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Higher Order Eigenpair Perturbations
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A matrix method is presented for the exact calculation of large eigenpair perturbations arising from design
variable changes. The method is "forward analysis" in the sense that design variable changes are known and
eigenpair perturbations are computed. Competing methods for forward analysis include reanalysis and first-
order approximate methods. First-order methods are well known for their ability to calculate small eigenpair
changes but are inadequate when large changes are required. In this paper, a new method of forward analysis
is presented that takes into account all orders of the perturbation expansion. A benchmark cantilever beam will
be analyzed with the new method for large perturbations in design variables. The method will be valuable for
fast reanalysis and for identification and model correlation studies where sizeable differences exist between a
baseline model and an objective model.

Nomenclature
q = weighting factor determining the contribution of

the homogeneous solution to the total solution
for (A</>) ,

[D]j = coefficient matrix in solution for ( A < / > ) / ;
equals [K]-\[M]

[Fl]j = static pseudoload vector appearing in linearized
{A0), calculation, = (AX/ [M°] + X? [AM]
-[AA:]){00);; orthogonal to (00),

[Fnl]j = static pseudoload vector appearing in nonlinear
{A0), calculation, = (AX, [M1] + X? [AM]
-[AJn){00)/; orthogonal to [01) /

[K] = stiffness matrix, symmetric
[M] = mass matrix, symmetric
A = perturbation symbol denoting exact change from

the baseline
X/ = /th eigenvalue (circular frequency squared)
{ < / > ) / = /th eigenvector (i.e., mode shape of structure);

solution to [K]{(/>), = X/[M] { < £ ) / ; normalized with
respect to appropriate [M]

Superscripts
0 = baseline values
1 = perturbed values resultant from design variable

change, e.g., ( )' = ( )° + A( )

Introduction

C URRENT methods for optimization in structural dynam-
ics use derivatives with respect to design variables. When

numerically calculating these derivatives, one commonly uses
perturbations of 2% or less in the design variables. With
design changes this small, the eigenpair perturbations calcu-
lated are small, and the resulting sensitivities are derivatives at
the baseline configuration. Currently popular methods of cal-
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culating eigenpair sensitivities all compute the derivative val-
ues, either directly through differentiating the eigenproblem
statement or indirectly through calculating small change in
first-order perturbation equations (having dropped higher or-
der terms). It is important to realize that the perturbation
equations of first order in A are the same as the derivative
equations.

Literature Survey and Research Impetus
Fox and Kapoor's method1 differentiates the eigenproblem

equation and calculates derivatives by a modal superposition
method. It usually requires a full set of modes to obtain exact
derivatives (counterexample: tip mass as design variable in
Ref. 2). Wang's method3 modifies Fox and Kapoor's method
for the case of a truncated set of modes through the use of a
residual static mode. Nelson's method4 calculates derivatives
through removing the singularity in the matrix equation and
solving directly. It needs information associated with the /th
mode only, so the issue of using a truncated modal set is not
important. High's method5 iteratively computes small eigen-
pair perturbations and, for large systems, is faster than direct
calculation. This method has been implemented in MSC/
NASTRAN, but the iterations are divergent for anything
other than small change.6 Surveys and comparisons of these
and other small change methods are readily available in the
literature.2'7

The work presented here departs from small change ideas
and calculates large changes in the eigenpairs by handling the
nonlinear nature of the perturbation equations. Kim et al.8
and Hoff et al.9 have explored similar directions. Another
recent paper developed independently by Kim10 is very similar
in spirit to the current work, but the solution procedure is
different and a first-order normalization is used. As pre-
sented, this paper's method is most easily characterized as fast
reanalysis, since the changes calculated are exact. If large
changes are present, dividing the eigenpair perturbations by
the change in the design variable yields secant sensitivity val-
ues instead of tangent derivative values. Thus, the proper term
might be eigenpair secant sensitivities rather than eigenpair
derivatives.

