure 1. 

The present implementation of this formulation follows the approach described in Ref. [31], where the solution 
to the structural dynamics problem is obtained by means of a finite-element discretization on a mixed-variational 
form of the equations. Although they are analyzed independently, the small and long-scale problems are intimately 
linked in the detailed approximation to the solution. This is particularly important in the generation of the solid side 
of an aeroelastic model: the interface of the structural model consists of the actual wetted surfaces of the vehicle, 
without extrapolations from the motion of a reduced-dimension structural model, nor the assumption of rigid cross 
sections typically found in beam theories.  
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C. Aeroelastic Coupling 
The aeroelastic coupled solution is based on a time-domain partitioned solution process in which the nonlinear 

partial differential equations modeling the dynamic behavior of both fluid and structure are solved independently 
with boundary information (aerodynamic loads and structural displacements) being shared between each other 
alternately. A dedicated interface module was developed to enable communication between the flow and the 
structure at the 3D wetted surface (fluid-structure interface). In the interface module, both the fluid and the structural 
modules are called one after the other according to the coupling method adopted for the problem. The coupling 
algorithm is determined by the capability of the individual simulation code. For the cases where in-house structural 
solvers are involved, both explicit and implicit coupling methods are possible. More details of the coupling method 
amongst other things were presented in Ref. [21] 

III. Models, Results, and Discussion 
This section is divided into three subsections. In the first one, a brief description of the test problem that is 

considered in this study is provided. In the second subsection, details of the fluid and the structural computational 
models are provided. Finally, in the third subsection, computational results are presented for a rectangular wing 
configuration of NACA0012 cross-section in pure plunge and compared against experimental data from the studies 
of Heathcote et al.20. Further, the role of phase lag and the instantaneous effective angle of attack on the 
aerodynamic force generation is discussed.   

A. Description of Test Case 
The test-case studied is that of a spanwise-flexible rectangular wing (in forward flight) with root-prescribed 

plunge motion at the leading edge. 

B. Computational and Experimental Models 
Water tunnel studies have been performed on a flexible rectangular wing in pure heave by Heathcote et al.20 to 

study the effect of spanwise flexibility on the thrust and the propulsive efficiency of this configuration. A schematic 
of the experimental set-up is shown in Figure 2 (a). As part of the experiment, three wing models of 0.3 m span and 
0.1 m chord with varying levels of spanwise flexibility were constructed. The leading edge at the wing root was 
actuated by a prescribed sinusoidal plunge displacement profile as shown in Figure 3. Overall wing thrust coefficient 

 3-D displacements

Cross-sectional geometry

and material distribution

1-D Kinematic variables
Cross-sectional

      analysis

Stiffness      

  Inertia

Sectional forces

1-D strains and

displacements

Warping Influence

     Coefficients

1-D geometrical definition

3-D domain

 assembler

Time domain

External loads

Geometrically-

 nonlinear 1-D 

     analysis

 
Figure 1. Asymptotic solution process for 3-D slender structures implemented in UM/NLABS. 
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and vertical tip displacement response were experimentally measured. The representations of the cross-section 
constructions are reproduced in Figure 2 (b). 

In the computation, a structured multi-block C-O type grid around a NACA0012 wing of aspect ratio 3 is used 
for the CFD simulations. The number of grid points is 120, 56, and 60 in the tangential, radial, and spanwise 
directions, respectively. Previously21, grid refinement and time step sensitivity analyses have been performed to 
identify a suitable grid configuration in terms of the number of points, and the time step increment. The CFD model 
is shown in Figure 4 (a). For the boundary conditions at the inlet, the free-stream velocity (Uref= 0.3 m/s) is 
prescribed and, for the outlet, the pressure gradient is set to zero. A no-slip condition on the flow velocity is assigned 
to the wing surface. 

