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Porous materials are often used for the injector face plate of liquid rocket engines to aid 

in cooling by transpiration of fuel. A first-principle-based method for predicting fluid flow 

and heat transfer through porous media is developed to enhance the existing, empirical 

based methods. In the present approach, the effect of porous structure on the global fluid 

flow is accounted for via local volume averaged governing equations. The resulting set of 

transport equations contains closure terms representing the statistical flow characteristics 

around the pores. These closure terms are deduced by direct computation of the fluid flow in 

individual, representative pore samples that are observed in the porous material. Hence, 

empirical dependence of simulations can be removed without requiring excessive 

computational cost. In this paper, we improve the formulation previously developed by 

Sozer et al. along with characterization of the Rigimesh porous material.  

Nomenclature � = cross-sectional area ��� = solid-fluid interfacial area �� = Ergun coefficient ��� = Kronecker delta 	 = porosity 
 = permeability �� = fluid phase thermal conductivity �� = solid phase thermal conductivity �
  = mass flow rate � = dynamic viscosity �� = surface normal vector � = pressure � = fluid density ��� = Reynolds number based on pore diameter ��√�  = Reynolds number based on permeability ���  = stress tensor � = temperature �� = filter velocity �� = velocity vector �� = volume of the fluid phase � = total volume 

I. Introduction 

Porous materials are often used for the injector face plate of liquid rocket engines. Fuel bleeds through the 

porous plate to aid in cooling of the injector face by transpiration. In P&W’s RL10 engine and Space Shuttle Main 

Engine (SSME), Rigimesh porous material is used. Rigimesh can qualitatively be classified as a dense, non-uniform, 

fibrous porous media (See Figure 1). In the case of SSME, a 0.25” thick plate with about 9% void space is used. Our 
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ultimate goal in this study is accurate simulation of fluid flow and heat transfer through the Rigimesh material. To 

achieve this, we need detailed knowledge of the material’s internal structure. 

 

 

 
 

Fluid flows and associated heat and mass transfer through such porous media are two-phase phenomena where 

one of the phases is solid and stationary. To simulate such flows, interaction of fluid and solid phases at the scales as 

small as individual pores of the material needs to be accounted for. Considering typically wide range of length scales 

and complex geometries involved in porous media, analysis of each individual pore can be very costly or even 

impossible. Thus the modeling efforts in this area dating back to Darcy’s
1
 experimental study in 1856 have mostly 

aimed at empirically correlating the pore level flow effects to the bulk fluid motion. Darcy related the pressure 

gradient to the average fluid velocity. A commonly adopted form of correlation has been suggested by Ergun
3
. He 

extended capability of Darcy’s relation by adding a quadratic velocity term in order to handle inertial flow regimes. 

Ergun relation involves two parameters; permeability, 
, and Ergun coefficient, ��, which are determined 

empirically.  

A more fundamental formulation can be developed by averaging the governing equations over local volume 

elements that contain both fluid and solid phases. Although this will reduce the complexity of the problem, the 

information lost by filtering the fine scale flow structures will cause an unclosed set of governing equations. 

Conventionally, the resulting closure terms are heuristically linked to the relations proposed by Darcy and Ergun 

which requires empirical determination of the parameters 
 and ��. To develop non-empirical predictive 

capabilities for porous media problems, we follow a first principle-based, multi-scale strategy to handle the closure 

problem. Most porous media can be thought of as a matrix of repeating pore patterns. Instead of directly simulating 

the fluid flow through the porous material, we model sample pore patterns and calculate the closure terms 

beforehand for varying flow speeds. Thus, we can avoid the excessive computational cost of direct simulation yet 

we can produce accurate numerical predictions completely free of empiricism.  

In this paper, we first summarize the issues related to the characterization of the Rigimesh material. Then, we 

briefly review the theoretical background followed by detailed derivations of local volume averaged governing 

equations. We then explain the conventional and multi-scale closure methodologies. In our multi-scale approach, the 

effect of porous structure on the global fluid flow is accounted for via local volume averaged governing equations. 