The retention of all terms in the expansion of the governing
equations (eigenproblem, normalization) is required to study
large changes in the eigenpairs resulting from large changes in
design variables. Consideration of large change is unnecessary
in the current applications of eigenpair derivative technology
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known to the authors. Potential use can be foreseen in the
areas of model correlation and system identification in which
large exact changes would be more desirable than small ap-
proximate changes. Although these are generally "inverse
analysis" (eigenpair perturbations known, design variable per-
turbations desired), the forward analysis would be necessary
in a predictor/corrector algorithm.9 As an example of large
change, consider damage to a large space truss in which an
element has been destroyed. This requires a 100% reduction in
stiffness for that element (a redundant structure is required).
The small change methods referenced previously would fail in
calculating meaningful eigenpair derivatives since they are
generally restricted to changes of only a few percent. Another
potential use is optimization work in which criteria other than
frequencies and mode shapes drive the design and in which
frequencies and mode shapes are allowed to drift (or are
inactive constraints). When this is the case, large changes in
frequencies and modes may occur on each redesign iteration,
and large change algorithms would be needed to track them.

Repeated Eigenvalues
The subject of repeated eigenvalues has recently received a

great deal of attention. Modal superposition techniques such
as Fox and Kapoor's method are particularly susceptible to
problems when multiplicity is present. The work of Kim and
Wallerstein11 is most easily applied to this paper's technology.
They employ an orthogonal transformation to generate a set
of complementary mode shapes. All baseline mode shapes are
required. The only modification necessary for the authors'
method to handle repeated eigenvalues, according to Kim, is
the use of these complementary mode shapes in place of the
baseline mode shapes.

Equation Derivations
Turning attention to the derivation of the governing equa-

tions, consider the classical, linear, structural eigenproblem:

(1)

When the system is perturbed from the baseline through mass
and stiffness changes, the new statement of dynamic equi-
librium is

(2)

or in expanded form

= (X? + AX/)([Af°] + [AM ])( { 0° ) / + ( A0 ) /) (3)

Expanding, canceling the baseline solution, and regrouping
yields

([K°] - X°[M°])(A0)/ + ([A*] - X°[AM])({0°)/ + (A*)/)

= AX/([M°1 + [AM])( ( 0° ) / + { A0 ) /) (4)

Premultiplying by (0°)f and canceling the baseline solution
again (due to the symmetry of [M°] and [AT0]) yields

(0°),r([A/n - X?

= AX/{00)f([M0]

( A0) ;)

(5)

First-Order System of Equations
Popular derivative solutions and first-order approximations

(specifically Fox and Kapoor's method,1 Wang's method,3

Nelson's method,4 and High's method5) all solve equations

derivable by dropping the terms of higher order in A. When
this is done, Eq. (5) becomes

{ 0° ) T([AK] - X? [AM]) { 0° ) / = AX, { 0° ) T[Af°\ ( 0° ) / (6)

Employing the normalization condition {<t>°]?[M°] (00)/ = 1,
one obtains the following uncoupled equation for AX/:

AX/={00) ;
r([A*]-X?[AM]){00)/ (7)

In a like manner, one drops the higher order terms from Eq.
(4) and solves for { A0 } / to obtain the other important first-
order formula:

([K°] - X? [M°]) { A0 ) / = (AX, [M°] + X? [AM] -

This formula can be written as

where

is singular and

{F')/ ^ (AX/[M°] + X?[AAf] -

° ) / (8)

(9)

(10)

(11)

can be viewed as a static pseudoload. This equation corre-
sponds to the pathological Fredholm alternative in which the
coefficient matrix is singular and there is a nonzero load. Such
equations cannot be solved in general. This equation is solv-
able, however, since it is "consistent," i.e., {F7}/ is orthogo-
nal to (0 0 ) / . (Note: the fact that this first-order system is
consistent must be viewed as fortunate.)

