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A recently proposed low-diffusion equilibrium particle method based on the direct simulation Monte Carlo
method is modified for use with near-equilibrium viscous flows involving a simple gas. A finite volume discretization
of the viscous terms in the compressible Navier-Stokes equations is used to incorporate diffusive transport effects
into the low-diffusion particle method, and a velocity slip and temperature jump wall boundary condition is
employed for improved accuracy in the slip flow Knudsen number regime. The modified method is compared with
both direct simulation Monte Carlo and theory for a series of unsteady boundary-layer problems, and excellent
agreement is observed. Simulation procedures are outlined for a strongly coupled hybrid algorithm, in which the
low-diffusion particle method is used in continuum flowfield regions and direct simulation Monte Carlo is employed
in nonequilibrium regions. The hybrid scheme is evaluated through a comparison with numerical and experimental
data for a flow of N, through a small convergent—divergent nozzle into a near vacuum, and hybrid simulation results
are generally found to agree very well with other available data.

Nomenclature

cell face area

collision diameter

total energy per unit volume
energy flux at a wall

tangential momentum flux at a wall
thermal conductivity

Boltzmann’s constant
characteristic global length scale
molecular mass

number of interior cell faces

face outward-normal unit vector
specific gas constant

radial position coordinate

gas temperature

wall temperature

face tangent unit vector

gas bulk velocity

axial component of bulk velocity
bulk velocity in face outward-normal direction
cell volume

radial component of bulk velocity
bulk velocity in face tangent direction
axial position coordinate

specific heat ratio

change in cell-based energy

AM,; change in cell-based momentum
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d/0x' = spatial derivative in face outward-normal direction
¢ = number of internal degrees of freedom

A = mean free path

n = dynamic viscosity

0 = gas density
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Oy = wall thermal accommodation coefficient

T = viscous stress tensor

10} = viscosity index in variable hard sphere model
Subscripts

c = cell-based value

f = value at a cell face

o = value at stagnation conditions

ref = reference value

I

AS flows involving a wide range of characteristic length scales

appear in a number of different engineering applications,
including those related to atmospheric flow around reentry or
hypersonic vehicles, high-altitude rocket plumes, flows within and
around microelectromechanical systems, and supersonic flows for
which internal shock structures are of interest. In these types of flows,
a near-equilibrium gas velocity distribution may exist through
much of the flowfield, as the equilibrating effect of intermolecular
collisions dominates over other processes (such as gas-surface
interactions) that tend to pull the velocity distribution away from
equilibrium. However, some flowfield regions may have character-
istic length scales comparable to or smaller than the local mean free
path, so that the influence of collisions does not dominate and the
velocity distribution diverges considerably from the equilibrium
limit.

Although simulation of near-equilibrium flowfield regions may be
efficiently performed using computational fluid dynamics (CFD)
techniques based on the Navier—Stokes equations, nonequilibrium
regions must generally be simulated using more expensive tech-
niques based on the Boltzmann equation. The Boltzmann equation
is the governing equation for dilute gas flows at arbitrary Knudsen
numbers, and its derivation follows from assumptions of molecular
chaos and binary intermolecular collisions with no approximations
regarding the shape of the velocity distribution. The most mature and
commonly used simulation method for the Boltzmann equation is the
direct simulation Monte Carlo (DSMC) method, first introduced by
Bird [1]. In a DSMC simulation, a large number of representative
particles are tracked through a computational grid and move and
collide in a manner consistent with physical arguments underlying
the Boltzmann equation. While this method may be applied to both
nonequilibrium and continuum flowfield regions, cell size and time
step limitations often make it prohibitively expensive for simulating

Introduction


http://dx.doi.org/10.2514/1.40262

1508 BURT AND BOYD

continuum flows for which global characteristic length scales are far
larger than the mean free path.

In practice, such multiscale flows are usually simulated using both
DSMC and CFD methods, by applying CFD techniques in near-
equilibrium regions where the Navier—Stokes equations are valid and
using DSMC elsewhere in the flow. In the simplest type of hybrid
CFD-DSMC approach, a CFD simulation is performed on a domain
that extends only over near-equilibrium regions, and results from this
simulation are then used to define inflow boundary conditions for an
independent DSMC simulation. This uncoupled approach has often
been used to simulate steady-state rocket exhaust flows and other
flow problems in which the region allocated to DSMC is downstream
of the CFD region and the interface between the two regions is
uniformly supersonic [2—4].

For simulating flows involving more complex interaction between
continuum and nonequilibrium regions, some coupling between
DSMC and CFD calculations is usually necessary. This coupling
requirement creates a few major difficulties. First, two very different
codes must be integrated into a single numerical framework, with
compatible procedures for user input, grid construction, and simu-
lation output. Second, the accurate two-way transfer of information
between DSMC and CFD regions is generally complex and requires
significant code development. The inherent scatter in DSMC creates
a particular challenge, as physically realistic CFD boundary
conditions at the CFD-DSMC interface usually necessitate some
type of scatter reduction technique for sampled flow properties in
nearby DSMC cells.

To reduce scatter at the interface, recent efforts at hybrid CFD-
DSMC algorithm development have involved a weakly coupled
approach [5-7]. In a weakly coupled hybrid code, a DSMC
calculation is periodically initialized in nonequilibrium flowfield
regions and is allowed to converge before cell-averaged sampling is
performed over a large number of time steps. Sampled information is
fed back to a CFD module in the code, which then updates flow
properties in continuum regions to be used with further DSMC
calculations. This cycle may be repeated multiple times before
sufficient convergence is achieved. Although such a weakly coupled
approach has been shown to provide a significant speedup over
simulations using exclusively DSMC for a variety of challenging test
cases, this technique is limited to steady-state flows and requires
either access to or development of compatible DSMC and CFD
codes.

Other recent work on hybrid CFD-DSMC algorithm development
has focused on stronger coupling techniques for the simulation of
unsteady flows [8—11]. These techniques have been successfully
applied to a range of test cases and have demonstrated considerable
potential as general solution strategies for multiscale gas flow
problems. The inherent complexity in these methods is, however, a
serious obstacle to more widespread use, and integration of advanced
physics models (particularly internal energy accommodation,
chemical reactions, condensed phase particle transport, and radiative
absorption and emission) is an additional challenge that has so far
received very little attention.