The resulting set of transport equations contains closure terms representing the statistical flow characteristics around 

the pores. These closure terms can be deduced by direct computation of the fluid flow in individual, representative 

pore samples. Hence, empirical dependence of simulations can be removed without requiring excessive 

computational cost. Formulations presented here contain several corrections over our previously published work
14

, 

including local volume averaged forms of momentum and energy equations and multi-scale estimations of the 

permeability and the Ergun coefficient. The revised model is incorporated into the Loci-Stream
15

 which is a parallel, 

all-speed CFD code based on the Loci framework. Loci
12

 is a rule-based programming framework especially 

designed for CFD to handle correct coordination of program components, simple storage and query of data, 

automated scheduling of events and automated parallelism. After introducing Loci-Stream in more detail, we 

examine the revised methodology for a simple porous medium with well defined pore geometry and compare the 

predictions to the experimental data by Tully et al.
13

 

II. Rigimesh Characterization 

Rigimesh is a porous material with sintered multiple layers of stainless steel woven-wire-meshes. Bonding of 

fibers at each contact point due to the sintering process provides rigidity and thus allows finer fiber diameters to be 

 
Figure 1. Surface features of the Rigimesh material used in SSME 
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employed. Finer fiber diameters in effect mean more surface area for a given volume or porosity. These properties 

make Rigimesh an appropriate fit for the applications that demand high cooling efficiency and rigidity. One such 

area is the injector face plate of liquid propellant rocket engines.  

In order to develop high fidelity models for the simulation of flow and heat transfer through the Rigimesh media, 

precise understanding of the inner topology as well as the inner dimensions is essential.  

In order to characterize the Rigimesh structure, a plate sample of 5.8 �� thickness is examined. Although the 

surface was hinting a woven structure, examining the cross section was needed to identify the orientation of layers. 

In order to get a clean cross sectional view of the material, a plate sample is fractured by bending. Although the 

bending process caused elongation and distortion of the fibers, the cross section view obtained (see Figure 2) gave 

valuable clues about the inner topology. 

 

 
 

A Rigimesh specimen was analyzed using CT scan. Unfortunately, the CT images didn’t have enough resolution 

to offer more information about the material. The surface properties of the Rigimesh were also examined by the 

contact profilometer measurement technique. A sensitive needle is traversed along the surface of the Rigimesh plate 

while maintaining contact. Position of the needle tip is recorded every 0.5 �� of a 10 �� span. Lin and Hu
16

 have 

conducted the measurements to characterize the Rigimesh. Their results show that the average distance between the 

peaks are 0.42 �� which is a measure of distance between fiber axes on the surface. The outcome is presented in 

Figure 3. 

 
 

The information obtained thus far about the detailed Rigimesh structure is insufficient for developing the pore 

level computations. More effort is needed.  

III. Multi-Scale Porous Media Model 

A. Darcy and Ergun Models 

As the first attempt to describe the flow of fluid through porous structures, Darcy
1
 experimented with gravity 

driven flow of water through a porous medium of loosely packed, uniform sized particles. He arrived at the 

following relation for pressure drop and the flow speed: 

−#� = �
 �� (1)

 The permeability, 
 with the units of %��&'ℎ)  is a measure of fluid flow conductivity of the porous media. The 

filter velocity, ��, is defined as: 

 
Figure 3. Rigimesh surface characterization by Lin and Hu

16
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Figure 2. Rigimesh cross section after bending fracture 
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�� = ��� 

 (2)

The linear relationship represented by Darcy’s Law has been shown to apply to a wide range of problems as long 

as a Reynolds number based on permeability, ��√� = ���√
/�, is roughly less than unity. At higher Reynolds 

numbers, inertial effects become comparable to Darcian effects. A correction for this flow regime is suggested by 

Forchheimer
2
 and later by Ergun

3
. Since the form presented here is due to Ergun, we attribute this relation to him. 

−+�� = �
 ��, + ��√
 �.��,.��, (3)

B. Local Volume Averaging  

 
In context of averaging the governing equations, first a sensible scale for an averaging volume needs to be 

defined.  An averaging volume should be sized small enough in order to not filter global flow structures but it should 

be large enough so as to guarantee containing both fluid and solid phases at all times. In literature, such a volume is 

called as a representative elementary volume (REV) (see Figure 4). In our multi-scale methodology, we further 

require an REV to be a repeated pattern over a portion of the porous media. 

The porosity, 	, is defined as the volume fraction of fluid phase in a porous media. 

	 = ���  (4)

Note that the porosity might be defined locally or globally depending on the scale that the volume fraction is 

calculated. In this study, however, we will assume that the porosity is uniform over the porous media. 

