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Abstract 

A body immersed in a fluid displaces an amount of 
fluid equal t o  its volume. When such a body is acceler- 
ated, pressures are generated which affect the fluid field 
to  infinity. This creates kinetic energy in the fluid. One 
can define an effective mass of fluid accelerating with 
the body; this is called the “added” mass. Historically, 
the calculation of added mass was in the province of 
hydrodynamics. 

The present study uses the theory of acoustics t o  de- 
velop the added mass for several rigid, immersed bod- 
ies. A numerical solution is used, based on boundary 
elements. The classical cases of a circular disk and a 
sphere are used to  determine the mesh fineness required 
for engineering accuracy. A family of three Smalley- 
shaped balloons (zero circumferential stress in the film) 
are then considered, for different inflation ratios. In- 
compressibility of the fluid is assumed, therefore the 
added masses are identical in spirit with those from 
hydrodynamics. Compressibility is not important for 
rigid body dynamics of balloons; however compressibil- 
ity effects can be included for other bodies, if needed. 

Results show that the pear-shaped balloons behave 

Nomenclature 
C = coupling matrix 
Fs = structural force 
FA = acoustic load vector 
[HI = fluid matrix 
k = wave number 
[K] = stiffness matrix 
[MI = mass matrix 
{Q} 
SI 
Sa 
{U} = displacement vector 
P = fluid density 
W = frequency, in rad/sec 

= potential (jump of pressure) vector 
= surface on which pressures are specified 
= surface on which velocities are specified 

Superscript 

T = transpose 
-1 = inverse 

Subscript 

A = added mass 
S = structural 

1. Introduction 
in an intermediate way between spheres and cylinders, 
as expected. Both vertical and horizontal accelerations 
are considered. The values for added masses will allow 
better dynamics studies of high-altitude balloons. 

Much recent progress in the area of numerical model- 
ing of coupled acoustics/structures has been made.[1~2~3] 
One major software package uses boundary elements 
for the fluid discretizati~n.[~I As a side-capability, this 

A major feature of the paper 
feasibility of calculating added 
shaped bodies using acoustics. 

. is to  demonstrate the 
masses for arbitrarily- 
This should become a 

standard working tbol for studies of immersed bodies 
such as balloons, parachutes, and submarines. 

modeling procedure can determine the added mass due 
t o  rigid-body structural accelerations. The effect of the 
pressure field is to  retard the acceleration of the body, 
and the resulting added mass of the body can then be 
deduced. This capability has not existed before, and 
promises t o  aid the study of bodies such as balloons, 
parachutes and submarines where the bodies carry a 
large amount of fluid with them. 
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2. Eigenvalue equations 

This study is based on a solution of the Helmholtz 
equation. One can solve the acoustic problem either by 
a potential field solution or by a pressure field solution. 
The present approach is t o  consider the pressure field as 
the primary variable and to cast boundary conditions 
into functions of pressure. The Helmholtz equation is: 

V 2 p  + k 2 p  = 0 (1) 

and the associated boundary conditions are: 

p = p (on surface S I )  (2) 
v, = 6 ,  (on surface S2) (3) 

In addition, one has the Sommerfeld radiation condition 
for unbounded domains: 

(4) 

The solution to  these equations has been carried out 
for various shaped boundary elements in a commercial 
computer program, SYSNOISE. The acoustic distur- 
bance for quadrilateral and triangular elements will be 
used here. When the field pressures for such boundary 
elements are found, they exist on both sides of the ele- 
ment. The result is, that for hollow bodies, the bound- 
ary elements model the fluid presence on both the in- 
terior and exterior of the body. (For the balloon, the 
presence of the interior air is spurious and its contribu- 
tion to the added mass must be removed.) 

After the fluid field is modeled by boundary ele- 
ments, the structure is modeled by conventional finite 
elements. The rigid body modes of the structure are 
found and modal coordinates are used to describe the 
displacements of the structure. 

One then solves the eigenvalue problem describing 
coupled oscillations of the structure and fluid field, and 
infers the mass of the fluid. The system of coupled 
equations developed for the structure and the fluid are: 

The virtual mass matrix results from elimination of Q 
from Eqn. 5 and assuming free vibration (zero force on 
RIIS). 