One promising alternative to hybrid CFD-DSMC schemes
involves the use of DSMC-based particle methods for contin-
uum flow simulation [12-14]. As in traditional DSMC, these
“equilibrium” particle methods use particles to transport mass,
momentum, and energy through a computational grid and employ
temporal decoupling between particle movement and velocity
resampling procedures during each simulation time step. However,
in contrast to DSMC, which uses representative binary collisions to
reproduce the effects of the collision integral in the Boltzmann
equation, in these methods all particle velocities are effectively
resampled from a Maxwellian distribution during each time step.
This resampling procedure, performed either directly or indirectly by
means of a collision limiter, is intended to simulate the Boltzmann
equation at the equilibrium limit. Equilibrium particle methods are
therefore often described as simulation schemes for the Euler
equations, and these methods have been integrated with DSMC in
“all-particle” hybrid codes for the simulation of flows involving both
continuum and nonequilibrium regions [15,16]. This type of hybrid

approach allows for strong coupling and is therefore ideally suited to
unsteady flow simulation, while greatly simplifying the task of code
development relative to hybrid CFD-DSMC techniques. In an all-
particle hybrid scheme, information is transported in both directions
between continuum and nonequilibrium regions through simple
particle advection, and there is no need to integrate two very different
simulation schemes in the same code.

Despite the benefits of an all-particle hybrid approach (in par-
ticular, strong coupling, simplicity, and ease of implementation) this
type of approach has not received widespread acceptance, due
mainly to the large numerical diffusion inherent in existing DSMC-
based equilibrium particle methods [12]. As these methods assume
free-molecular fluxes between neighboring computational cells,
numerical transport coefficients tend to scale linearly with cell size
and have proportionality constants of order 1 [17]. Thus, both the
numerical viscosity and thermal conductivity become extremely
large when the cell size is much greater than the local mean free
path, as is typically required for a reasonably efficient simulation of
continuum flows.

To overcome the diffusion problem in existing particle methods, a
new DSMC-based equilibrium particle method was introduced in a
recent paper by the authors [18]. Instead of continuously resampling
particle velocities from a Maxwellian distribution, in this method
all particles are assigned velocities roughly equal to the local bulk
velocity. This reproduces the path of real gas molecules over
macroscopic length scales, for which the influence of Brownian
motion is suppressed due to the large disparity between the cell size
and mean free path. In the simulation procedures, particles are moved
through the grid in such a way that each particle remains fixed
with respect to a Lagrangian cell over the time step interval. The
Lagrangian cell in turn is moved and deformed according to gas bulk
properties, following a set of approximations based on kinetic theory.
As particles travel along streamlines and no free-molecular flux
assumptions are used, numerical diffusion effects are greatly reduced
relative to existing DSMC-based equilibrium particle methods.
Statistical scatter is considerably reduced as well, due to the deter-
ministic nature of particle trajectories and a lack of random processes
in the simulation procedures. When differences in required cell sizes
and the required number of sampling time steps are taken into
account, representative simulations using the new method are found
to be over an order of magnitude faster than simulations performed
using existing DSMC-based techniques [18].

The new equilibrium particle scheme, referred to here as the low-
diffusion (LD) particle method, has been integrated into a hybrid
code with DSMC for the simulation of flows involving both
continuum and nonequilibrium regions [19]. Initial tests have shown
good overall agreement between hybrid LD-DSMC simulation
results and results from a DSMC simulation of the same flow.
However, these tests were limited to flows involving symmetry or
specularly reflecting wall boundaries. The hybrid code, as described
earlier, is not able to properly resolve boundary layers or other
regions involving large transverse gradients, because equilibrium
assumptions underlying the LD method make it incapable of
modeling physically realistic diffusive transport. In this paper, an
extension is proposed to LD simulation procedures to model such
viscous flow effects. Diffusive terms in the compressible Navier—
Stokes equations are evaluated in each cell during each time step and
are used to modify particle velocity and temperature values in a
manner consistent with DSMC transport coefficients at the near-
equilibrium limit.

In the following sections, a series of modifications are proposed
for the LD method and for an LD-DSMC hybrid scheme for the
inclusion of viscous flow phenomena. First, updated numerical
procedures are described for the LD simulation of near-equilibrium
viscous flows involving a simple gas. Next, a series of one-
dimensional unsteady test cases are used to evaluate the modified LD
method through a comparison with DSMC results and a theoretical
solution. Modifications to the hybrid LD-DSMC algorithm are then
discussed, and hybrid simulation results are presented for a
representative nozzle and plume flow problem for which results can
be compared with existing numerical and experimental data.
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II. Simulation Procedures
in the Low-Diffusion Method

Although numerical procedures for the original LD particle
method for inviscid flow simulation are described in detail in a
previous paper [18], a brief summary of the basic steps is provided
here for reference. As in DSMC, all particles in an LD simulation
carry information for a position, a velocity used to update the
position, and a species identification number. In contrast to DSMC,
however, an LD simulation requires that each particle also be
assigned a temperature and a second velocity, termed the “bulk
particle velocity,” which is used to allocate momentum among all
particles in a cell. Additional values are also stored in the cell
data structure, including a cell-averaged bulk velocity, density,
temperature, and thermal speed scaling factor that is proportional to
the inverse square root of temperature. For simulations involving a
non-Cartesian grid, the cell data structure should also include the area
and components of the outward unit normal vector for each face. A
scalar velocity value is also stored for each cell face and gives the
outward-normal velocity of the corresponding face in a Lagrangian
cell.

As described in [18], the LD method is based on an approximation
of the gas as a network of Lagrangian fluid elements, with
neighboring elements separated by massless specularly reflecting
wall boundaries. These wall boundaries constitute the faces of
temporary Lagrangian cells, which are coincident with stationary
Eulerian grid cells at the beginning of each time step and which
deform over the time step interval as a function of local gas
properties. Particles are moved during each time step so as to
remain fixed with respect to an assigned Lagrangian cell, and mass,
momentum, and energy are transported between Eulerian cells
through particle advection. The following routines are performed
during each time step of an LD particle method simulation, in place of
DSMC collision calculations:

1) The density, bulk velocity, and temperature are evaluated in
each grid cell as functions of the cell-averaged particle properties,
and these values are stored in the cell data structure.

2) A velocity is calculated for the Lagrangian face corresponding
to each cell face in the fixed Eulerian grid using a series of
expressions derived from kinetic theory.

3) Bulk velocity and temperature values assigned to each cell are
updated, based on the contribution of momentum and energy transfer
across all corresponding Lagrangian faces over the time step interval
At.

4) All particles in each cell are assigned the cell-based bulk
velocity and temperature.

5) Velocities used for particle movement are updated in such a way
that all particles maintain a constant relative position within a
Lagrangian cell over the time step interval.

Particle movement and time-averaged sampling procedures are
then performed as in the DSMC method. A few additional modifi-
cations to standard DSMC procedures are required, particularly to
the generation of new particles at inflow boundaries, and are
described in [18].