In this study, several wing structures of progressively increasing flexibility have been investigated. The results 
are compared with the experimental data of Heathcote et al. 20. Furthermore, the velocity and pressure characteristics 
have been studied in detail while correlating with the dynamic wing motion. In the rigid wing case (corresponding to 
the “Inflexible” wing case in Heathcote et al.’s experiment20), the structure is considered to be infinitely stiff. For 
various flexible cases, Table 2 and Table 3 offer detailed property information.  In all cases, a beam finite-element 
discretization with 39 elements along the semi-span was used. Chordwise deformation was reported as being 
negligible in the experiment20, therefore, a beam model with six elastic degrees of freedom, corresponding to 
extension, twist, and shear and bending in two directions, was chosen. The beam reference line (cantilevered to a 
plunging frame of reference) is chosen along the leading edge of the wing (highlighted in red in Figure 4 (b)) and 
cross-sectional properties are evaluated with respect to the leading edge point. Furthermore, the properties are 
uniform throughout the semi-span. The contribution of the PDMS rubber material (used in the experimental wing 
configuration) to the overall mass and stiffness properties was found to be negligible; therefore, only the stainless 
steel (“Flexible-1(E= 210 GPa)”), the aluminium (“Flexible-2 (E= 70 GPa)”), and the “Flexible-3 (E= 40 GPa)” 
stiffeners (rectangular thin strip) were considered in the evaluation of cross-sectional properties (Figure 2 (b)). The 
latter does not correspond to any specific material and it has been created to better understand the experimental 
results obtained from the “Highly flexible” case. The 3D structural solution is obtained by using 75 recovery nodes 
on each cross section resulting in a structured grid of 3000 interface points which define the solid side of the 
aeroelastic interface. A summary of the geometrical and mechanical properties of a wing are included in Table 2. In 
Table 3, all dimensionless numbers related to either the structure, the flow, or to both are furnished. The 
dimensionless numbers Π1, Π2, Π3 and Π4 are discussed in more detail in Refs. [1] and [23]. 

 

 

 
Figure 2. Experimental setup and wing cross-sections in Heathcote et al.'s experiment20. (a) Water-tunnel 
experiment setup; (b) Inflexible (i), Flexible (E= 210 GPa) (ii), Highly flexible (E= 70 GPa) (iii) wing cross-
sections. 
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Table 2. Geometric and mechanical properties of the wing models. 
 ‘Flexible-1’ ‘Flexible-2’ ‘Flexible-3’  

Semi-span  [m] 3.0×10-1 3.0×10-1 3.0×10-1 
Chord length [m] 1.0×10-1 1.0×10-1 1.0×10-1 

Structural thickness [m] 1.0×10-3 1.0×10-3 1.0×10-3 
Material density [kg/m3] 7.8×103 2.7×103 2.7×103 
Young’s modulus [Pa] 2.1×1011 7.0×1010 4.0×1010 

 
Table 3. Dimensionless parameters associated with wing models. 

 ‘Flexible-1’ ‘Flexible-2’ ‘Flexible-3’ 
Chord-based Reynolds number: Re 3.0×104 3.0×104 3.0×104 

Strouhal number: St 2.02×10-1 2.02×10-1 2.02×10-1 
Reduced frequency: k 1.82×100 1.82×100 1.82×100 

Chord-normalized plunge amplitude: hroot 1.75×10-1 1.75×10-1 1.75×10-1 
Π1 2.13×102 7.38×101 4.22×101 
Π2 7.80×10-1 2.70×10-1 2.70×10-1 
Π3 5.46×100 5.18×100 5.18×100 
Π4 3.43×101 3.36×101 3.36×101 

 

 
Figure 4. Computational model setup for the rectangular wing. (a) Computational model and boundary 
conditions for CFD (STREAM); (b) Computational model for CSD (UM/ULABS) (rectangular thin-strip 
cross section used to evaluate structural stiffness and mass properties); (c) The CSD-CFD interface grid 
with the beam reference line indicated with in red. Note that L.E. and T.E. indicate the leading and 
trailing edges of the wing, respectively. 

 
Figure 3. Prescribed plunge motion for the rectangular wing (normalized with respect to amplitude). Note 
that points (a) and (b) are representative time instants corresponding to 0 and T/4, respectively. 
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C. Results 
In this study, special attention is given to the effect of spanwise flexibility in the case of Re= 3.0×104 and k= 1.82 

in order to compare the computed results with available experimental data20. 