For an arbitrary property / defined for the fluid phase, volume averaging can be carried out as follows
10

:
 

Intrinsic Averaging: 

0/1� = 1�� 2 /dV56
 (5)

Superficial Averaging: 

0/1 = 1� 2 /7�56
= 	0/1�  (6)

C.  Averaging of Continuity Equation 
The local volume averaged continuity equation can be written as +0�1+' + 0+�(���)1 = 0 (7)

Note that we want to solve for volume averaged flow quantities. So we need to express the second term in Eq. (7) in 

terms of 0�1 and 0��1. The necessary transformation can be achieved via the volume averaging theorem introduced 

by Slattery
4
: 

< +�/ >= +� < / > + 1� 2 /��dA=>6
 (8)

 
Figure 4. Schematic of a representative elementary volume (REV) 
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Here, �� is the area normal pointing from fluid phase towards solid phase. 

 

Using Eq. (8), Eq. (7) becomes +0�1+' + +�0���1 + 1� 2 �����dA=>6
= 0 (9)

Since the fluid will be at rest at the solid-fluid interface due to the no-slip condition, the last term in Eq. (9) vanishes, 

and we get +0�1+' + +�0���1 = 0 (10)

For incompressible flows 

+�0��1 = 0 (11)

Thus, the form of the continuity equation is unchanged by local volume averaging for incompressible flows. In the 

case of compressible flows, we need to have a special treatment for averaging of the product of the density and the 

velocity component.  

The derivations hereafter assume incompressible flow with constant properties. We further consider that the 

porosity is constant throughout the porous media. These aspects can be generalized. 

D. Averaging of the Momentum Equation 

Averaging the momentum equation with no body forces yields 

� +0��1+' + �0+�����1 = 0+����1 (12)

Once again, we need to transform the inertial and the stress terms using Eq. (8) so that only the averages of the 

primitive flow variables are left in the final form instead of averages of their combinations. 

 

1. Inertial Term 

Following the approach of Gray
6
, we decompose the velocity as 

�� = 0��1� + ��? (13)

where ( )? represents local deviation from intrinsic averaged values. Applying Eq. (13) to the volume-averaged 

convective term 

0+�����1 = 0+�(��? + 0��1�)@��? + 0��1�A1
= 0+�0��1�0��1�1 + 0+���?��?1 + 0+�0��1���?1 + 0+�0��1���?1 (14)

Using Eq. (8) 

0+�����1 = +�00��1�0��1�1 + 1� 2 0��1�0��1���dA=�� + 0+���?��?1 + 0+�0��1���?1 + 0+�0��1���?1 (15)

Third and fourth terms can also be treated similarly 

0+�0��1���?1 = +�00��1���?1 + 1� 2 0��1���?��dA =>6
 (16)

Noting that 0��?1 = 0 and ��? = �� − 0��1� 

0+�0��1���?1 = 1� 2 0��1�����dA −=>6
1� 2 0��1�0��1���dA=>6

 (17)

Since the velocity is zero at the solid-fluid interface due to no-slip condition, the first integral term vanishes. 

0+�0��1���?1 = − 1� 2 0��1�0��1���dA=>6
 (18)

Thus, Eq. (15) becomes 
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0+�����1 = +�00��1�0��1�1 − 1� 2 0��1�0��1���dA=>6
+ 0+���?��?1 (19)

For the first term on the right hand side of Eq. (19), note that 0��1�0��1�  is a constant over the REV and average of 

the constant quantity is identical to itself. This step is a correction over our previous publication
14

. The correction 

eliminates an incorrect factor of porosity. Also in this paper, we choose to retain the integral term in Eq. (19) as it is 

not identically zero unless the pore geometry is symmetric. Note that the same correction is also needed in the 

convection term of the fluid phase energy equation.  

 The inertial term now becomes 

0+�����1 = +�0��1�0��1� + 0+���?��?1 − 0��1�0��1�
� 2 ��dA=>6

 (20)

Here, the second and the third terms on the right hand side cannot be evaluated with the sole knowledge of averaged 

flow quantities. These are two of the closure terms we will encounter in the final averaged form of the momentum 

equation. It is useful to note here that the integral term is identically zero for symmetric REV geometries.  

 

2. Stress Term 

For a Newtonian fluid, the stress tensor can be written as 

��� = −���� + �(+��� + +���) (21)

Averaging the stress term of the momentum equation by making use of the volume averaging theorem, i.e. Eq. (8) 

0+����1 = −+�0�1 + �+�0+��� + +���1 + 1� 2 �����dA=>6
  (22)

For the second term on the right hand side, the volume averaging theorem needs to be applied once more. 