In the proposed extension of the LD method to near-equilibrium
viscous flows, all simulation routines are performed as listed, but
cell-based bulk velocity and temperature values are updated in step 3
to account for diffusive momentum and energy transport as well as
momentum and energy transfer across Lagrangian cell faces. The
diffusive transport contributions are determined through an explicit
finite volume solution to the viscous portion of the compressible
Navier—Stokes equations, with all time-independent advection terms
removed. For a simple gas, the resulting viscous transport equations
[20] can be written as

.X.]' Xi

t a dr  dx; \ 0 )
where
ou;  ou;\
T = “(a_x, + 3_)61) —5(V-u)d;; (2)

where t;; is the viscous stress tensor employing Stokes’s hypothesis
for bulk viscosity, u; is the bulk velocity component in the x;
direction, u is the dynamic viscosity, k is the thermal conductivity, T
is the temperature, and p is the gas density. The symbol e denotes the
total energy per unit volume and is equal to pc, T + % pu;u;, where ¢,
is the specific heat at constant volume.

In an axisymmetric finite volume discretization of Egs. (1), a
source term [20]

(n/1GV-u—2(v/r)

must be added to the right side of the equation in (1) governing the
time variation in radial momentum. Here, v is the radial component
of bulk velocity and r is the radial position coordinate, with v
averaged over the volume of a cell and r evaluated at the cell
center. As a further modification for the axisymmetric case, the
axisymmetric divergence operator includes an extra term v/ r, so that

2 PR 3)
dx dr r
where u is the bulk velocity component in the axial direction, and x is
the axial coordinate.

By integrating Egs. (1) over the cell volume, applying the
divergence theorem, and discretizing time derivatives over the
time step interval Af, we find the following expressions for the
momentum change AM; and energy change AE in the cell due to
diffusive transport in a two-dimensional planar simulation:

o . o o'
AMI-:AIZAf gﬂwni—ﬁ‘ll«wli)f
! )

i aT ' N
AE = Atzf:Af(kax/ +%/Lgn,-u,- + th;ui)f

Here, N/ is the total number of interior faces for the cell (excluding
any faces located on grid boundaries), the subscript f designates
values for a particular face, A, is the face area, n; and t; designate face
outward-normal and face tangent unit vectors, respectively, and u, k
and u; are, respectively, the dynamic viscosity, thermal conductivity,
and bulk velocity evaluated at the face. The symbols #’ and v denote
bulk velocity components normal and tangent to the face, T is the
temperature, and d/dx’ gives a spatial derivative in the face outward-
normal direction. For the axisymmetric case, the quantity
u' v

ox  ir

should replace du’'/dx’ in Eqs. (4) due to the extra term in the
axisymmetric divergence operator. As an additional modification for
the axisymmetric case, the term

V(ou Odv v
%Af[h(a*vz;)l

must be added to the right side of the radial momentum equation in
(4), following the source term in the axisymmetric finite volume
approximation to Egs. (1). Here V is the cell volume, the radius r is
evaluated at the cell centroid, and the subscript ¢ indicates that all
bracketed terms are cell-based values. In simulations involving a
non-Cartesian grid, the cell-based velocity derivatives du/dx and
dv/dr are evaluated using face quantities, as described in Section IV.

Face normal derivatives d/dx’ in (4) are calculated by dividing the
difference in a given quantity between neighboring cells by the dot
product of n; and the vector difference between cell center locations.
Values of u, k, and u; are computed as unweighted averages among
cell-based values for the cells on either side of the face. For
consistency with DSMC calculations in a hybrid scheme involving
coupled LD and DSMC calculations, the viscosity p in each cell is
determined as a power-law function of cell temperature using the
variable hard sphere (VHS) model [1,6]:
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Here d,; is a reference VHS collision diameter evaluated at the
reference temperature 7., m is the molecular mass, kg is
Boltzmann’s constant, and w is the VHS viscosity index. The thermal
conductivity k is in turn calculated from p using a formula derived
from Eucken’s relation [21]:

k=115 + 20)Ru (6)

where ¢ is the number of internal degrees of freedom, and R = kz/m
is the specific gas constant.

For further consistency with DSMC in a hybrid scheme, a model
proposed by Chou and Baganoft [22] for velocity slip and tem-
perature jump along wall boundaries is employed. This model was
developed specifically for application to hybrid continuum-particle
algorithms involving DSMC and is based on the standard DSMC
treatment of gas-wall interactions. In addition to arguably better
theoretical consistency with DSMC than traditional gradient-based
slip models [21], the Chou and Baganoff model is considerably
easier to implement and less prone to instabilities due to a lack of
dependence on cell gradient evaluations.

Although not explicitly given in their paper, procedures described
by Chou and Baganoff can be used to express the net tangential
momentum flux f,-), and energy flux f into a wall boundary as
functions of the specific gas constant R, specific heat ratio y=
(¢ +5)/(¢ + 3), tangential bulk velocity u,, gas density p, gas
temperature 7', wall temperature 7, and wall thermal accom-
modation coefficient o,

fl-M = 0yUp \'% RT/ZT[
fe=50,((y + D/(y = ))pR(T = T,)yRT /27

As implemented here, a wall boundary face is treated in a similar
manner as a symmetry boundary face, for which the corresponding
Lagrangian face will have zero normal velocity [18] but no
limitations are set on the cell temperature or bulk velocity. However,
additional momentum and energy transport to the cell will occur
along a wall boundary face. Given a wall temperature 7, and
thermal accommodation coefficient o, specified as simulation input
parameters, the following expressions are used to determine the
viscous contributions to changes in cell momentum and energy, AM;
and AE, respectively, at a wall boundary face f over the time step
interval At:

AM; = —0,AtAs(t;t;) ju; 04/ RT /2
AE = —1o,AtA¢(§ + 4)pR(T — T,)/RT /27

where u;, p, and T designate the cell bulk velocity, density, and
temperature, respectively. For a cell that borders a wall boundary, the
total viscous changes in cell momentum and energy are calculated as
a summation of Eqgs. (4) and (8).