To prove the consistency of the linearized problem, one
premultiplies (F7)/ by the transpose of the baseline eigenvec-
tor:

(12)

Substituting the first-order equation for AX/ [Eq. (7)] cancels
all terms on the right-hand side:

X?{0°)f[AM]{0°)/-

= 0 (13)

Nonlinear System of Equations
The focus of this paper will be on the nonlinear perturba-

tion equations and the retention of all higher order terms. The
first nonlinear formula is obtained by solving Eq. (5) for AX,:

A\-= - (14)

The second nonlinear equation is derived by rearranging the
terms of Eq. (4) so as to collect all (A</>) , terms on the
left-hand side:

([K°] - X? [M°]) ( A < » ) , + ([AAT] - A? [AM]) {A*),

-AX,([M°] + [AM]) I A*), = AX,([M°] + [AM])[*°],

, (15)
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Combining terms yields the relation

([Kl] - XJ [M'])f A0)/ - (AX/fM1] + X°[AM] -

(16)

This equation, as its linearized counterpart, can be written

[D 1 ] / (A0h=lF '") / (17)

where

is singular and

}/ m (AX/[M]] + X?[AAf] -

(18)

(19)

is a static pseudoload. This equation is also consistent, though
this time the pseudoload vector is orthogonal to [4>l ) / instead
o f f * 0 ) / .

The proof of the consistency for the nonlinear problem can
be performed by premultiplying [Fnl ) / by the transpose of the
perturbed eigenvector. The same cancellation of terms occurs
as in the linear case after substituting the exact equation for
AX/ [Eq. (14)] and employing the symmetry of [A/1], [AM],
and [A/H.

Equations (14) and (17) look quite similar in form to
Eqs. (7) and (9). Their solution methodology is very different,
however. Equations (14) and (17) are coupled since AX/ is
dependent on (0 1 ) / and {A</>) ; is dependent on X,-. Simulta-
neous solution seems impossible. Thus, solution of this system
must be done iteratively. The first-order system, on the other
hand, may be solved directly since AX/ depends only on known
quantities in Eq. (7).

Theoretical Development
Solution for the exact eigenpair changes is now a problem of

correctly solving Eqs. (14) and (17). This is not easy due to the
coupling of the equations and to the inherent instability of the
problem. The proposed method of attack is to find an initial
guess for AX/ and then to iterate Eqs. (14) and (17).

There are four important points in the mathematics of the
problem that must be incorporated in the iteration scheme.
These points are 1) the switching of solution logic as [Z)1]/ is
driven singular, 2) the deletion of the spurious solution for
{ A<£ ) / , 3) the proper management of the homogeneous and
particular solutions for { A</> ) / , and 4) the calculation of the
particular solution.

Point 1: Switching of Solution Logic
The singularity of the matrix [Dl]f is very important and is

dependent on the accuracy of the X/ estimate at a particular
iteration. For a nonexact estimate, the [Z)1]/ matrix is nonsin-
gular and can be inverted for an estimate of { A</> ) / . When the
X- estimate has converged, the matrix is singular and what is
herein called a modified Nelson's method is used to find the
particular solution, which is in turn used to find ( A < / > ) / .

On the starting iteration, the Xj estimate is relatively poor
and [Dl]j is nonsingular. There are no homogeneous and
particular solutions to manage, and ( A < / > ) / is found from
standard matrix decomposition techniques. This solution for
(A0) / will be heavily corrupted by its spurious solution
(- [<£°)/) since the system is nonsingular (see point 2). On
subsequent iterations, the [D1], matrix will be treated as if
singular, and the modified Nelson's method is used to find the
particular solution (see points 3 and 4).

Point 2: Deletion of Spurious Solution
The spurious solution for (A0)/ can be seen in Eq. (3),

where it is evident that { A</> ) / = - ( 0° ) / trivially satisfies the

equality. When [D1]/ is only nearly singular due to an approx-
imate X ;-, the solution for {A0) / is driven strongly toward this
spurious solution. It is only when [ZP1]/ is exactly singular
(convergent X,-) that a meaningful (A<£) / is achievable.