+�0+��� + +���1 = +�+�0��1 + +�)0��1 + +� B1� 2 (���� + ����)dA=>6
C (23)

For incompressible flows, +�0��1 = 0  through the volume averaged continuity equation (Eq. (11)). Also note that 

the integral term is identically zero due to the fact that the fluid velocity is zero at the solid-fluid interface. Thus the 

stress term becomes 

0+����1 = −+�0�1 + �+�)0��1 + 1� 2 �����dA=>6
 (24)

Using Eqs. (12), (20) and (24), the averaged momentum equation becomes 

� +0��1+' + �	) +�0��10��1
= −+�0�1 + �+�)0��1 − �0+���?��?1 + 1� 2 �����dA=>6

+ �0��1�0��1�
� 2 ��dA=>6

 

(25)

All the terms of Eq. (25) except the last three on the right hand side are expressed in terms of averaged velocity 

components, i.e. the knowledge of the bulk fluid motion will suffice in evaluating them. However, the remaining 

three terms require a closure methodology. 

E. Closure of Momentum Equation 

 Direct computation of Eq. (25) necessitates complete knowledge of fluid flow throughout the porous media. 

Most porous media applications require a high number of pores for effective cooling or filtering. Therefore, the 

direct computation approach is rarely feasible. Answer to this problem has conventionally been to find empirical 

parameters for each porous material that would connect the closure terms to the bulk fluid motion. At this point, we 

take an alternate route and take advantage of the fact that most porous media consist of a matrix of repeating pore 

patterns. So, instead of computing the flow field in each pore, we can try to get away with modeling a single one of 

each repeating pore patterns observed in a given porous media. The closure terms for each pore model can then be 

computed for a range of flow speeds, allowing us to construct the closure terms accurately as functions of position 

and flow speed:  
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� +0��1+' + �	) +�0��10��1 = −+�0�1 + �+�)0��1 + D(E� , ��) (26)

Where D(E� , ��) is the closure functional established via the multi-scale method. Note that the closure functional 

acts as a source term in the local volume averaged momentum equation. Thus, existing Navier-Stokes solvers can be 

used to compute this kind of problems with very little modification for the porous zones. Computational cost 

associated with this multi-scale approach strongly depends on the level of uniformity and complexity of the pores. 

For a uniform porous media, only one pore model is needed. 

 It is useful to compare and relate the conventional and multi-scale methods of closure. In the conventional 

method, the closure terms in Eq. (25) are linked to the Ergun relation (Eq. (3)) as 

� +0��1+' + �	) +�0��10��1 = −+�0�1 + �+�)0��1 − �
 0��1 − ��√
 �|0��1|0��1 (27)

 While Eq. (3) only relates the bulk pressure drop to the total mass flow rate, the solution of Eq. (27) provides 

local volume averaged flow field information throughout the porous media. Eq. (27)  is very similar in form to the 

Navier-Stokes equations. This enables us to easily handle both conjugate open flow (without porous media) and 

porous flow problems and permits application of no-slip conditions at the solid walls bounding the solid matrix. By 

this treatment, the problem is reduced to the determination of two parameters, namely, permeability, 
 and Ergun 

coefficient, ��. These parameters are either estimated through existing empirical correlations or found via 

experiments for specific types of porous media. Note that there is no fundamental reason for Eq. (27) to be correct. 

However, in most tightly packed porous media, momentum loss is largely due to the pore scale flow structures. In 

these cases, porous source terms are dominant over the other terms in the averaged momentum equation. Thus, 

generally, Eq. (27) is expected to closely follow Eq. (3). Note also that Eq. (27) does not provide a fully 

computational framework for porous media problems as opposed to the multi-scale method. Another drawback of 

the conventional method is that it assumes the permeability and the Ergun coefficient to be independent of the flow 

speed for a given porous material. We will show later that this is in fact not the case.  

 Comparing Eqs. (25) and (27), we can find the permeability and the Ergun coefficient for a given flow speed 

with the multi-scale method instead of experimentation 


 = −�0��1 H1� 2 �����dA=>6
I

JK
 (28)

�� = √
|0��1|0��1 H0+���?��?1 − 0��1�0��1�
� 2 ��dA=>6

I (29)

F. Averaging of the Energy Equation 
Consider the fluid phase energy equation with constant specific heat and no heat sources 

@�LMA� N+��+' + +�����O = ��+�)��  (30)

Applying local volume averaging 

@�LMA� N+0��1
+' + 0+�����1O = ��0+�+���1 (31)

 