Following the evaluation of Egs. (4) and (8), the quantities AM;
and AFE are used to update cell-based velocity and temperature
values as given in step 3 of the LD particle method procedures listed
earlier. Note that Eqs. (4) and (8) are given for a two-dimensional
simulation only. The three-dimensional case would include the
addition of extra terms corresponding to the additional tangent vector
required to describe an orthonormal coordinate system aligned with
each cell face. For example, in a three-dimensional simulation, given
a set of orthogonal unit vectors (¢!, £?) that are both tangent to a wall
boundary face, the quantity (¢;¢;) ;u; in Egs. (8) will be replaced by

O]

®)

III. Evaluation of Viscous Flow Modifications

A series of simple one-dimensional test cases are used to
independently evaluate diffusive momentum and energy transport in
the LD method with modifications for viscous flow simulation. In the

first test case, we consider the unsteady Rayleigh problem [11,12,23]
involving a subsonic gas flow at an initially uniform velocity parallel
to an infinitely long stationary wall. Here the gas is argon, both gas
and wall temperatures are set to 300 K, and a thermal accommodation
coefficient (TAC) of 1.0 is used at the wall. The initial gas velocity is
64.5 m/s, corresponding to a Mach number of 0.2, and the number
density is set to 1.4 x 102" m™ for a mean free path (1) of approxi-
mately 0.001 m. An LD simulation is performed on a 0.5 m grid,
divided into 50 cells of uniform length with 20 particles per cell and
a time step interval of 107> s. A symmetry boundary condition is
used along the simulation domain boundary opposite the wall, and
periodic boundary conditions are used elsewhere to avoid any
transverse gradients. For comparison, a DSMC simulation of the
same flow is performed on a grid of equal length with 500 cells, 10*
particles per cell, and a time step of 107° s, such that the cell size and
time step are refined to about one mean free path and half the mean
collision time, respectively. Both simulations are run for a total
elapsed time of 0.01 s, and cell-averaged bulk velocity profiles at the
final time step are shown in Fig. 1 for the portion of the simulation
domain within 0.25 m of the wall.

Note that the DSMC simulation employs a total of 5 x 10°
particles and 10* time steps, whereas the LD simulation uses only
1000 particles and 1000 time steps. The DSMC simulation was
performed on 16 processors in a large parallel cluster and required
approximately 14.4 CPU hours. In contrast, the LD simulation was
run in under 2 s on a single processor, which corresponds to an
efficiency increase relative to DSMC of over 4 orders of magnitude.
Although this scale of efficiency increase may seem surprising, it
should be emphasized that DSMC is far more computationally
expensive than nearly any continuum simulation method when
applied to a near-equilibrium flow, due to stringent DSMC cell size
and time step requirements. The efficiency increase for this case is
further enhanced by differences in the level of statistical scatter; far
more particles per cell are required in a DSMC simulation than in an
LD simulation for comparable scatter when no temporal or ensemble
averaging is employed.

The DSMC and LD velocity profiles in Fig. 1 show excellent
overall agreement, although the scatter in DSMC data points is far
greater than that observed in the LD results. (If a similar number of
particles per cell had been used in the DSMC simulation as in the LD
simulation, the scatter in DSMC would likely have been sufficient to
make any meaningful comparison of instantaneous velocity profiles
impossible.) Both profiles show a smooth boundary layer with a
nearly constant slope near the wall and a relatively uniform velocity
beyond about 0.15 m from the wall.

For comparison, the theoretical solution [23] to the unsteady
Rayleigh problem is also included in the plot, with a viscosity
calculated from the same VHS model expressions [6] used to
evaluate the viscosity in the LD method. Small but noticeable
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= ]
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] : LD simulation, N=20
o0dy & | DSMC simulation, N=10*
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i = = = = | D simulation, no-slip b.c.
10 - ° LD simulation, TAC=0.1
1 | —=—==-- DSMC simulation, TAC=0.1
00— —T T T
0 0.05 0.1 0.15 0.2 0.25
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Fig. 1 Velocity profiles for the unsteady Rayleigh flow at 0.01 s.
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disagreement is shown in boundary-layer profiles between the
theoretical solution and both the LD and DSMC velocity profiles.
This disagreement can be attributed to the no-slip wall boundary
condition used in the theoretical solution, whereas a nonzero velocity
is found in cells bordering the wall in the DSMC and LD results. To
evaluate the influence of this velocity jump, a second LD simulation
is performed with the bulk velocity fixed at zero in the cell bordering
the wall. The velocity profile from this additional simulation shows
very good agreement with the exact solution, and only a small
discrepancy between the two profiles is noticeable in the region of
maximum curvature around 0.1 m outward from the wall.

To evaluate the effectiveness of the slip model employed in LD
calculations, additional LD and DSMC simulations are run with a
TAC value of 0.1. A lower accommodation coefficient should make
wall slip effects more prominent, so that such effects can be more
easily assessed in a comparison of boundary-layer profiles. Results
from these additional simulations are shown in Fig. 1. As in the
results described earlier for simulations with TAC = 1.0, the two
simulations with TAC = 0.1 show excellent overall agreement, with
a considerable reduction in statistical scatter for the LD data points.
Some small but noticeable difference is found, however, between the
wall slip velocities from the two simulations, although much of this
difference is likely due to scatter in the DSMC results.

A second test case is used to assess diffusive energy transport in
the LD method. This is also a one-dimensional unsteady problem and
involves an impulsively heated wall bordering an initially quiescent
gas of uniform temperature. Here the wall temperature is set to 400 K,
the initial gas temperature is 300 K, the wall TAC value is 1.0, and the
other physical and numerical parameters are identical to those in the
previous case. The only further difference between the LD
simulation of this flow and the first LD simulation for the unsteady
Rayleigh flow is in the number of particles per cell. Because the
pressure should be nearly uniform across the boundary layer where a
temperature gradient exists, there must also be a gradient in gas
density. As the density is initially constant, a finite bulk velocity will
develop in the boundary layer and some LD particles will move
between cells. The resulting fluctuations in cell-averaged conserved
quantities should produce some scatter in the LD temperature profile.
To more clearly compare trends between LD and DSMC
simulations, this scatter is reduced by using 100 particles per cell
instead of 20 as in the previous case. Temperature profiles from both
the LD and DSMC simulations at an elapsed time of 0.01 s are shown
in Fig. 2.

Very good overall agreement is found between the two results in
Fig. 2. In this case, a relatively lower level of scatter is found in the
LD temperature profile, although 100 times fewer particles per cell
are employed in the LD simulation. Despite the scatter in both results,

400 -
[ (e} LD simulation, N=100
:Q. N BECLCITCEELE DSMC simulation, N=10*
Ro . LD simulation, TAC=0.1
38O B | ————m- DSMC simulation, TAC=0.1
N4 ]
& 360
‘5 N
®
g i
g i
£ 340 —
9 |
1 0.0
320 ! R
T l\,"\. ‘O..QQ
| Iy 28000600
] R R RO TS
300
——T —_———
0 0.05 0.1 0.15 0.2 0.25
X, m

Fig. 2 Temperature profiles for flow over an impulsively heated wall at
0.01s.

the level of agreement found here is a convincing indication that
diffusive energy transport is properly handled in the LD method.

To more clearly assess the effectiveness of the wall slip boundary
condition used in LD calculations, additional LD and DSMC simu-
lations are run with TAC = 0.1. Temperature profiles from these
simulations at 0.01 s are shown in Fig. 2. Reasonably good
agreement is observed between the LD and DSMC results, with some
noticeable difference in the magnitude of temperature jump at the
wall. As in the TAC = 1.0 case, differences between the two
temperature profiles are dominated by statistical scatter, particularly
in the DSMC data points.