The easiest way (and so far the best way) to delete the
unwanted spurious solution is to simply add (0°)/ to the
corrupted ( A < / > ) / solution and scale the result to satisfy per-
turbed mass normalization (see Ref. 6 for discussion of mass
normalization schemes). An alternative method would be to
orthogonalize the [A</>) ; solution to (< />° ) / by using a Gram-
Schmidt orthogonalization process, but this has not been as
effective.

The deletion of the spurious solution has only been neces-
sary on the starting iteration in which ( A < £ ) / is found from
standard matrix decomposition techniques (nonsingular [D1]/).
It is, however, always an option if convergence difficulties are
encountered on subsequent iterations.

Point 3: Homogeneous and Particular Solutions
As for a nonhomogeneous differential equation, the total

solution for {A<£) / is made up of homogeneous and particular
solutions. When [Z)1]/ is exactly singular, ( < / > ! ) / is a homoge-
neous solution for ( A < / > ) / in Eq. (17) since [D1]/^1)/ = (0 ) .
The corresponding particular solution will be called { F)/ . The
total solution for {A0)/ is then a sum of { K ) / and a weighted
{01)/ . The weighting factor c/ is introduced because the scal-
ing of the homogeneous solution is initially indeterminate:

For singular [D1]/:

( V ] t (20)

The following derivation will employ conditions of mass
normalization to determine the weighting factor c/. Equation
(20) must be altered since (0 1 ) / is unknown:

(21)

(22)

V\i (23)

A concern at this point is whether or not c/ can attain the
value of unity, since the solution of Eq. (23) would be unde-
fined. In practice, c/ is much smaller than unity, meaning that
the contribution of the homogeneous solution to the total
solution is small. This fact can be shown with a heuristic proof
by contradiction. Letting c/ = 1 in Eq. (21) cancels the {A</>}/
terms, leaving the particular solution equal to the spurious
solution ({ V\i = - [</>°)/) . But the spurious solution is deleted
in the starting iteration, and the particular solution should not
be corrupted with the spurious solution. Therefore, c/ must be
different than unity.

The mass normalization criteria for f < / > ° ) / and (0 1 ) / are

(24)

(25)

Subtracting the two equations and expanding yields

(26)

(27)
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Combining terms gives the exact normalization equation for

Substituting Eq. (23) into Eq. (28) for
algebraic manipulation,

where

«, + (2 + Me, + c? - c? = 0

F),

- (^ j f tAMH^ 0 ) /
(28)

/ gives, after some

(29)

( K ) ,
(30)

Equation (29) has roots

d = - l , l i V l + f c (31)

The proper root is the one for which Ic, I « 1, i.e.

c, = i - vm; 02)
Point 4: Calculation of Particular Solution

The only remaining problem is the most difficult one, the
calculation of the particular solution { V } / . This step is not
needed on the starting iteration, when [Dl]f is nonsingular.

A brief review of Nelson's method4 is necessary at this
point. The objective is to solve for the particular solution { K ) /
of Eq. (9) by directly removing the singularity in [Z>°]/. This is
accomplished by ' 'zeroing out" a row and column of [Z>0]/,
putting a 1 at the row and column intersection, and placing a
zero in the same row of (F7)/ , effectively enforcing a zero
value on the corresponding component of { K ) / . The row and
column chosen is essential to the success of the scheme and
corresponds to the maximum magnitude component of the ith
baseline eigenvector. For example, if the fifth component of
( < / > 0 ) / has maximum magnitude, then one puts zeros on the
fifth row and column of [Z>°]/ and the fifth row of (F')/ and

First OOrder bJd \
Eq. 7 }

Decompose nonsingular [D *]{

C Delete spurious solution ̂
{A0i = {A0i + {0°}i

I and scale up ____ )

Iteration 0

(Nonlinear AAi Update*
Eq 14

»n's Method^
soln.{V)i J

Modified Nelsoi
for particular soln.