C.1 Deformation 
Data corresponding to vertical displacement at the wing tip from the computation for “Rigid”, “Flexible-1 (E= 

210 GPa)”, “Flexible-2 (E= 70 GPa)”, and “Flexible-3 (E= 40 GPa)” wing cases and the experiment for “Inflexible”, 
“Flexible”, and “Highly flexible” are shown over one plunge cycle in Figure 5. Note that the displacement is 
normalized with respect to the amplitude of prescribed wing root movement (hroot). In the “Rigid” and “Flexible-1 
(E= 210 GPa)” wing cases (Rigid (COMP) and Flexible-1 (COMP, E= 210 GPa) in Figure 5) the computed 
displacement responses show good agreement with the experiment data (Inflexible (EXP) and Flexible (EXP) in 
Figure 5) both qualitatively and quantitatively. However, slight discrepancy is observed in both amplitude and phase 
due to an uncertainty in both the computational models and experiments. More detailed comparisons of “Rigid” and 
‘Flexible-1’ wing computational response with experimental data are presented in Ref. [21]. Further, following 
Figure 5, in the case of “Flexible-2 (COMP, E= 70 GPa)” wing, while the amplitude of computed displacement is 
considerably larger than that of the experiment (Highly flexible (EXP) in Figure 5), the phase lag at the tip is smaller 
by 27 deg. Note that the phase lag is measured with reference to the prescribed wing root movement. In addition, in 
the case of the “Flexible-3 (COMP, E= 40 GPa)” wing, the instantaneous structural response shows better match 
with the experimental data (Highly flexible (EXP) in Figure 5) than “Flexible-2 (COMP, E= 70 GPa)”. In reality, 
several parameter variations were conducted to better understand the discrepancy between the experiment and the 
model for this particular case. The 43% drop in Young’s modulus was found to provide the correct amount of 
flexibility encountered in the experimental results. It still remains to be seen if this is a reason for the observed 
discrepancy in deformation in the case of “Flexible-2 (COMP, E= 70 GPa)” wing. The normalized tip amplitude 
(htip/hroot) and phase lag angle (φ) information for all the cases are summarized in Table 4. 

 

 
Figure 5. Comparison of experimental and computational vertical tip displacement for four variations of 
spanwise flexibility of the wing over a plunging cycle. 

 
Table 4. Displacement and force data for the four computational wing models: Re= 3.0×104, k= 1.82 

Wing model htip/hroot φ TC  
Rigid 1.0 0o 0.20 
Flexible-1 (E= 210 GPa)  1.55 -25.7 o 0.29 
Flexible-2 (E= 70 GPa) 2.0 -90.0 o 0.28 
Flexible-3 (E= 40 GPa) 1.76 -126.3 o 0.15 
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C.2 Flow Structures 
Trailing-edge vortical structures from both the computation and the experiment are shown in Fig. 6 at two 

selected time instants (see Figure 3 (a) and (b)). For the “Rigid” and “Flexible-1 (E= 210 GPa)” wing cases, the 
computed tailing-edge vorticity contours at both time instants show an overall qualitatively good agreement with the 
experimental data in terms of location and rotational direction (see Figure 6(a) and (b)). However, some small scale 
vortices are not captured in the computed vortical structures. For the “Flexible-2 (E= 70 GPa)” wing case, at the 
beginning of downstroke (t/T = 0.0), the size of computed trailing-edge vortical structures is slightly larger than 
those of the experiment ((α-1, 2) and (β-1, 2) in Figure 6 (c)). Furthermore, a more fragmented vorticity pattern is 
seen in the experimental data. The computed wake structure near the wing tip is not the same as that of the 
experiment because of the difference in wing tip deflection. For the “Flexible-3 (E= 40 GPa)” wing case, at the 
beginning of downstroke, the computed trailing-edge vortical structures show overall agreement with those of the 
experiments ((α-1, 2) and (β-1, 2) in Figure 6 (d)). At the middle of downstroke (t/T = 0.25), i.e., at maximum 
plunging velocity of the wing root, in the computed results of the “Flexible-2 (E= 70 GPa)” wing case a counter-
clockwise rotating vortex is seen near the trailing-edge ((α-3) and (α-4) in Figure 6 (c)). The “Flexible-3 (E= 40 
GPa)” wing case and the experiments illustrate that a counter-clockwise rotating vortex is observed near the trailing-
edge at mid semi-pan ((α-3) and (β-3) in Figure 6 (d)). The clockwise rotating trailing-edge vortex near the wing tip 
is shown in (α-4) and (β-4) in Figure 6 (d).  