Using Eq. (8), the diffusive term can be expanded as 

��0+�+���1 = ��+�0+���1 + ��� 2 ��+���dA=>6
= ��+�)0��1 + ��� +� 2 ����dA +=>6

��� 2 ��+���dA=>6
 (32)

Defining a local temperature deviation as 

�� = 0��1� + ��? (33)

and employing the divergence theorem, the first integral term in Eq. (32) becomes 
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2 ����dA = 2 ��0��1�dA + 2 ����?dA = 2 +�0��1�dV + 2 ����?dA=>65=>6=>6=>6
 (34)

Noting that the variation of an averaged quantity within the averaging volume itself is zero, the first integral 

vanishes. We then arrive at the averaged diffusion term 

��0+�+���1 = ��+�)0��1 + ��� +� 2 ����?dA +=>6
��� 2 ��+���dA=>6

 (35)

Averaging of the convection term yields: 

0+�����1 = +�0����1 + 1� 2 ������dA=>6
 (36)

The integral term on the right hand side of Eq. (36) vanishes due to no-slip condition at the solid-fluid walls. Using 

Eq. (33), we decompose the convective term as 

0+�����1 = +�0(0��1� + ��?)@0��1� + ��?A1 = +�00��1�0��1� + 0��1���? + ��?0��1� + ��?��?1 (37)

Knowing that 0/?1 = 0, the volume-averaged convection term is obtained 

0+�����1 = +�0��1�0��1� + 	+�0��?��?1� (38)

Substituting Eq. (38) and Eq. (35) in Eq. (31), we obtain the volume-averaged energy equation for the fluid phase 

	@�LMA� N+0��1�
+' + 1	 +�0��1�0��1� + +�0��?��?1�O

= 	��+�)0��1� + ��� +� 2 ����?dA +=>6
��� 2 ��+���dA=>6

 

(39)

Similarly, for the solid phase, the volume-averaged energy equation is 

(1 − 	)@�LMA�
+0��1�

+' = (1 − 	)��+�)0��1� + ��� +� 2 ����?dA +=6>
��� 2 ��+���dA=6>

 (40)

 In many practical problems, the temperature difference between the solid and fluid phases inside an REV is 

much smaller than the global scale temperature variation. This condition is met if the REV is much smaller 

compared to global length scale, there is no heat generation or loss inside the REV and temperature distribution does 

not vary or vary slowly over time. Under these conditions, we can assume “local thermodynamic equilibrium” 

(LTE) which grants 

0��1� = 0��1� = 0�1 (41)

At the solid-fluid interface, the following boundary conditions apply P��?.=>6 = P��?|=>6  (42)

P��+���.=>6 = P��+���.=>6  (43)

Also noting that Q�� = −Q��, and adding Eqs.(39) and (40), we obtain the local volume averaged energy equation 

R	@�LMA� + (1 − 	)@�LMA�S +0�1+' + 1	 @�LMA�+�0��10�1
= T	�� + (1 − 	)��U+�)0�1 + �� − ��� +� 2 ����?dA − 	@�LMA�+�0��?��?1�

=>6
 

(44)

 Eq. (44) introduces two additional closure terms for non-isothermal problems. These closure terms can be 

handled the same way as the momentum equation counterparts with the multi-scale method. The last two terms on 

the right hand side of Eq. (44) can be computed over the chosen sample pore models for a range of temperature 

values. In the current work, we will focus on an isothermal problem. However, we presented the derivation of the 

local volume averaged energy equation for completeness and as a step towards our goal of simulating the 

transpiration cooling of the liquid rocket engine injector face plate. 
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 In summary, the present model has improved several aspects in comparison with that developed by Sozer et al.
14

, 

including a more general form derived by retaining the last integral term seen in the volume averaged momentum 

equation (Eq. (25)), also reflected in the multi-scale Ergun coefficient expression (Eq. (29)) and the corrected 

porosity factors in volume averaged momentum and energy equations (Eqs. (25) and (44)), again reflected in multi-

scale permeability and Ergun coefficient expressions (Eqs. (28) and (29)). 

IV. Numerical Method and Assessment of the Present Porous Media Model 

We have shown that the local volume averaged continuity equation is unchanged and momentum equation is 

very similar in form to the regular Navier-Stokes equations with additional momentum source terms and the 

convection term modified by a factor of porosity squared, 	). Thus a Navier-Stokes solver can easily be modified to 

account for porous media. 

The proposed formulation has been implemented in an existing Navier-Stokes solver called Loci-STREAM
15

. 