( Compute weighting factor c^\
_____from Eq. 32____J_

Compute {A0}ii A
J

puts a 1 at 1)55 . . This drives the fifth component of ( V } / to
zero in the subsequent matrix decomposition. This method is
widely used and is efficient when the coefficient matrix is
exactly singular. When the matrix is only nearly singular,
however, a modification must be made.

The modified Nelson's method developed here has two dif-
ferences from the original method. First, one solves for the
particular solution of Eq. (17) instead of Eq. (9). This is a
trivial point since Nelson's method would work equally well
on either equation as long as both coefficient matrices were
exactly singular. The second change handles the nonsingular-

Instead of enforcing a zero value on the component of
( V } i , we will prescribe a finite value derived from previous
{A0}/ information. On iteration 0, [A</>) / was found from a
standard matrix decomposition. Thus, we retain more of
the physics of the problem if we set the component of { V } /
equal to the value of the corresponding component of { A</> ) /
found on iteration 0. The difference is given in the following
equations:

Nelson's method:

= 0

Modified Nelson's method:

(from iteration 0)

(33)

(34)

Fig. 1 Solution algorithm.

where the asterisk denotes the component of interest discussed
above. Computationally, this makes a monumental difference
in the ability of the iterations to converge. Note that the finite
change prescribed does not need to be updated since it be-
comes less important as [D1]/ becomes more singular; that is,
it is just a convergence catalyst and does not influence the final
answer.

Solution Procedure
The points addressed earlier each fall neatly into place in the

solution algorithm. The algorithm is shown schematically in
Fig. 1. The Oth iteration is the starting iteration in which an
initial guess on the eigenvalue changes (AX/) is obtained from
Fox and Kapoor's method, and the [Dl]f matrices are decom-
posed in the standard way (Nelson's method is unnecessary) to
get the first estimate on the eigenvector changes ( { A < / > ) / ) . The
eigenvector change on this starting iteration must have the
spurious solution removed by adding {0° J / and then must be
scaled to satisfy the perturbed mass normalization. Subse-
quent iterations use the full nonlinear update for AX/ [Eq. (14)]
and the modified Nelson's method for solving Eq. (17) for its
particular solution { V} / . Removing the spurious solution has
not been necessary on these iterations. Equation (32) is then
solved for the weighting factor c/ and {A</>) / is updated from
Eq. (23). Note that whenever an equation calls for a perturbed
value (e.g., X/) , the sum of the baseline and the most current
perturbation (e.g., X° + AX/) is used.

With the essential equations derived and the solution method-
ology outlined, the focus will now turn to solving an example
problem.

Benchmark Problem: Cantilever Beam
Test Problem

A five-element Euler-Bernoulli cantilever beam model (Fig.
2) is proposed as a benchmark problem due to its simplicity in
finite element analysis. The important material constants are
E = 2.0684 x 105 MPa, v = 0.3, p = 7.8334 x 10~9 N sVmm4.
The motion is constrained to allow only xz bending, which
leaves a total of 10 degrees of freedom (z displacement and y
rotation at each of five nodes). Element stiffness and mass
matrices are assembled and used to find the baseline eigenpairs
through the use of a simple MATLAB™ program12 (MAT-
LAB™ is a high-level matrix manipulation language that pro-
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Table 1 Design variable scaling sets

Set Magnitude, % DV1, % DV2, %
1 Kirn +19.15 -2.89
2 ±20 +19.15 -17.89
3 ±25 +25 -24
4 ±30 +28.5 -29
5 ±40 +39.15 -37.89

z
t

N ! 2 3 4 5 6

> 1 100 mm
N « ————— 1000mm ———— H

Fig. 2 Cantilever beam modeled with five elements.

vifdes easy access to the matrix software developed by the
LINPACK and EISPACK projects). Upon prescription of
design variable changes, one computes new stiffness and mass
matrices and Fox and Kapoor's method is performed to get an
initial estimate of the eigenvalue perturbations. If the pre-
scribed changes are large, this initial estimate will be in error
and the nonlinear iteration scheme described herein must be
performed. The aforementioned 100% reduction in an ele-
ment's stiffness cannot be tested here since the structure is not
redundant.