As shown in Figure 5, in the computed results of vertical displacement at the wing tip, for the “Flexible-2 (E= 70 
GPa)”  wing case, the wing tip in the computational model moves in the same direction as the root at the middle of 
downstroke, whereas it is opposite in the experiment.  However, for the “Flexible-3 (E= 40 GPa)” wing case, the 
wing tip response is similar to that measured in the experiment. This discrepancy of the wing tip movement 
produces a visible different trailing-edge vortex structure mostly near the wing tip ((α-2, 4) and (β-2, 4) in Figure 6 
(c)).  

To gain better understanding of the impact of variation in material modulus to the flow patterns, flow structure 
and pressure (Cp) distributions around the wing for both the “Flexible-2 (E= 70 GPa) and Flexible-3 (E= 40 GPa)” 
wing cases at t/T of 0.25 are illustrated in Figure 7. The wing tip of the “Flexible-2 (E= 70 GPa)” wing case is in in-
phase motion at this time instant, whereas the tip of the “Flexible-3 (E= 40 GPa)” wing case is in out-of-phase 
motion. Spanwise vorticity contours for the “Flexible-2 (E= 70 GPa)” wing case are shown in Figure 7 (1) at two 
different stations along the semi-span (‘middle’ and ‘near the tip’). For this case, the contours near the mid semi-
span show larger sized trailing-edge vortex than that seen in the “Flexible-3 (E= 40 GPa)” wing case. Further, a 
small leading-edge vortex (LEV) is observed on the lower surface whereas none is seen in the “Flexible-3 (E= 40 
GPa)” wing case. At the section near the wing tip, in both the “Flexible-2 (E= 70 GPa) and Flexible-3 (E= 40 GPa)” 
wing cases a LEV is observed on the lower surface ((α-2) and (β-2) in Figure 7 (1)). Second, looking at Figure 7 (2) 
and (3), considerable differences may be found between both the computed results of flow field. In the normalized 
horizontal velocity contours of the “Flexible-2 (E= 70 GPa)” wing case, the area of accelerated flow is larger than 
that of the “Flexible-3 (E= 40 GPa)” wing case, especially near the trailing and leading edges, and the flow is 
separated near the leading edge of the lower surface. Although the normalized vertical velocity contours of the 
“Flexible-3 (E= 40 GPa)” wing case around the middle of the semi-span section show smaller area of induced flow 
than those of the “Flexible-2 (E= 70 GPa)” wing case, it is not the case near the wing tip. The flow features 
discussed so far correspond to pressure distribution on the wing surface and hence the aerodynamic force generation.  
Basically, the area of pressure curve of the “Flexible-2 (E= 70 GPa)” wing case is larger than that of the “Flexible-3 
(E= 40 GPa)” wing case (Figure 7 (4)). Moreover, it is found that the acceleration and separation of flow near the 
trailing and leading edges are responsible for peak pressure on the wing surface. From the conservation law of 
momentum, the magnitude of velocity contours of the “Flexible-2 (E= 70 GPa)” wing case shows that it could 
produce larger aerodynamic forces than in the case of the “Flexible-3 (E= 40 GPa)” wing case. 
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Figure 6. Spanwise-vortical structures around the trailing-edge at selected time instants. (a) Rigid; (b) 
Flexible-1 (E= 210 GPa); (c) Flexible-2 (E= 70 GPa); (d) Flexible-3 (E= 40 GPa). Note that spanwise vorticity 
is normalized by a factor of c/Uref. The positive sign of spanwise vorticity indicates that the vortex rotation is 
in clock wise direction. Clockwise vorticity is shown in white in the experimental results20 and red in the 
computational results, respectively. 
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Flexible-2 (E= 70 GPa) Flexible-3 (E= 40 GPa) Flexible-2 (E= 70 GPa) Flexible-3 (E= 40 GPa) 

 
(1) Spanwise vorticity contours (Ωzc/Uref) 

 
(2) Normalized horizontal velocity contours (u1/Uref)  

 
(3) Normalized vertical velocity contours (u2/Uref) 

 
    

(4) Cp distributions 
z/s= 0.5 (middle of semi-span) z/s= 0.93 (near the wing tip) 

Figure 7. Comparison of computed results at t/T of 0.25 for the “Flexible-2 (E= 40 GPa)” and the “Flexible-3 
(E= 70 GPa)” wing cases. (1) Spanwise vorticity contours; (2) Normalized horizontal velocity contours; (3) 
Normalized vertical velocity contours; (4) Pressure coefficient distributions. The results of two columns of left 
side are at the section of middle of semi-span and the others are near the wing tip. Note that velocity is 
normalized by inflow velocity (Uref) and L.E. and T.E. indicate leading-and trailing-edge, respectively. 
 