This is substituted into the upper vector equation in 
Eqn. 5 t o  obtain: 

{ Q 1 = - P F W ~  [ H  (k.11 [CI { u 1 (6) 

( [ ICs]  - W 2  (WSI + [ M A ( k ) l ) )  {ul = (0) (7) 

is the added mass matrix. To this point, the added mass 
is frequency dependent, so that the eigenproblem 7 is 
not a conventional algebraic eigenvalue problem. We 
will now, however, assume that the fluid is incompress- 
ible. This means that the wave number k is set to  zero. 
The added mass can be shown to be real in this case. 
Equation 7 can then be solved using subspace iteration 
(for example). 

The mass matrix [MA] is a full symmetric matrix due 
to  the use of the boundary element model for the fluid. 
The banded character of the original structural mass 
matrix is therefore of little value. 

Finally, there has been conflicting use of the words 
“added mass” and “virtual mass” in the literature. 
 hydrodynamicist^[^] have used added mass to  describe 
the fluid contribution only, and virtual mass to re- 
fer to  the total mass of the structure and fluid. 
Aeroelasticians[‘] have used virtual mass to  apply to 
the fluid contribution only. In this paper, the authors 
will use the term added mass for the fluid contribution 
only. The term virtual mass will be avoided because it 
has been compromised by the two usages. 
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Figure 1: Boundary element mesh for circular disk. 

3. Preliminary studies (classical) 

To develop some feeling for the added mass calcula- 
tions, it is helpful to  repeat some classical cases. This 
will also aid in deciding on mesh refinement needed. 



The first case studied is a rigid, circular disk of one 
meter radius, moving normal to its plane in air. This 
case is difficult numerically because of the sharp edges 
of the disk. Care must be taken to  set the pressure jump 
across this cut edge to zero (reminiscent of the Kutta- 
Joukowski condition for lifting airfoils). The textbook 
solution for the added mass is:[’] 

M A  = 2.6667 kg (9) 
Five mesh densities were used to  study convergence. A 
mesh with 85 elements is shown in Fig. 1. The nodes 
are placed on the reference diameter, therefore the disk 
area is underestimated. 

The results are given in Fig. 2. The number of bound- 
ary elements is used as a measure of mesh refinement, 
rather t,han t,he number of nodes. When one uses 9 ele- 
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Figure 2: Virtual mass of circular disk. 

ments per side, the error in the added mass is less than 
7%. The error consists of two major parts: that due 
to the area underestimation, and that due to the small 
number of elements modeling a continuum. 

The second case studied is a sphere. This can be 
solved in closed form[’] and the added mass is found 
to be one-half the displaced fluid mass. This holds for 
accelerations in all directions, of course. The sphere 
has no “cut edges,” and there is no need to apply side 
conditions on pressure jump a t  its “boundaries.” The 
mesh is shown in Fig. 3. 

The nodal points for the boundary elements are 
placed on the reference diameter. The boundary ele- 
ments form a faceted surface which lies inside the ref- 
erence sphere, and hence displaces a smaller amount 

Figure 3: Mesh for sphere with hidden line removal. 

of fluid than the referei:c,e sphere. (See Fig. 4.) As 
a result, the “raw” ansli6.r obtained for added mass is 
for a smaller body thar the  reference sphere. It was 

4.25 SPH ERICA L VO LU M E ------ 
mE 

3 
W” 
I 

0 > 
W 
v, 
0 6 3.50 
Z 
W 

a 

3.25 
60 110 160 210 260 

NUMBER OF BOUNDARY ELEMENTS, N 

Figure 4: Volume enclosed within faceted sphere. 

decided to correct the inertia coefficient to account for 
the actual amount of displaced volume. This reduces 
the convergence issue to  one involving the coarseness 
of the mesh, and removes the question of the reference 
volume. Convergence studies (below) done for the bal- 
loon shapes show better convergence with such volume 
correction. 

The use of volume-correction is also needed for a sec- 
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ond reason. The boundary element solution for the 
sphere includes not only the outer fluid field, but also 
the (same) fluid within the sphere. This internal air 
mass is extraneous in our case since actual balloons 
carry helium, not air. For dynamics calculations, the 
internal mass of helium must be added in at some point. 
The inertia coefficient calculation becomes sensitive to 
volume error if the volume correction is not done. 

One acoustic study was done for the sphere using 
SYSNOISE. This was for a mesh of 96 boundary ele- 
ments. The volume-corrected inertia factor was found 
to be 0.505, which has error of only +0.8%. This shows 
the effectiveness of the volume correction, since the dis- 
placed volume has only converged to within -8% of the 
smooth sphere. 