Several measures have been developed to monitor the pro-
gress of the iterations. First, convergence of the eigenvalues is
shown through the average of the absolute percent error in
each X- , where

X/ - Xj
absolute percent error - —— j — — *100 (35)

X;' exact

and / ranges from 1 to 10 (Table 2 heading: average 1 % error 1
in X- ) . Second, the increasing singularity of [Z)1]/ is shown
through the average condition numbers of these matrices
(Table 2 heading: average [Z)1]/ cond no.). Finally, conver-
gence of the [<t>l]i vectors is monitored through an average of
the Euclidean norms of { 01 ) , - ( 01 } /exact (table heading: aver-
age II { 01}/ error II2).

Five design variable scaling sets are to be analyzed, each of
which perturbs all design variables simultaneously. This is not
the typical process for calculating sensitivities, where only one
variable is perturbed. Simultaneous perturbations were per-
formed to test the algorithm, since obtaining convergent re-
sults will obviously be more difficult than for a single design
variable perturbation. The five design variable scalings sets are
shown in Table 1 and the design variables (abbreviated DV)
being scaled are the corresponding beam element heights.

The first set corresponds to case 1 , subcase 3 of the cantilever
beam work of Kim et al.8 It was chosen to obtain verification
of results. The other four design variable scaling sets were
chosen arbitrarily to have varying signs and similar magnitude
scalings. The last column shows the number of perturbed
eigenvectors that converged in the iteration scheme, which will
be discussed in the following section.

Results and Discussion
Table 2 shows the iteration history for design variable scal-

ing set 1 . Improvement of more than an order of magnitude

Converged
DV3, % DV4, % DV5, % eigenpairs

-9.01 -6.34 -8.27 10
+ 19.01 - 18.34 - 17.27 10
+ 24.5 -23 +24.7 10
+ 27 -28 +30 10
+ 39.01 -38.34 +37.27 9

Table 2 Convergence of iteration — moderate change

Average Average Average
Iter.no. 1 % error 1 in X/ [Z)1], cond no. II (01}/ ' error II 2
0 3.8161 Fox 4.2551e-06 1.1977
1 3.9633 4.0960e-06 0.8927
2 0.1386 1.4377e-07 0.0352
3 0.0055 7.6016e-09 0.0015
4 2.4415e-4 4.2493e-10 7.3449e-5
5 1.1735e-5 2.4589e-ll 3.9077e-6
6 5.9988e-7 1.4474e-12 2.1835e-7
7 3.1942e-8 8.5910e-14 1.2547e-8

Table 3 Comparison of eigenvalues — moderate change

Mode Fox and Kapoor's
no. X? X/ (iter. 0) X/ (iter 3) Exact X/

1 6.8007e + 04 9.7977e + 04 9.0064e + 04 9.0049e + 04
2 2.6735e + 06 2.983 le + 06 2.8705e + 06 2.8705e + 06
3 2.1091e + 07 2.1859e + 07 2.1091e + 07 2.1090e + 07
4 8.2307e + 07 8.3195e + 07 7.8556e + 07 7.8547e + 07
5 2.2674e + 08 2.2991e + 08 2.1670e + 08 2.1669e + 08
6 6.2576e + 08 6.2836e + 08 6.0003e + 08 5.9991e + 08
7 1.3384e + 09 1.3149e + 09 1.2824e + 09 1.2824e + 09
8 2.8149e + 09 2.6987e + 09 2.6743e + 09 2.6742e + 09
9 5.6807e + 09 5.1008e + 09 5.0917e + 09 5.0917e + 09

10 1.2293e+10 1.0553e+10 1.0406e+10 1.0406e+10

Table 4 Comparison of eigenvectors — moderate change

{<j)°}6 Fox and Kapoor's {0M6 {<t>l}e (iter. 3) Exact [<j>l}6

-3.9201 -4.8353 -4.4618 -4.4625
-0.1392 -0.0804 -0.0863 -0.0862

1.5953 3.7807 3.4092 3.4110
0.1631 0.1603 0.1530 0.1529
0.7704 -0.8367 -0.7196 -0.7227