C.3 Aerodynamic forces 

The time histories of thrust and lift coefficients for only the “Flexible-2 (E= 70 GPa)”,”Flexible-3 (E= 40 GPa)”, 
and “Highly flexible (EXP)” wing cases are presented in Figure 8. The time response of thrust and lift coefficients in 
the “Flexible-3 (E= 40 GPa)” wing case shows a closer agreement with the experimental data (“Highly flexible”) 
than that of the “Flexible-2 (E= 70 GPa)” wing case”. One of the reasons for this is that the tip phase lag and vertical 
displacement amplitude of computation in the “Flexible-3 (E= 40 GPa)” wing case is much closer to the experiment 
than those computed in the “Flexible-2 (E= 70 GPa)” wing case (see Figure 5). According to the computed results of 
aerodynamic and structural responses, the “Flexible-3 (E= 40 GPa)” wing case is better than the “Flexible-2 (E= 70 

(α-1) (β-1) (α-2) (β-2) 

(α-1) (β-1) (α-2) (β-2) 

(α-1) (β-1) (α-2) (β-2) 

(α-1) (β-1) (α-2) (β-2)

Lower surface Lower surface 
Lower surface Lower surface 

T.E. L.E. T.E. L.E. T.E. L.E. T.E. L.E. 



 
American Institute of Aeronautics and Astronautics 

 

14

GPa)” wing case in terms of correlation with experimental data. Therefore, the computed results of the “Flexible-3 
(E= 40 GPa)” wing case are discussed further in the following section in order to investigate the effect of spanwise 
flexibility on plunging wing aerodynamics. However, the mean thrust coefficient for all the spanwise flexibility 
cases is presented in Table 4. 

 
 

(A) Thrust coeffcieint (B) Lift coefficient 
Figure 8. Effect of structural flexibility on instantaneous aerodynamic force generation. (A) Thrust; (b) Lift. 
Dashed and solid lines indicate the computed results corresponding to “Flexible-2 (E= 70 GPa)” and 
“Flexible-3 (E= 40 GPa)”wing cases, respectively. Solid line with square indicates the experimental results20. 
 
C.4 Role of phase motion of wing tip and instantaneous effective angle of attack (Re=3.0×104 and k= 1.82) 
 Focusing on the “Rigid”, “Flexible-1 (E= 210 GPa)”, and “Flexible-3 (E= 40 GPa)” wing cases, the role of phase 
lag and instantaneous effective angle of attack in the aerodynamic force generation is discussed. 
 Figure 9 shows the time histories of computed thrust coefficient and effective angle of attack at the wing tip for 
three variations of spanwise flexibility (i.e., “Rigid”, “Flexible-1 (E= 210 GPa)”, “Flexible-3 (E= 40 GPa)”). The 
blue block areas in Figure 9 indicate the out-of-phase motion of the wing tip. The blue blocks in the figures labeled 
as (A) show the ‘out-of-phase’ motion for the “Flexible-1 (E= 210 GPa)” wing case and the ones labeled as (B) 
show ‘out-of-phase’ motion for the “Flexible-3 (E= 40 GPa)” wing case. From the plots of thrust coefficient, it is 
clear that the “Flexible-1 (E= 210 GPa)” wing model produces higher peaks of thrust than that of “Rigid” wing and 
the “Flexible-3 (E= 40 GPa)” wing model generates smaller peaks of thrust than that of that of “Rigid” wing model. 
Focusing on the instantaneous effective angle of attack at the wing tip, for “Rigid” wing case, the instantaneous 
effective angle of attack is identical throughout the wing semi-span since there is no wing deformation. The time 
variation of the effective angle of attack forms a sinusoidal curve. For the “Flexible-1 (E= 210 GPa)” wing case, 
medium spanwise flexibility produces phase delay and increase of vertical displacement at the wing tip and hence 
the instantaneous effective angle of attack at the tip also has a small phase delay and appearance of larger effective 
angle of attack at the tip than that of rigid wing ((2) in Figure 9 (A)). For the “Flexible-3 (E= 40 GPa)” wing case, 
high spanwise flexibility creates large phase delay and increase of vertical displacement at the wing tip and hence 
instantaneous effective angle of attack at the tip has large phase delay and shows the largest effective angles of 
attack at the tip among all three cases ((2) in Figure 9 (B)). Focusing on the relationship between phase of the wing 
tip and the maximum effective angle of attack at the tip, for “Flexible-1(E= 210 GPa)” wing case, the maximum 
effective angle of attack at the tip is observed in in-phase motion of wing tip. On the other hand, for “Flexible-3 (E= 
40 GPa)” wing case, maximum effective angle of attack at the tip is observed in the out-of-phase motion of the wing 
tip. Recalling the computed results of instantaneous thrust force generation, “Flexible-1 (E= 210 GPa)” wing case 
shows the best aerodynamic performance and not “Flexible-3 (E= 40 GPa).” According to these observations, two 
key parameters have been determined to improve aerodynamic performance due to spanwise flexibility of the wing 
undergoing pure plunge. One is higher effective angle of attack at the wing tip, and the other is ‘in-phase motion’ of 
the wing tip. For example, since the peak effective angle of attack at the wing tip in “Flexible-3 (E= 40 GPa)” wing 
case is observed during the out-of-phase motion, this case could not show an enhancement in the aerodynamic 
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performance with respect to the rigid one due to spanwise flexibility.  The mean thrust coefficient as a function of 
spanwise flexibility is plotted in Figure 10 in which a nonlinear trend is clearly seen. 
 