IV. Hybrid Simulation Procedures Using the Modified
Low-Diffusion Method

As discussed in the Introduction, the original LD method for
inviscid flow simulation has recently been integrated into a hybrid
code with DSMC for the simulation of flows involving both
continuum and nonequilibrium regions. Hybrid code implementa-
tion is relatively straightforward and involves few additional
procedures not already present in either the DSMC or LD methods, as
described in a previous paper [19]. In the hybrid algorithm, a
continuum breakdown parameter based on the density gradient is
periodically evaluated in all cells within the computational grid, and
breakdown parameter values are compared with a predefined cutoff
value to determine whether each cell should be assigned to either
DSMC or LD domains. Continuum breakdown is assumed to occur
when the condition

A A
max{; |V'O|’Z} > 0.02 O]

is satisfied, where A is the local mean free path, p is the gas density,
and L is a characteristic global length scale.

Two layers of buffer cells, with each layer two cells thick, are
employed along the boundary between DSMC and LD domains and
are designated as buffer regions A and B. The relative locations of
these buffer regions are shown in Fig. 3. In buffer region A, adjacent
to the DSMC domain, all simulation procedures are carried out as in
DSMC cells, whereas in buffer region B, adjacent to the LD domain,
standard LD routines are performed. Just before particle movement
procedures during each time step, all particles in both buffer regions
are cloned. Newly generated clone particles in region A are given
LD-type particle characteristics and are assigned velocity and
temperature values based on cell-averaged properties. (To reduce
scatter in cell-based property values for cells within buffer region A,
these values are averaged over a large number of time steps using a
subrelaxation technique as described in [19]). Likewise, newly
generated clone particles in region B are given velocity and internal
energy values sampled from equilibrium distributions corresponding
to cell-averaged properties and are assigned temperature values of
zero to designate them as DSMC-type particles. For clarity, it should
be noted that, immediately following clone particle generation in

region B

Fig. 3 Relative location of buffer regions in a hybrid LD-DSMC
simulation.



1512 BURT AND BOYD

these buffer regions, all cells in regions A and B should contain an
equal number of DSMC- and LD-type particles.

Following particle movement procedures, all LD-type particles in
buffer region A are removed from the simulation, and all DSMC-type
particles in region B are removed as well. This provides a simple and
effective means of strongly coupled information transfer between the
LD and DSMC domains. Note, however, that mass, momentum, and
energy are only conserved during this information transfer in an
average sense, and there is some potential for random walk errors.
The reader is referred to [19] for further details on hybrid code
implementation.

For implementation of the LD method with viscous flow
modifications in a hybrid LD-DSMC code, few adjustments are
required to the procedures already outlined. All procedures are
identical other than those related to velocity sampling for DSMC-
type clone particles in buffer region B. As found in previous work on
hybrid CFD-DSMC simulations employing the Navier—Stokes
equations [3,11], significant errors may result when newly generated
particles entering a DSMC cell from the CFD domain are assigned
velocities from a Maxwellian distribution. These errors are par-
ticularly large when strong gradients exist along the interface
between the DSMC and CFD domains, as in boundary layers that
include both continuum and nonequilibrium regions. To properly
account for gradients at the CFD-DSMC interface, particle velocities
should be sampled from a Chapman—Enskog distribution instead of a
Maxwellian distribution. An efficient acceptance—rejection scheme
[24] is therefore used here to generate velocities from a first-order
Chapman—Enskog distribution for newly generated DSMC-type
clone particles.

Note that the Chapman-Enskog distribution includes both
velocity and temperature gradients. These gradients are computed in
all cells within buffer region B during each time step. The cell-based
temperature gradient in a two-dimensional planar simulation may be
found through a first-order approximation using the divergence
theorem,

T 1 &
P V—C;Af.(Tni)_f (10)
where V.. is the cell volume, and the temperature at a face is evaluated
as an unweighted average of cell-based temperatures for cells on
either side of the face. An additional term, (7'/r),., must be subtracted
from the right side of Eq. (10) for evaluations of the radial
temperature derivative d7/dr in an axisymmetric simulation.
Velocity gradients are computed in a similar manner.

V. Hybrid Scheme Evaluation

As a representative test case for the evaluation of the LD-DSMC
hybrid algorithm with viscous modifications, we consider a flow of
N, through a small convergent—divergent nozzle into a vacuum
chamber. This flow was previously used in a study by Boyd et al. [25]
in which experimental measurements of pitot pressure along the
nozzle exit plane and in the near-field plume region were compared
with results from uncoupled CFD and DSMC simulations. In the
numerical approach of Boyd et al., a DSMC simulation was run
for a flowfield domain beginning slightly downstream of the nozzle
throat, and nonuniform DSMC inflow boundary conditions were
taken from the results of an independent Navier—Stokes CFD
simulation for the nozzle flow. DSMC is required for the accurate
simulation of the divergent nozzle and plume regions where
nonequilibrium effects are significant, but a DSMC simulation
including the high-density convergent nozzle region would have
been prohibitively expensive. The uncoupled hybrid approach used
in this study therefore provided an effective balance between
accuracy and efficiency, and good general agreement was found
between the experiment and simulation results. It should be
emphasized, however, that the uncoupled CFD-DSMC approach is
limited to a narrow range of applications, for which flow along
the interface between the two simulation domains is uniformly

supersonic in the direction normal to the interface and unsteady
effects can be neglected. Moreover, this approach requires that
the continuum breakdown boundary be known before DSMC
calculations are performed and involves setup and grid generation for
two independent simulations using different sets of input parameters.
None of these limitations apply to strongly coupled hybrid schemes
such as the LD-DSMC scheme presented here.

An axisymmetric hybrid LD-DSMC simulation of this same flow
is performed for comparison with published data, using the grid
geometry and flowfield parameters given by Boyd et al. [25]. The
nozzle has a throat diameter of 3.18 mm, a divergence half-angle of
20 deg, and an area ratio of 100 in the divergent section. The
simulation domain extends 4 cm beyond the nozzle exit in the axial
direction and 5 cm radially outward from the central axis. The grid
boundary geometry is shown in Fig. 4. Gas flow parameters include a
stagnation temperature of 699 K, a stagnation pressure of 6400 Pa, a
mass flow rate of 6.8 x 107> kg/s, and an ambient temperature and
pressure of 300 K and 1072 Pa, respectively, in the vacuum chamber.
The nozzle wall is assumed to have a temperature of 587 K and a
thermal accommodation coefficient of 1.0.