-0.1675 -0.1885 -0.1868 -0.1868
-2.8386 -2.3515 -2.4258 -2.4221

0.1452 0.1715 0.1711 0.1712
10.459 11.347 11.443 11.436

-0.2027 -0.2296 -0.2312 -0.2312

Table 5 Convergence of iteration — large change

Average Average Average
Iter.no. 1 % error 1 in X- [D1]/ cond no. II {01}/ error II 2
0 76.3080 Fox 2.0894e-05 4.1988
1 73.5823 1.7628e-05 11.0364
2 19.7245 5.9050e-06 15.1258
3 5.3836 3.1959e-06 3.5353
4 4.9042 2.4621e-06 1.9003
5 3.5970 1.5109e-06 2.9056
6 4.8248 1.6587e-06 1.4242
7 3.4145 1.0459e-06 2.6031

iteration following the first.
To give meaning to these convergence measures, detailed

data will be supplied for iteration 3 shown in Table 2. In Table
3, the perturbed eigenvalues at iteration 3 are compared with
the baseline eigenvalues, the perturbed eigenvalues returned
by Fox and Kapoor's modal method (iteration 0), and the
exact perturbed eigenvalues.

Averaging the percent errors for Fox and Kapoor's X,- (iter.
0) and X/ (iter. 3) in Table 3 gives rise to the 3.8% and
0.0055% figures in Table 2.

In Table 4, the baseline mode shape, the perturbed mode
shape from Fox and Kapoor's modal method, the perturbed
mode shape at iteration 3, and the exact perturbed mode shape
are shown for the sixth eigenvector, since it was consistently
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Table 6 Severe design variable scaling sets

Set Magnitude, %
6
1
8
9

10
11
12

±45
±50
±45
±50

___ a
———

———

DV1, %

+ 45
+ 49
+ 45
+ 49

0
0
0

DV2, %
-44
-48.5
+ 44
+ 48.5

0
0
0

DV3, %
+ 43
+ 49.4
+ 43
+ 49.4
+ 40
+ 60
+ 80

DV4, %
-44.4
-48.4
-44.4
-48.4

0
0
0

DV5, %
+ 44.7
+ 50
-44.7
-50

0
0
0

Nonconv.
eigenpairs

5th
5th

9th, 10th
9th, 10th

none
none
10th

aDoes not apply.

the most poorly behaved eigenvector for this design variable
scaling set (0.0091 vector norm error in iteration 3 estimate;
average vector norm error for the 10 vectors was 0.0015).
Nodal displacements and rotations alternate in the eigenvector
component sequence.

It is evident that the perturbed mode shape estimate at
iteration 3 is much improved over the mode shape from Fox
and Kapoor's modal method, even for the most slowly con-
verging eigenvector.

For larger design variable perturbations, convergent results
(not tabulated) were obtained, but not as quickly. For design
variable scaling set 2, six iterations were necessary to converge
from a 13% average error in X,- (Fox and Kapoor's modal
method), a l.Oe-05 average condition number in [D1]/, and a
3.4 average column norm of [01}/ error to roughly the accu-
racy of iteration 3 earlier. For the larger perturbations of
design variable scaling set 3, eight iterations were necessary to
converge from a 24% average error in X- (Fox and Kapoor's
modal method), a 1.4e-05 average condition number, and a
2.6 average column norm of {01}/ error to the accuracy of
iteration 3 earlier. For design variable scaling set 4, oscilla-
tions in the iterations began to appear, but the convergence
criteria still improved from 35% (Fox and Kapoor), 1.9e-05,
and 3.1 to 0.046%, 4.9e-08, and 0.021, respectively, in nine
iterations. Lastly, design variable scaling set 5 produced the
iteration history shown in Table 5.