(A) Flexible-1 (E= 210 GPa)  

(1) Thrust coefficient (2) Effective angle of attack at the wing tip  
(B) Flexible-3 (E=40 GPa)  

(1) Thrust coefficient (2) Effective angle of attack at the wing tip 
Figure 9. Time histories of thrust coefficient and effective angle of attack at the wing tip during one stroke. 
Solid, broken, and dot-dashed lines indicate the computed results of the “Rigid”, the “Flexible-1 (E= 210 
GPa)”, and the “Flexible-3 (E= 40 GPa)”, respectively. Note that blue blocked area represents that the wing 
tip is in out-of-phase motion. 
 

out-of-phase out-of-phase out-of-phase out-of-phase 

In-phase In-phase In-phase In-phase 
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Figure 10. Mean thrust coefficient versus spanwise flexibility of the wing. 
 

IV. Concluding Remarks 
 The impact of spanwise flexibility on flapping wing aerodynamics has been investigated numerically for a 
rectangular wing undergoing pure plunge. The wing cross section is the NACA 0012 airfoil, with an aspect ratio of 3, 
at a chord-based Reynolds number of 3×104 and reduced frequency of 1.82. The computational investigation is 
complemented by recently published experiments in Heathcote et al.20.  To perform the analyses, a computational 
aeroelasticity framework has been developed based on a direct coupling procedure between (i) a finite-volume 
Navier-Stokes fluid dynamics solver, and (ii) a quasi-3D finite-element structural dynamic solver based on 
geometrically nonlinear composite beam-like and linear plate-like deformations. Quantitatively good agreement 
with available experimental data is obtained for instantaneous vertical tip displacement and thrust force on the 
flexible wing.  Furthermore, qualitatively good agreement has been obtained for the flow structures including 
instantaneous spanwise vorticity characteristics.  
 
Several key conclusions stem from the present study and are highlighted as follows: 
 
1) Within a suitably selected range of spanwise flexibility, both mean and instantaneous thrust forces of a plunging 
wing could be enhanced due to wing deformation. 

 
2) Phase lag of the wing tip response with respect to the prescribed motion is a critical factor for thrust generation. 
For instance, when the phase lag at the wing tip is less than 90 deg, spanwise flexibility is shown to have a favorable 
impact on the thrust generation. 

 
3) Increased effective angle of attack at the wing tip is shown to be a secondary factor in the increase of thrust forces.  

 
4) The highest mean thrust force is shown to have occurred when two conditions have been simultaneously satisfied: 
in-phase motion of the wing and an increased effective angle of attack at the tip. On the other hand, even when the 
effective angle of attack at the tip is increased, thrust forces are shown to have decreased when the wing motion at 
the tip is out-of-phase with respect to the root and hence a lower mean thrust is seen by the wing in this case. 
 

Future work will address the combined plunge/pitch excitation of flapping wings with complex planform 
geometry and sectional profile. 
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