The hybrid simulation is performed using a modified version of the
DSMC code MONACO [26], with all DSMC and LD calculation
routines fully parallelized for efficient operation on large clusters.
The DSMC calculations here employ non-Cartesian subcells with
dimensions of roughly one-half the local mean free path, and the
VHS model is used along with the no-time-counter scheme of
Bird [1] to select DSMC collision pairs during each time step.
Translational-rotational energy exchange during simulated DSMC
collisions is determined using the Larsen—Borgnakke model [1]
along with the model of Boyd [27], in which the inelastic collision
probability is evaluated as a function of the total collision energy.

As in [19], all cells in the grid are periodically (once every
500 time steps) assigned to DSMC, LD, or buffer regions. During
this assignment procedure, continuum breakdown is evaluated in
each cell using Eq. (9), with the characteristic global length scale L
set to equal the nozzle throat diameter. Numerical weight factors (the
number of real molecules represented by each particle in the
simulation) are assigned to each cell roughly in proportion to cell
volume, and several bands of constant numerical weight are used to
reduce random walk errors associated with cloning and removal
procedures when particles move between cells with different weight
values. Although most cells in the divergent nozzle region and all
cells in the plume can be assigned to the same constant-weight band,
large differences in weight values are required in regions upstream of
the throat to avoid excessive particle populations in some cells while
assuring that each cell, on average, contains at least 20 particles.

A structured grid with 38,200 quadrilateral cells is used in the
hybrid simulation. All cells in regions of expected continuum
breakdown are refined to less than two local mean free paths, and
cells in continuum regions are sufficiently refined to assure grid
independence. (Grid independence was confirmed by running an
additional simulation with much smaller cells in high-gradient
regions and assuring that any differences in various flow quantities
are no larger than a few percent.) The simulation employs a uniform
global time step interval of 108 s. This interval was estimated to
meet DSMC time step requirements in cells expected to be within the
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Fig. 4 Grid geometry, LD and DSMC domains, and streamlines in the
hybrid nozzle/plume flow simulation.
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DSMC domain and to meet a less restrictive Courant—Friedrichs—
Lewy criterion [28] in other cells within the probable LD domain.
The flowfield is initialized at simulation startup with subsonic nozzle
inflow conditions upstream of the throat and with vacuum chamber
ambient conditions elsewhere. Calculations are performed for a
startup period of 100,000 time steps, followed by a sampling period
of another 100,000 time steps after convergence to steady state. The
simulation requires about 30 h on 20 AMD Opteron processors in the
NYX cluster at the University of Michigan.

As an additional source of data for comparison with LD-DSMC
simulation results, a set of CFD and DSMC simulations for this flow
is performed using the same uncoupled procedure as the simulations
of Boyd et al. [25]. A CFD simulation is run for the flow within the
nozzle, and a DSMC simulation is then run for the divergent nozzle
region and plume. Flow properties along the nonuniform DSMC
inflow boundary, which is located approximately 1 mm downstream
of the nozzle throat, are extracted from CFD results at the inflow
boundary location. The DSMC simulation is performed with the
same code [26] that is used as a basis for the hybrid LD-DSMC code,
and the same DSMC models are used in the DSMC simulation as in
the hybrid LD-DSMC simulation. Thus, a comparison of LD-DSMC
results and results from the uncoupled DSMC simulation should
allow for an assessment of hybrid scheme accuracy independent of
any DSMC modeling approximations.

The CFD nozzle flow simulation is performed using the LeMANS
code [20] developed at the University of Michigan. A second-order
point implicit simulation is run using a finite volume discretization of
the axisymmetric compressible Navier—Stokes equations, and a
modified low-dissipation version of Steger—Warming flux vector
splitting is used to evaluate fluxes along cell faces. As in the
LD particle method, no consideration is made for rotational
nonequilibrium effects, and vibrational excitation is neglected due to
the low temperature range in this flow. Although the LeMANS code
was developed for the simulation of hypersonic blunt body flows, a
recent unpublished study has shown very good overall accuracy
when LeMANS calculations are applied to the flow regimes
experienced in this nozzle flow case. However, assumptions used in
LeMANS that the flow is supersonic along inflow boundaries result
in an increase in mass flow of about 3.5% relative to the desired value
of 6.8 x 1073 kg/s, as measured by Boyd et al. [25]. For a better
comparison of results from the hybrid LD-DSMC simulation and the
uncoupled CFD and DSMC simulations, the inflow number density
in the hybrid simulation is adjusted to match this increased mass flow
rate.

Streamlines and domain boundaries at steady state in the hybrid
LD-DSMC simulation are shown in Fig. 4. The LD domain includes
high-density near-equilibrium regions upstream and some distance
downstream of the nozzle throat, whereas the DSMC domain
comprises remaining portions of the divergent nozzle region and
plume. Streamlines show generally expected trends, with smooth
convergence toward the throat and a gradual increase in divergence
angles downstream of the nozzle exit plane.

The contours of a density-based gradient length local Knudsen
number [29] from the LD-DSMC simulation are shown in Fig. 5.
This is the same nondimensional parameter used in Eq. (9) as part of
the continuum breakdown criterion for the assignment of cells to LD
or DSMC domains; it can be viewed as one indicator of the local
validity of near-equilibrium assumptions underlying the Navier—
Stokes equations. These same assumptions (in particular, that the
velocity distribution is a small perturbation from a Maxwellian
distribution) are used as a basis for the LD method and are thought to
be valid so long as the ratio of the mean free path to characteristic
gradient length scales is much less than 1. From the contour lines in
Fig. 5, it follows that such near-equilibrium assumptions become
progressively less suitable with increasing distance from the central
axis in the divergent nozzle and plume regions. As expected, a very
high degree of nonequilibrium is observed around the nozzle lip, due
to considerable density gradients and large mean free path values
associated with a strong centered expansion in this region.

Figure 6 shows contours of density from the hybrid simulation,
with values normalized by the stagnation density. The figure shows a
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Fig. 5 Contours of the gradient length local Knudsen number based on
density.

density reduction of over 5 orders of magnitude between the
stagnation region upstream of the nozzle and the far-field plume
region near the nozzle exit plane. There is a particularly large density
range in the region of rapid expansion around the nozzle lip, and a
small density increase near the wall in the convergent nozzle region
corresponding to a temperature reduction in the boundary layer along
the relatively cool isothermal wall. Contours of Mach number are
shownin Fig. 7. Asin Fig. 6, the Mach number contour plot shows an
area near the axis in the divergent nozzle region where radial
gradients are small and where the flow may be roughly characterized
as a quasi-one-dimensional isentropic expansion. Further from the
axis, large radial gradients appear as a result of the increased
streamline divergence angles and the presence of a thick boundary
layer along the nozzle wall. As expected, sonic lines are observed in
Fig. 7 at the throat and within the boundary layer in the convergent
nozzle region, with a sonic point at the nozzle lip. An additional
subsonic region is found far from the axis near the nozzle exit plane
and is thought to appear as a result of the finite ambient density in the
simulated vacuum chamber.