4. Balloon studies 

A family of balloons of the Smalley type (zero cir- 
cumferential stress) will be considered. Three balloon 
inflation ratios will be considered-partial, half and full 
inflation. Rand[q has provided a procedure to size the 
balloons for given inflation ratios. This procedure will 
be used to lay out the balloon shape. The balloon cross- 
sections are shown in Fig. 5. They correspond to infla- 
tion fractions of 0.0031, 0.113 and 1.000 from top to 
bottom, respectively. 

axisymmetric, that is, no attempt wits made to account 
for the scalloped nature of the segments as the film 
bulges from the load tapes. 

The fully inflated (float) balloon case has been stud- 
ied more intensively than the others, in order to resolve 
the mesh density issue. Figures 6, 7 and 8 show the 
three mesh densities. From the experience with the 
sphere, one would expect this more complicated body 
to be adequately modeled with 256 elements, and rather 
accurately modeled with 432 elements. 

Figure 6: Coarse mesh for balloon at float. 
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Figure 5: Cross-sections of balloons for varying 
inflation.[q 

The balloon mesh was constructed by creating a 1/8 
section of the balloon and then replicating it 8 times 
with the preprocessor I-DEAS. The completed model is 

The results for added mass in the axial and lateral 
directions are given in Table 1. The difference between 
the fine and the medium mesh is 2.8% and 0.5% for 
the axial and lateral cases, respectively. Convergence 
is from above, therefore the true values for added mass 
will be slightly lower than the fine mesh result. For 
engineering purposes, it appears that the medium mesh 
will be sufficient to study the family of balloons. 

Results for a family of partially-inflated balloons are 
plotted in Fig. 9. The full balloon has one characteristic 
of the flat disk, e. g. the axial inertia is higher than 
the lateral. The inertial coefficients range from 0.42 to 
0.64, depending on the inflation and the orientation of 
acceleration. More points at intermediate inflation are 
currently being calculated. 

To date there have been limited experimental results 
to compare with this theory. The NASA/GSFC Wal- 
lops Flight Facility has flown tethered small-scale bal- 
loons and has measured inertia coefficients for vertical 
acceleration of approximately 0.55.['] In the past, re- 
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Figure 7: Medium mesh for balloon at float. Figure 8: Fine mesh for balloon at float. 

on The University of Michigan Computer Aided En- 
gineering Network (CAEN). There are more than 100 
Apollo machines on the University ring network. The 
computer time expended was far greater for mesh gener- 
ation and modal analysis than for the acoustic solution. 
SYSNOISE CPU times are give in Table 1. 

Table 1: Inertia coefficients for balloons 

Mesh Coarse Medium Fine 
432 Elements 112 256 

Nodes 114 226 218 
Enclosed Volume 1.6416 1.7152 1.7262 
Raw Axial Inertia 0.540 0.599 0.592 6. Conclusions 

0'387 
0'645 
0.433 

A numerical method has been used to find added 
mass for high altitude balloons. The method will be 
useful for other bodies immersed in fluids, whether pla- 
nar or solid bodies. One must account for the presence 

Raw Lateral Inertia 0.337 0.380 
Corrected Ax. Inert. 0.673 0.663 
Corrected Lat. Inert. 0.453 0.435 
SYSNolSE cpu Time lo 

searchers often applied the value of 0.5 for spheres to 
the study of high-altitude balloon.[g] The current val- 
ues will allow much greater accuracy in dynamic calcu- 
lations. 

5. Computational details 

Three software packages were used for this study. 
The I-DEAS preprocessor was used to generate the 
mesh. MSC/NASTRAN was used to generate the rigid 
body mode information. SYSNOISE was used for the 
numerical acoustics. An alternate approach would have 
been to use ANSYS for the generation of the mesh 
and modal information and SYSNOISE for the acoustic 
analysis. (ANSYS and SYSNOISE are tuned to work 
with each other.) 

The computers used were Apollo 3500 workstations, 

of sharp edges (and the need for a zero pressure jump 
across the edge) and the presence of fictitious interior 
fluid in solid bodies. 

The specific inertia coefficients obtained for high- 
altitude balloons will help in developing flight simula- 
tion codes that model dynamic balloon behavior. Com- 
mon sources of excitation include ballast drops which 
cause axial acceleration and side winds that cause lat- 
eral accelerations. The inertia coefficients obtained 
range from 0.43 to 0.64 depending on inflation and di- 
rection of acceleration. These new values should replace 
the classical value of 0.5 for a sphere, which has been 
used in many calculations to date. 
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Figure 9: Inertia coefficients for partially-filled bal- 
loons. 
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