Loci-STREAM is an all-speed, pressure-based, parallel finite volume solver that is capable of handling arbitrary 

polyhedral unstructured meshes. Porous zones are designated by coordinate ranges and the previously calculated 

source terms are added to the momentum equation components. 

A. Isothermal Flow through a Drilled Orifice Plate 

 
This test case consists of a porous plate placed in a cylindrical channel as shown in Figure 5. The porous material 

used herein is a metallic plate with an array of uniform and evenly distributed drilled holes. Due to its simple and 

well defined pore geometry, this case is attractive for testing the multi-scale method developed here. The hole 

pattern details are shown in Figure 6. 

 
 

This problem was studied before by Tully et al.
13

 both numerically and experimentally. The porous plate was 

inserted in a cylindrical channel test section and pressure drop values were recorded for a range of average flow 

speeds as summarized in Table 1.  

 
Figure 6. Hole pattern details 

 
Figure 5. Problem domain 
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1. Pore Model 

The porous metallic plate has a uniform array of circular through holes distributed along its surface. Therefore, 

the pore shape is simply a circular tube. In order to account for the momentum loss as the flow adjusts to enter the 

pores, we extend the pore domain for 3 hole diameters towards upstream direction. 

 Isothermal fluid flow through the pore is computed for the range of flow speeds listed in Table 1.  Eqs. (28) and 

(29) are evaluated to find the permeability and Ergun coefficient for each flow speed in conjunction with Eq. (27) 

for the global domain. Results of the pore-scale analysis are listed in Table 2. 

 
 Table 2 clearly shows that in contrast to conventional assumption, permeability and the Ergun coefficient vary 

significantly with changing flow speeds and are not material properties. 

 

2. Global Domain 

 With the closure parameters obtained via the pore-scale analysis, flow through the global domain as shown in 

Figure 5 is computed. In the porous zone, Navier-Stokes equations are replaced with Eq. (27). Pressure drop values 

across the centerline is plotted in comparison to the experimental results by Tully et al.
13

 in Figure 7. 

 

 

 
Figure 7. Pressure drop across centerline vs. filter velocity 
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Table 2. Pore-scale analysis results V�  (�/W) ��� 
 (�J))  �� 

13.1 438 2.29 × 10JK[ 1.38 × 10J)  16.3 545 1.92 × 10JK[ 1.26 × 10J) 18.1 605 1.76 × 10JK[ 1.21 × 10J) 20.1 672 1.61 × 10JK[ 1.15 × 10J) 23.3 779 1.43 × 10JK[ 1.08 × 10J) 25.8 862 1.30 × 10JK[ 1.03 × 10J) 

 

Table 1. Summary of experimental conditions. 

Fluid properties (Air @ 24.2 
o
C) Inlet Filter Velocities (�/W) 

Density (�) 1.1875 �&/�^  V�K 13.1 

Dynamic Viscosity (�) 1.8048E-5 �&/�. W V�) 16.3 

Specific Heat (L_) 1006.2 `/�&. 
 V�^ 18.1 

Thermal Conductivity (�) 0.025913 a/�. 
 V�b 20.1 

   V�c 23.3 

   V�d 25.8 
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 Figure 7 shows that the experimental data is closely reproduced by the multi-scale method. The error relative to 

the experimental data ranges between 11% and 1% for the lowest and highest flow speeds respectively. 

V. Summary and Conclusion 

 We have improved the strategy initially proposed by Sozer et al.
14

 for multi-scale numerical simulations of fluid 

flow through porous media. In the present model, the effect of porous structures on the global fluid flow is 

accounted for via local volume averaged governing equations, while the closure terms are accounted for via 

averaging flow characteristics around the pores. Hence, empirical dependence of simulations is removed without 

requiring excessive computational cost.  The performance of the model has been tested for an isothermal flow case. 

Both the permeability and Ergun coefficient are shown to be flow properties as opposed to the empirical approach 

which typically results in constant values of these parameters independent of the flow conditions. Hence, the present 

multi-scale approach is more versatile and can account for the possible changes in flow characteristics. 

Although only demonstrated for an isothermal flow case through a simple porous media, the model can easily be 

extended to more complex flow types and geometries. Our main motivation in this study is to accurately predict the 

cooling due to fuel flow through the Rigimesh material. The formulation presented is incorporated into Loci-

STREAM code which will allow us flexibility in dealing with such complex problems.  

In the present model, detailed characterization of the topology and the dimensions of the pore patterns is needed. 

To date, the Rigimesh characterization efforts have not yet provided such information. More efforts are needed in 

this aspect.  
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