In Figs. 8-10, results from the hybrid LD-DSMC simulation
along a radial plane a small distance (0.6 mm) downstream of the
nozzle throat are compared with results from CFD Navier—Stokes
simulations. Curves labeled CFD (1) are taken from the LeMANS
[20] nozzle flow simulation performed as part of this study, whereas
curves labeled CED (2) are from the CFD simulation of Boyd et al.
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Fig. 6 Contours of density from the hybrid LD-DSMC simulation.

Fig. 7 Mach number contours.
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Fig. 8 Profiles of bulk velocity magnitude near the nozzle throat.

[25]. Although CFD results should ideally be independent of the
scheme employed in the CFD calculations, it should be noted
that the simulation of Boyd et al. involves a very different set of
numerical techniques than LeMANS. This simulation was per-
formed using the second-order explicit two-step MacCormack
method, with additional likely differences from LeMANS in
physical modeling assumptions such as the temperature dependence
of transport coefficients. Differences in algorithms and physical
models between the two CFD simulations may account for any
disagreement observed in the CFD results, although insufficient
information is presented by Boyd et al. [25] to allow any definite
explanations for such disagreement.

Figure 8 shows profiles of bulk velocity magnitude from the
hybrid LD-DSMC simulation and both CFD simulations. Velocity
values are normalized by the most probable thermal speed at the
stagnation conditions, and radial coordinates are normalized by the
nozzle throat diameter. We find excellent overall agreement between
all three curves of Fig. 8, with particularly good agreement between
the LD-DSMC and CFD (1) results. The maximum difference in
throat velocity profiles is near the “shoulder” in the profile at the outer
edge of the boundary layer, where the CFD (2) value is about 3%
higher than the values from the other two simulations. Although no
clear explanation for this difference can be found, the high level of
agreement in this region between the other two simulation results
indicates that the difference is not likely a result of fundamental
problems in the LD particle method or its implementation in the
hybrid scheme. Note that a nonzero velocity is found along the wall
in the hybrid simulation as a result of the slip model employed in the
LD method procedures. Although no-slip model is used in either
CFD simulation, the magnitude of velocity slip here can be assumed
accurate based on the comparison with DSMC boundary-layer
profiles in Sec. III. Although the presence of a nonzero slip velocity
has a minimal impact on the hybrid velocity profile in Fig. 8, we
expect this slip effect to significantly influence surface properties
such as wall shear stress.

Figure 9 shows profiles of temperature, normalized by the
stagnation temperature, slightly downstream of the throat in the
hybrid simulation and the LeMANS CFD simulation. (No cor-
responding temperature data were provided for the CFD simulation
of Boyd et al., and so results from this additional CFD simulation
cannot be used here for comparison.) Overall agreement here is
excellent, with differences at the central axis of around 0.1%.
Noticeable disagreement is found, however, in an area some distance
away from both the axis and the wall, where a slight underprediction
in temperature is observed in the hybrid results. The maximum local
temperature difference here is about 2.6%, and occurs at a
normalized radial coordinate of around 0.4.

Normalized density profiles near the throat are shown in Fig. 10.
As with temperature data, no information for gas density near the
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Fig. 10 Density profiles near the nozzle throat.

throat is available for the CFD simulation of Boyd et al., and so only
the LeMANS CFD simulation is used for comparison with the hybrid
simulation results. As in Fig. 9, excellent overall agreement is
observed in throat density profiles between the two simulations. The
maximum difference occurs at the central axis, where density is
underpredicted in the hybrid simulation by about 2.7%.

Figure 11 shows profiles of bulk velocity magnitude at the nozzle
exit from the hybrid LD-DSMC simulation and from uncoupled sets
of CFD and DSMC simulations as described earlier. The curve
labeled CFD/DSMC (1) is taken from results of the uncoupled
MONACO [26] DSMC simulation performed as part of the present
study, whereas the curve labeled CFD/DSMC (2) is from the
published data of Boyd et al. [25]. Velocity values in Fig. 11 are
normalized by the characteristic thermal speed for N, at the
stagnation temperature, and radial coordinates are normalized by the
nozzle exit diameter. As in the throat velocity profiles shown in
Fig. 8, remarkably good agreement is found between the hybrid
simulation results and results from additional simulations performed
for comparison as part of the present study. The maximum local
difference between the hybrid and CFD/DSMC (1) exit plane
velocity profiles is about 0.1%. In contrast, significant differences
exist between the velocity profile of Boyd et al. and the other two
curves. No clear explanation for these differences is apparent,
although the level of agreement between hybrid simulation and CFD/
DSMC (1) results makes any large differences caused by errors in the
hybrid algorithm seem unlikely.
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The profiles of translational and rotational temperature along the
nozzle exit plane are shown in Fig. 12. Temperature values are
normalized by the stagnation temperature. Note that the throat
temperature profiles in Fig. 9 are taken within the LD domain for the
hybrid LD-DSMC simulation, where there is no distinction between
translational and rotational temperatures. These temperatures may be
considered independently at the nozzle exit in the hybrid simulation,
because this region is well within the DSMC domain shown in Fig. 4.
In Fig. 12, very good agreement is found between results from
all three simulations; both translational and rotational temperature
profiles from the hybrid simulation and MONACO DSMC simu-
lation are nearly indistinguishable. Significant rotational temperature
lag is observed in all results within an area some distance from the
central axis. This trend may be attributed in part to the low collision
frequency, large rotational collision number, and streamwise
translational temperature gradients associated with a rapid expansion
in this region.

Normalized density profiles along the nozzle exit from the hybrid
LD-DSMC simulation and the uncoupled MONACO DSMC
simulation are shown in Fig. 13. (No corresponding data from the
DSMC simulation of Boyd et al. are available for comparison.) As
with other results from these two simulations, the overall level of
agreement is excellent. The largest local difference between density
values at the nozzle exit is approximately 1.7%, and occurs at a
normalized radial coordinate of about 0.1.
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Fig. 12 Temperature profiles at the nozzle exit.
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Fig. 13 Density profiles at the nozzle exit.