Here, the oscillations mentioned earlier are very evident,
indicating that convergence is less stable for very large change.
Although it appears that the algorithm is slowly converging,
the averaging of the convergence criteria hides the fact that the
fifth eigenpair would not converge. The other nine eigenpairs
converged very quickly. The oscillations have resulted from
the fifth eigenpair alone.

This nonconvergence of the fifth eigenpair for the large
change case motivates the following study to determine the
limitations of the method. Table 6 shows seven severe design
variable scaling sets, chosen to determine where and perhaps
why the method fails. It would appear that the (+,- , + ,-, + )
pattern of severe design variable scalings apparent in DV
scaling sets 5, 6, and 7 gives rise to the nonconvergence of the
fifth eigenpair. Although this is not fully understood at this
time, it is believed that a set of large design variable scalings
with alternating signs causes an extremely large mode pertur-
bation in the nth mode of an n element cantilever beam. That
is, prescribing large alternating design variable scalings in an
eight-element cantilever beam would cause a very large mode
perturbation in the eighth mode. Similarly, the (+ , + , + ,-,-)
pattern of severe design variable scalings apparent in DV
scaling sets 8 and 9 give rise to the nonconvergence of the two
highest eigenpairs. This is believed to occur because the stiff-
ening of the inboard and weakening of the outboard portions
of the cantilever forces the mode oscillations toward the
cantilever tip. This causes a very large mode perturbation in
the higher modes (e.g., the zero crossings of mode No. 10 are
forced toward the tip whereas they were more evenly spaced in
the baseline design). Finally, design variable scaling sets 10,
11, and 12 test convergence for a single severe design variable
perturbation. Convergence of all 10 eigenpairs is evident for a

60% increase in a single beam element height. It can be in-
ferred that a large perturbation in a single element is much less
severe than large perturbations on all elements.

The aforementioned perturbations are very severe because
the element moments of inertia (and therefore the stiffnesses)
change as the cube of the beam height, e.g., a 26% increase in
beam height increases the bending stiffness by 100%. The
proposed perturbation method can converge for such large
change, whereas higher order sensitivities based on Taylor
series will diverge. When a positive 100% change is made in a
Taylor series based method, the radius of convergence also
includes a negative 100% change, which causes divergence.14

The only current limitation to the method is its speed be-
cause many matrix decompositions must be performed. That
is, [Dl]i must be decomposed once per desired eigenvector
change per iteration. This could be prohibitively costly for
large problems desiring large changes in many eigenpairs. An
alternative to repeated decomposition is the Sherman-Mor-
rison formula: ([A°] + [A^])'1 = function of [A°]~l and
[AA ]. This will have limited use since the Sherman-Morrison
formula is really a matrix generalization of a Taylor series
expansion, and therefore would be limited by its radius of
convergence.

Conclusions
A robust solution of the full nonlinear eigenproblem pertur-

bation equations has been developed. No terms in the equa-
tions for AX, and ( A < £ ) / have been neglected, and the fre-
quency and mode shape perturbation equations are coupled
(unlike the first-order system). That is, the finite change in
eigenvalue is dependent on the perturbed value of the eigen-
vector, and the finite change in the eigenvector is dependent
on the perturbed value of the eigenvalue. An iterative solution
is therefore required. The familiar singularity in the solution
for the eigenvector change is treated using the authors' modifi-
cation of Nelson's method for resolution of the singular ma-
trix equations. The normalization task necessary for (A0) ,
also retains all terms, leading to a cubic equation for a weight-
ing factor Cj.

In a cantilever beam example, convergence to the exact
answers for eigenvalue and eigenvector changes has been
shown to be achievable for very large perturbations in design
variables. Fast convergence has been shown for 100% in-
creases in stiffness and near convergence has been shown for
170% increases in stiffness, for the case of simultaneous de-
sign variable perturbations. For the case of a single design
variable perturbation, convergence of all 10 eigenpairs has
been shown for a 310% increase in stiffness for the perturbed
beam element. This makes the proposed scheme especially
valuable in the case when destruction of a component of a
large structure is a possibility.
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