In Fig. 14, pitot pressure profiles at the nozzle exit are compared
between results from the hybrid LD-DSMC simulation, the two
uncoupled sets of CFD and DSMC simulations, and the experimental
measurements of Boyd et al. [25]. The pitot pressure is determined
from numerical data by calculating the local stagnation pressure
behind a shock, using normal shock relations for pressure and Mach
number along with the isentropic relation between the static and
stagnation pressures [30]. A correction to the stagnation pressure for
rarefaction effects is employed, as described by Boyd et al. [25], and
resulting values are normalized in Fig. 14 by the stagnation pressure
at the nozzle entrance. Note that these pitot pressure values are
functions of velocity, temperature, and density, and so the extremely
good agreement found in Fig. 14 between the hybrid and CFD/
DSMC (1) profiles is expected due to the similar levels of agreement
observed for these simulations in Figs. 11-13. Reasonably good
agreement is also found between the hybrid results and the
experimental and numerical data of Boyd et al. However, all
numerical results significantly underpredict pitot pressure in the
low-density region near the nozzle lip. Because of the consistency
of all numerical data in this region, one likely explanation for
the large differences between the experiment and simulation results
is inaccuracy associated with the rarefaction correction [25] for
numerical pitot pressure values. This correction is inherently
approximate and provides only a simple phenomenological esti-
mation of a series of complex nonequilibrium effects. Additional
differences are found near the central axis, where the uncoupled
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Fig. 14 Profiles of pitot pressure at the nozzle exit.
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DSMC simulation results of Boyd et al. agree considerably better
than either the hybrid or CFD/DSMC (1) results with the experi-
mental values. Despite these differences, the good overall level of
agreement between the hybrid LD-DSMC simulation results and
experimental data can be seen as an indication that the hybrid scheme
is sufficiently effective and accurate as applied to this test case. In
contrast to the uncoupled CFD/DSMC approach used here for
comparison, the hybrid scheme allows the entire flowfield of interest
to be included in a single simulation and avoids the various
restrictions that tend to limit such an uncoupled approach to a narrow
class of steady-state supersonic flow problems.

VI. Conclusions

A DSMC-based LD particle method for compressible inviscid gas
flow simulation has been extended for use with near-equilibrium
viscous flows involving a simple gas. A finite volume discretization
of viscous terms in the compressible Navier—Stokes equations has
been integrated into LD particle method procedures, so that the
method may be applied to low-Knudsen-number flows that include
boundary layers, free shear layers, or other phenomena for which
viscous effects are important. With these viscous flow modifications,
the LD method should be applicable to the same Knudsen number
range as the Navier—Stokes equations. A wall slip model has also
been implemented to improve accuracy for simulations in the slip
flow Knudsen number regime.

Results from a series of unsteady boundary-layer simulations
using the modified LD particle method were compared with cor-
responding DSMC results and a theoretical solution. Overall
excellent agreement was found, with a much lower level of statistical
scatter in the LD data points than in the DSMC data. For these flow
problems, the computational expense of LD simulations was found
to be roughly 4 orders of magnitude lower than that of DSMC
simulations, due to reduced scatter as well as the far less restrictive
cell size and time step requirements for the LD method. Although
such a large efficiency increase relative to DSMC may seem very
encouraging, it should be emphasized that nearly any scheme
intended for continuum flow simulation will be orders of magnitude
more efficient than DSMC when applied to sufficiently high-density
conditions.

In a previous study [18] involving simulations of an inviscid flow
with complex shock interactions, the LD method was estimated to be
approximately 2050 times more efficient than other DSMC-based
continuum flow simulation methods and around 16 times more
efficient than a CFD simulation using the LeMANS code [20]. The
LeMANS simulation involved an implicit second-order discretiza-
tion of the Euler equations, using a modified form of Steger—
Warming flux vector splitting. As the LeMANS code is optimized for
very different conditions than those of the test case used in this
comparison, it is likely that other compressible CFD codes would
show considerable efficiency improvements for this case relative to
LeMANS. We expect that a modern high-order implicit CFD
algorithm will be far more efficient than the LD particle method.
However, as described in the Introduction, the implementation of
such an algorithm in a hybrid code with DSMC presents enormous
difficulties and physical limitations. Furthermore, in a wide range of
potential applications for this type of hybrid code, a large fraction of
the flowfield must be assigned to DSMC and the total simulation cost
is only weakly dependent on the efficiency of the continuum method.

Procedures have been outlined for the integration of the LD
particle method with viscous modifications into a strongly coupled
hybrid algorithm with DSMC for the efficient simulation of flows
involving nearly any combination of Knudsen number regimes.
Although implementation of such a hybrid scheme is inherently
complex, the relatively small number of required alterations and
additions to the base DSMC code likely make this the simplest
proposed extension of DSMC to near-equilibrium viscous flows,
which allows for the proper resolution of high-gradient regions even
when the cell size and time step are far larger than the mean free path
and mean collision time, respectively. In contrast to coupled CFD-
DSMC algorithms intended for the simulation of similar flows, the

continuum component of the hybrid code is built around standard
DSMC procedures, so that no integration of separate source codes is
required, and all LD and hybrid simulation routines in the LD-DSMC
algorithm constitute an addition to the DSMC source code length of
no more than about 20%. In contrast, a coupled CFD-DSMC
algorithm may require an addition of more than 100% to the DSMC
source code, including both a continuum CFD solver and routines for
domain decomposition and communication between CFD and
DSMC components [6].

A flow of N, through a small convergent—divergent nozzle into a
vacuum chamber was chosen as a test case to evaluate the hybrid LD-
DSMC scheme. Various flow properties were compared between
results from an LD-DSMC simulation and results from a series of
uncoupled CFD and DSMC simulations. Available experimental
data for pitot pressure at the nozzle exit were also used for com-
parison. Very good overall agreement was found between the LD-
DSMC simulation results and other numerical and experimental
data, with particularly good agreement between hybrid data points
and values from the CFD and DSMC simulations performed as part
of the present study. Although these comparisons should not be
viewed as a rigorous validation of the proposed hybrid scheme, the
lack of any large differences between the hybrid simulation results
and those from other simulations is an encouraging indication of
overall accuracy and suitability for general application to rarefied
expansion flows.

Although the current implementation of the hybrid LD-DSMC
scheme allows for the relatively efficient simulation of a wide range
of flows, including steady or unsteady laminar flows that involve
nearly any combination of Knudsen number regimes for a simple
dilute gas, a number of planned modifications to this scheme may
further extend the range of possible applications. One important
limitation of the current scheme is the simple gas assumption used in
viscous modifications to the LD method, which makes this method
incompatible with flow problems involving a gas mixture. Viscous
phenomena associated with mixtures include mass diffusion,
additional dissipative terms in the gas energy balance, and a poten-
tially complex dependence of transport coefficients on species
concentrations. Future improvements to the LD-DSMC scheme will
involve consideration of such phenomena through the inclusion of
species diffusion velocities in the motion of Lagrangian faces within
the LD domain and the use of mixing rules for transport coefficients
based on kinetic theory approximations. Additional proposed
extensions to the LD method include modifications for rotational
and vibrational nonequilibrium using models analogous to those
employed in DSMC and implementation of DSMC-type chemistry
models for reacting flow simulations.
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